Overview on the Rare Isotope Science Project in Korea

Youngman Kim (Asia Pacific Center for Theoretical Physics) • IBS (Institute for Basic Science)

• RISP (Rare Isotope Science Project)

www.ibs.re.kr

Institute for Basic Science

History of IBS

2008

Oct, 2008: ISBB Support Office kicks off,

 Feb, 2008: "Science Belt Development Plan" is established by the Science and Business Belt Task Force of the Presidential Transition Committee,

2011

Nov, 25th 2011: Dr, Se-Jung Oh is appointed as President of IBS.

Nov, 2th 2011: IBS is registered as a legal entity.

- Sep. 22th 2011: "Basic Plan for IBS Establishment and Operation" is confirmed.
- June, 10th 2011: Administrative HQ of IBS opens,
- May, 16th 2011: The site for International Science and Business Belt (ISBB) is announced, "Fundamental Principles of IBS Establishment and Operation" is confirmed,
- April, 7th 2011: The Committee on ISBB kicks off with the selection of its founding members,
- April, 5th 2011: ISBB Planning Group kicks off,

• Vision and Purpose

Organization

• The number of staff: 3,000 (2017, including visiting scientists and students)

• Annual Budget: USD 610 million (2017, including operational cost for the Accelerator Institute)

o IBS's Organization

- IBS plans to develop into an institute with 3,000 researchers and staff based at 50 newly established research centers by 2017,
- Research centers will be located not only at the headquarters in Daejeon, but also in three of the leading campuses in Korea,
- Moreover, extramural research centers will be established at other universities and institutes in Korea and abroad that meet high standards of scientific excellence.

o Operation of Research Centers

- Directors (principal investigators) of IBS Research Centers are recruited through an open invitation process and recommendations from SAB (Scientific Advisory Board) based on the criteria of scientific excellence and future research proposals.
- Directors are given autonomy in researcher recruitment, budget administration and in how they operate their research centers,
- IBS research centers welcome enthusiastic and committed young scientists and researchers from other institutes to collaborate on IBS research projects,

10 IBS Research Center Directors Appointed

IBS Directors to Lead Innovation with Full Autonomy in Research Center Operation Press Release on May 8, 2012 Public Relations Division, MEST Public Relations & Cooperation Team, IBS

Where?

Rare Isotope Science Project

As of June 7, 2012

Status and Plan

- Conceptual Design report (Mar. 2010 Feb. 2011)
- IAC review (Jul. 2011 Oct. 2011)
- Rare Isotope Science Project started in IBS (Dec. 2011)
- RISP Workshop on accelerator systems (May 6 9, 2012)
- RISP Workshop on RI Physics Theory (May 11 12, 2012)
- TAC (May 10, 2012)
- Baseline Design Summary (by Jun 2012)
- School on Nuclear Transport (July 3 8, 2012)
- RISP Workshop on Advanced Experimental Technology (July 16-18, 2012)¹
- IAC(July 26-7, 2012)
- RISP School: Nuclear Structure (Oct. 19 20, 2012)
- Technical Design Report (by Jun. 2013)

No theorists yet, but some from September 1, 2012

Preliminary Schedule

□ High intensity RI beam Juner energy higher current. ⇒y 70MeV, 1mA p **70kW ISOL** from dig 400kW IF by 200

□ High energy, h quality neutron-rich RI beams ¹³²Sn with

Norld leading RI science facility for next 20~30 years □ More exe me maximum use of the facility □ Simultà

Accelerator	Beam specification	Components
Driver Linac	p, 600 MeV, ²³⁸ U ⁺⁷⁸ , 200 MeV, 8 pµA	ECR-IS, LEBT, RFQ, MEBT, QWR, HWR, Charge Stripper, SSR1, SSR2
Post Linac	RI, ~ 18 MeV/u	Charge Breeder, ECL-IS, LEBT RFQ, MEBT, QWR, HWR
Cyclotron	p, 70 MeV, 1mA	Cyclotron, Pulsed ion source, Charge Stripper, Beam line

1. In-flight (IF) facilities: a high energy ion beam is fragmented in a suitable thin target and the reaction products are selected according to their A/q and momentum values and then transported to the secondary target.

