Monte Carlo shell model and its application to exotic nuclei

Yutaka Utsuno Japan Atomic Energy Agency

Collaborators

T. Otsuka (Tokyo), T. Mizusaki (Senshu), M. Honma (Aizu), N. Shimizu (Tokyo)

Contents

- Brief introduction of the Monte Carlo shell model
- Structure of exotic nuclei around N=20
- Recent understanding of the shell evolution

Even with-core shell model ...

Exponential wall

Shell model dimension for N=Z pf-g shell nuclei (without symmetry consideration)

Taken from SciDAC Review (2007)

Current situation

- Light nuclei (p shell and sd shell in near future)
 - Ab initio shell model approach
 - Bare NN force can be used such as JISP16.
- Heavier nuclei (up to ¹³²Sn region)
 - Conventional shell model
 - Effective interaction
- What is needed
 - 1. A tool to make large-scale nuclear calculation possible
 - Monte Carlo shell model (MCSM)
 - 2. Good interaction
 - New findings about the evolution of the shell structure

Brief introduction of the Monte Carlo shell model (MCSM)

Basic idea of MCSM

 Can a complicated nuclear many-body state be approximated by a small number of "basis" states?

T. Otsuka, M. Honma, T. Mizusaki, N. Shimizu and Y. Utsuno, Prog. Part. Nucl. Phys. 47, 319 (2001).

Brief history

- Quantum Monte Carlo Diagonalization method (1995)
 - tested with the IBM model
- Reformulation for the shell model (MCSM) (1996)
- Several improvements and applications (until ~2005)
 - Implementing variational procedure
 - Implementing quantum number projection
 - Implementing Lawson's prescription
 - Application to full pf shell, sd-f7/2-p3/2 shell, ...
- New generation of MCSM (since 2009)
 - Energy variance extrapolation method
 - Efficient computation (algorithm, coding, ...)
 - Application to ab initio shell model, large systems with core

this talk

Background of MCSM

- Basis states: follow auxiliary field Monte Carlo approach (the shell model Monte Carlo (SMMC) by Koonin et al.)
- exp(- β H): projector onto the ground state when $\beta \rightarrow \infty$
 - exp(- β H)| Ψ >: cannot be obtained for a two-body operator H
 - Hubbard-Stratonovich transformation

for
$$\hat{H} = \varepsilon \hat{\mathcal{O}} + \frac{1}{2} V \hat{\mathcal{O}} \hat{\mathcal{O}}$$
,
 $e^{-\beta \hat{H}} = \sqrt{\frac{\beta \mid V \mid}{2\pi}} \int_{-\infty}^{\infty} d\sigma e^{-(1/2)\beta \mid V \mid \sigma^2} e^{-\beta \hat{h}}$; $\hat{h} = \varepsilon \hat{\mathcal{O}} + sV\sigma \hat{\mathcal{O}}$
 σ : auxiliary field

- $\exp(-\beta h)|\Psi>$: Slater determinant when $|\Psi>$ is a Slater determinant. However, integration over σ is needed.
- In SMMC, Monte Carlo integration is carried out.

Original MCSM procedure

- In MCSM, Monte Carlo integration is not carried out. Instead, σ 's are regarded as generators of basis states. $|\Phi(\sigma)\rangle \propto e^{-\beta h(\sigma)} |\Psi^{(0)}\rangle$
- Many-body states are made from $|\Phi(\sigma_1)\rangle$, $|\Phi(\sigma_2)\rangle$, ... by diagonalizing the Hamiltonian in a space spanned by those basis states.