2. ISOL-type facilities: radioactive ions are produced at rest in a thick target either by direct bombardment with particles from a driver accelerator or via fission induced both by fast and thermal secondary neutrons.

Concept of the Accelerator Complex

SC Linac 200MeV/u for 238U, 600 MeV for p \rightarrow IF driver, high power ISOL driver Cyclotron 70 MeV for p \rightarrow ISOL driver SC Linac ISOL post accelerator 18 MeV/u

Layout of KoRIA

For the basic and applied science with stable and unstable isotopes

2011.12.26 - 2012.06.25

Selected RI beam requirements for RISP

RI Beam species	Energy Range	Desired Intensities [particles / sec]	Research fields
⁸⁰ Ni, ⁷⁶ Fe, ¹³² Sn, ¹⁴⁴ Xe	> 100 A MeV 5-20 A MeV	> 10 ⁹ > 10 ⁸	Nuclear structure
¹⁵ O, ¹⁴ O	< 10 A MeV < 30 keV	> 10¹⁰⁻¹¹ > 10 ⁸	Nuclear astrophysics Material Science
^{26m} Al	5-20 A MeV	> 10 ⁷⁻⁸	Nuclear astrophysics
⁴⁵ V	0.613-2.25 A MeV	> 10 ⁷⁻⁹	Nuclear astrophysics
³⁹ Si, ³⁶ Mg	5-10 A MeV	> 10 ⁷⁻⁹	Nuclear structure
⁶⁸ Ni, ¹⁰⁶ Sn, ¹³² Sn, ^{140,142} Xe	10-250 A MeV	> 109	Symmetry energy
^{6,8} He, ¹² Be, ²⁴⁻³⁰ O	50-100 A MeV	> 109	Nuclear study with Polarized target
¹⁷ N, ¹⁷ B, ¹² B, ¹⁴⁻¹⁵ B, ³¹⁻³² Al, ³⁴ K	50-100 A MeV	> 109	Nuclear study with Polarized RI beam
⁸ Li, ¹¹ Be, ¹⁷ Ne	< 30 keV	> 10 ⁸	Material science
¹³³⁻¹⁴⁰ Sn	< 60 keV	> 1	Atomic physics
⁸ B, ⁸ Li, ⁹ C, ¹¹ C, ¹⁵ O	≥ 400 A MeV	>10 ⁷⁻⁹	Medical and Bio science

2011.12.26 - 2012.06.25

• Requests on beam characteristics for experiments

Characteristic of beam	requirement	comments
Maximum Beam Energy	250 AMeV for ¹³² Sn	- Symmetry energy
Minimum Beam Energy	≤0.3 AMeV (Min E from RFQ~0.5 AMeV)	 Nuclear astrophysics 0~1 AMeV is possible?
Energy Variability	0.5% at <18 AMeV (ex. 50 AkeV @ 10 AMeV) 1MeV at >18 MeV/nucleon	- Fast and precise beam energy changes for low energy beams (<5 AMeV)
Beam Energy Definition	0.1% or better	- Beam-energy analysis spectrometer
Time Resolution	0.5 ns/bunch (FWHM) upper limit ~ 1 ns	 TOF measurement How about energy spread of the beam?
Time Structure: pulse rate and chopping	- 100~200 ns (5~10 MHz) - chopping 12 ns ~ 1 ms	- TOF measurement, 81.25 MHz (~12.3 ns) is high - for LAMPS experiment - for Beam ID, ~12.3 ns is OK.
Beam Sharing	- 5 ports for muSR - 2 ports for beta-NMR - low E nucl. Phys.+material sci.	- to use the beam time efficiently
Stable Beam Operation at post-accelerator	- 10 ¹¹⁻¹² pps	 Setting up and calibrating instruments Reference points for studies with RIBs by-pass BT line for high E is required?
Beam Purity	single-isotope beams	
Beam Emittance and Spot Size	$1 \sim 2 \pi$ mm mrad 2 mm ²	for RI beams from ISOLIs technically feasible?