Implementing variational procedure

- A series of $|\Phi(\sigma_1)\rangle$, $|\Phi(\sigma_2)\rangle$, ... contains useless basis states which barely contribute to improving the energy.
- Search for efficient basis states: trial and error
 Consider |Φ(σ₁)>, |Φ(σ₂)>, ..., |Φ(σ_n)> are already fixed and a good |Φ(σ_{n+1})> is sought.
 - 1. Candidate for $|\Phi(\sigma_{n+1})\rangle$ is generated, and the energy is obtained with $|\Phi(\sigma_1)\rangle$, ..., $|\Phi(\sigma_{n+1})\rangle$.
 - 2. Shift σ_{n+1} slightly and calculate energy. If energy becomes lower, this σ replaces σ_{n+1} . If not, try another σ .
 - 3. This is repeated until good convergence is attained.

Implementing symmetry restoration

- Since each |Φ(σ)> is a general Slater determinant, it does not have good quantum numbers that the Hamiltonian possesses (such as total angular momentum).
- In estimating the energy, P|Φ(σ)> is considered instead of |Φ(σ)>, where P is the projector onto a desired quantum number (J=0, 2, ..., etc.)
- To summarize, the MCSM wave function is expressed as

$$\left|\Psi_{JM}\right\rangle = \sum_{k=1}^{N_{MCSM}} c^{(k)} P^{\pi} \sum_{K=-J}^{J} g_{K}^{(k)} P_{MK}^{J} \left| \Phi(D^{(k)}) \right\rangle$$

superposition projection basis state
$$\left|\Phi(D)\right\rangle = \prod_{k} a(D)_{k}^{+} \left|-\right\rangle \quad a_{k}^{+} = \sum_{i} D_{ik} c_{i}^{+}$$

Effective use of parallel computers

- Angular momentum projection
 - Three dimensional integration (~10⁴ mesh points) can be done independently.
- Introducing a workstation-based cluster for exclusive use of MCSM named Alphleet (in 1999).

- consists of 140 CPUs (cores)
- highest top500 rank: 169.
- Effective performance: 61.3 GFLOPS
- cost: ~ a million dollars

Alphleet Cluster

Site:	Institute of Physical and Chemical Res. (RIKEN)
System URL:	
Manufacturer:	Hewlett-Packard (Compaq)
Cores:	140
Power:	
Memory:	
Interconnect:	Myrinet
Operating System:	N/A
Configurations	

List	Rank	System	Vendor	Total Cores	Rmax (GFlops)	Rpeak (GFlops)	Power (kW)
11/2000	435	Alphleet Cluster	Hewlett-Packard (Compaq)	140	61.30	140.00	
06/2000	232	Alphleet Cluster	Hewlett-Packard (Compaq)	140	61.30	140.00	
11/1999	169	Alphleet Cluster	Hewlett-Packard (Compaq)	140	61.30	140.00	

Demonstration of efficiency

- ⁵⁶Ni in the full pf shell
 - 10⁹ m-scheme dimension: Several groups competed about a decade ago for obtaining the energy as low as possible.

Comparison with other calculations

- M-scheme basis dimension: ~10⁹
 - It was not feasible to perform the exact calculation until ~2004.

Taken from K.W. Schmidt, Prog. Part. Nucl. Phys. 52, 565 (2004).

Deformed-spherical shape coexistence

 The usual truncation (restricting the number of nucleons in sub shells) is not good for strongly deformed states.

Structure of exotic nuclei around N=20

Disappearance of the N=20 magic number

Ref.) D.Guillemaud-Mueller *et al.*, NPA426, 37 (1984).T. Motobayashi *et al.*, PLB 346, 9 (1995).

normal state (0p0h)

VS.

intruder state (2p2h)

Viewpoint of the deformed shell model

Island of inversion

E.K. Warburton et al., Phys. Rev. C 41, 1147 (1990).

 Nine nuclei dominated by 2p-2h: prediction from (approximated) shell-model calculation

Drip line of oxygen and fluorine: another unexpected property

- Oxygen (Z=8)
 - The last bound isotopes
 is located at N=16 with a
 considerably large
 separation energy.
- Fluorine (Z=9)
 - The isotope with N=22
 is known to be a bound
 nucleus. The separation
 energy should be kept
 small from N=18.