Research subjects by using KoRIA

Kody Dael Community		Nuclear Structure	- Better understanding of system of nucleons at wide variation in the chart of nuclei
		Nuclear Astrophysics & Nucleosynthesis	 To understand the role of unstable nuclei in the nucleosynthesis To understand the life cycle of a star and origin of elements
		Nuclear Matter	- To understand symmetry energy, EOS of hot and dense nuclear matter and property of hadron at dense neutron region
	alonba	Nuclear Theory	 To understand origin of matter to describe the history of the Universe To understand the matter by describing nuclear structure and reaction
	3 Morking	Medical & Bio application	 Development of new cancer therapy using radioactive heavy ion beam To understand biological effect of tissue and DNA by RI beam
	ŭ	RI Material Research	 Development and utilization of new material To understand property of material by RI
		Nuclear Data	 Nuclear data construction to develop future nuclear power technology Research for the radioactive waste transmutation
		Atom traps for RI research	 To understand basic property of atom and nuclei Study of structure and characteristics of element and nuclei

Research

Nuclear structure

> To discover unknown isotopes

> Better understanding of system of nucleons at wide variation in the chart of nuclei

Synthesis of the superheavy elements

proves

- long-held nuclear theories regarding the existence of the "island of stability",
- the ultimate limits of the periodic table of the elements and
- how nuclei are held together and how they resist the fission process.

Reaction Candidate for SHE synthesis

*PRC 74, 044602 (2006)

Reaction Candidate for SHE @ KoRIA

candidates of hot fusion reactions (using actinide target) grater than 115 are better to produce because of its high cross sections rather than cold fusion.

(Actinide target) + (Intense Fe, Ni beam) \rightarrow 116 ~ 122

```
{}^{232}\text{Th} + {}^{58}\text{Fe} \rightarrow {}^{290\text{-x}}\text{116} + \text{xn}{}^{232}\text{Th} + {}^{64}\text{Ni} \rightarrow {}^{296\text{-x}}\text{118} + \text{xn}{}^{244}\text{Pu} + {}^{58}\text{Fe} \rightarrow {}^{299}\text{120} + 3\text{n}{}^{238}\text{U} + {}^{64}\text{Ni} \rightarrow {}^{299}\text{120} + 3\text{n}
```

<u>Yield Estimation (rough)</u> 232 Th + 64 Ni \rightarrow $^{296-x}$ 118 + xn

- Cross Section (σ): 1 pb (assumed)
- Target Thickness (T): **0.4**mg/cm²
- Beam intensity(I): ~ 20 pµA
- Total efficiency(ε): 0.8

-> Y/s = $\varepsilon x \sigma x T x I \sim \frac{1 \text{ event / day}}{1 \text{ event / day}}$

KoRIA user community

Baryon number density profile in a stringy model

Note that in the hard wall model $1/z_m$ is about 300 MeV. So, confinement scale in free space and inside nuclei are different.

Kyung Kiu Kim, Yumi Ko, YK, JHEP 1010 (2010) 039

Nuclear matter

To understand the origin of matter, its evolution and overall structure of the universe

- Symmetry Energy of nuclei far from stability
 - Neutron skin thickness, isovector giant dipole resonance,...
 - Phenomena of symmetry violation (ex, parity)
 - The explosion of supernovae and formation of neutron star
 - Inner structure of neutron star
- Heavy ion flows

. . .

- Property of hadron at dense neutron region
- Equation of state (EOS) for hot and dense nuclear matter

YK, Y. Seo, I. J. Shin, and S.-J. Sin, JHEP 1106:011,2011

YK, Chang-Hwan Lee, Ik Jae Shin, Mew-Bing Wan, JHEP 1110 (2011) 111

Figure 3: Energy density, pressure and equation of state for $\rho_c = 2.5713 \times 10^9 \text{ MeV}^4$ and $P_c = 3.2141 \times 10^8 \text{ MeV}^4$ with surface energy density $3.26 \times 10^8 \text{ MeV}^4$. This configuration provides a star of the radius 11.45 km and the mass $1.26 M_{\odot}$.

Kyung Kiu Kim, YK, Ik Jae Shin,

"Equations of state and compact stars in gauge/gravity duality," arXiv:1206.4421[hep-ph].

Research

Nuclear astrophysics

> To understand the role of unstable nuclei in the nucleosynthesis

- 1) Study of the abundances and formation processes of elements in the stars
- 2) Identifying the formation process of energy generated in the stars
- 3) Identifying the structure of extreme neutron rich nuclides regarded as existing in the neutron star or super giant stars and their properties

Synthesis of heavy nuclei

KoRIA user community

Study of the nucleosynthesis of the n-rich nuclides by r-process around 50<N<82

The r-process is very important to explain the nucleosynthesis mechanism, abundance of the chemical elements, and nuclear structure, and it happens in a region of very exotic nuclei.

Basic parameters for r-process

Half-lives ($T_{1/2}$)

 \rightarrow abundance

 \rightarrow process speed

Cross sections

→ location of the path <u>Masses (A, Q</u> Resonances Continuum

beta-delayed neutron (P_n)

- \rightarrow final abundances
- Why 50<N<82
- → The model underestimate the abundance by one order in A~100
- → corrected under assumption of a reduction of shell gap in n-rich nuclide
- → Introduce new double magic nucleus ¹¹⁰Zr (p=40, n=70) which is theoretically expected in n-rich region
 - * NPA 693, 282(2001)

The first experiment will be to measure β -decay properties of nuclei in the neighbourhood of ¹¹⁰Zr to investigate its possible spherical character arising from new semi-magic numbers : Half-lives, P_n of neutron-rich of Y, Zr, Nb, Mo, Tc, etc.

✓ NSCL reported the measurement of T_{1/2} and P_n of ¹⁰⁰⁻¹⁰⁵Y, ¹⁰³⁻¹⁰⁷Zr, ¹⁰⁶⁻¹⁰⁹Nb, ¹⁰⁸⁻¹¹¹Mo and ¹⁰⁹⁻¹¹³Tc with ¹³⁶Xe (120 MeV/u, 1.5 pnA)+ Be– PRC 79, 035806 (2009)

We will investigate the more neutron-rich isotope near to r-process waiting point ¹¹⁰Y, ¹¹⁰Zr, ¹¹⁴Nb, ¹¹⁶Mo, ¹¹⁸Tc with ¹⁴²Xe (220 MeV/u, 1pnA).

Production of more-exotic medium mass n-rich RI

¹⁴²Xe (ISOL) \rightarrow post-accelerator \rightarrow re-accelerator \rightarrow In-flight target \rightarrow Fragmentation separator \rightarrow experiments

Known mass □ Known half–life □ r-process waiting point (ETFSI-Q) r-path N=184 N=126 r-process

Korea RI Accelerator could reach new n-rich isotope with rates of 10⁻³-10 pps.

nuclide	Estimated Intensity (pps)
¹¹⁰ Y	1.8
¹¹⁰ Zr	1.8
¹¹⁴ Nb	1.1
¹¹⁶ Mo	3.8
¹¹⁸ Tc	1.4

Note that ~ 10^3 times higher than 136 Xe (350 MeV/u, 10 pnA)+Be.

Facilities for the scientific researches

- Design of the experimental facilities in conceptual level

- User training program with the international collaboration

KoRIA user community

Facility

Nuclear astrophysics

KoRIA user community

Nuclear astrophysics

Facility

Facility

Nuclear matter

International collaboration plan

Instruments:

Recoil Spectrometer Target: for Experiments, Neutron Production, etc Detector system Gamma-ray Array, Charged particle detector TPC, Focal plane detector, Neutron detector Trap, Laser related system Polarization system Irradiation system ISOL related system

Facilities/Institutes:

RIBF/RIKEN, CNS, FRIB/MSU, SPIRAL-II/GANIL, TRIAC/KEK, SPES/LNL, ISOLDE/CERN, TRIUMF, FAIR/GSI, etc.

Collaborations to participate in: SAMURAI, SHOGUN, ISLA, Theory, S3, ISOLDE, etc.

KoRIA user community

A few key words of theory group (not official, very personal)

- From quarks to neutron stars
- QCD vacuum ←→ quarks and gluons ←→ hadrons
 ←→ (light/heavy, stable/unstable) nuclei ←→
 neutron stars
- Strong tie with experiment group
- Ab Initio, Interdisciplinary, ...