Experimental S_{2n} of O and F

Phenomenological explanation

i) Normal shell structure

ii) Quenched N=20 shell gap

What is obtained with the shell model

- An anomalous shell structure is expected, but observed states are not pure single particle states. A description with appropriate treatment of correlation is needed.
 → shell model calculation
- Nevertheless, the observed state is strongly affected by the shell structure. It is desirable to pin down the evolution of the shell structure and to provide its mechanism.
 - \rightarrow effective single-particle energy

Effective single particle energy

- Effective single-particle energy (ESPE): Shell-model viewpoint of generalized SPE
 - Filling configuration is assumed for the A-nucleon system.
 - Additional binding energy in the
 (A+1) nucleon system defines ESPE.
 - Total energy for a fully occupied system can be evaluated simply by counting the number of "bonds" and their **monopole** centroids.

sum of the monopole centroids associated with the orbit k

$$V_{i,j}^{T} = \frac{\sum_{J} (2J+1) \langle i, j | V | i, j \rangle_{J,T}}{\sum_{J} (2J+1)}$$

Orbital dependence of the monopole centroid causes the shell evolution.
 (V_{i,k}≠ V_{i,k}, gives rise to the variation of the shell gap.)

Proposed shell structure changing from oxygen to calcium

- Neutron d_{3/2}: main player
 - stays high around oxygen:
 N=16 magic number
 - comes down around calcium: (normal) N=20 magic number
 - contributes to the inversion
- Strongly attractive d_{5/2}d_{3/2} interaction

Neutron ESPE

How do we make an effective interaction with that single-particle structure

- Model space: full sd shell + $f_{7/2}$ + $p_{3/2}$
- Starting point: existing effective interactions
 - USD (Wildenthal and Brown): sd shell part
 - Kuo-Brown: pf shell part
 - Millener-Kurath: cross shell part
- Modification of the monopole interaction

 $\delta V^{T=1,0}_{0d_{5/2},0d_{3/2}} = +0.30, -0.70 \text{ MeV},$

 $\delta V_{0d_{5/2},0f_{7/2}}^{T=1,0} = +0.16, -0.50 \,\mathrm{MeV},$

minimal change for this aim

Overview of the yrast properties

Energy levels

B(E2) values

Importance of determining "western" boundary

Case of Na (Z=11) isotopes

- Electromagnetic moment
 - good probe for the wave function
- Comparison between theory and experiment
 - The N=19 isotope is clearly inside the island of inversion contrary to the original mapping.
- larger island with indistinct boundary due to the narrow N=20 shell gap

Y. Utsuno et al., Phys. Rev. C 70, 044307 (2004).

Recent understanding of the shell evolution

Origin of the difference in monopole interaction

- $V_{ij} \neq V_{ik}$ causes the evolution of the shell structure.
- Strong dependence on spin direction
 - Strong attraction between $j_{>}$ and $j_{<}$ (such as $d_{5/2}$ and $d_{3/2}$)
- (τ·τ)(σ·σ)V(r) ?
 - demonstrated to cause a plausible effect at the long range limit
 - However, the spin dependence is too small in realistic systems.
- Another origin?

T. Otsuka et al., Phys. Rev. Lett. 87, 082502 (2001).

Tensor force

- Regarded as an important part as the bare force, but often omitted as the effective interaction (Skyrme, Gogny, ...)
 - dominance of the second-order effect (e.g., no effect on the spinsaturated mean-field wave functions such as ¹⁶O)
- Revival of the tensor force as the effective interaction
 - Not large effect on the total energy, but large contribution to the shell energy
 - Evolution of the ls splitting due to

$$(2j_{>}+1)V_{j_{>},j'}^{T}+(2j_{<}+1)V_{j_{<},j'}^{T}=0,$$

T. Otsuka et al., Phys. Rev. Lett. 95, 232502 (2005).

Evolution of energy levels in antimony isotopes

- Sb (Z=51): dominance of proton single-particle level
 - supported by proton transfer experiment
 (J.P. Schiffer et al., Phys. Rev. Lett. 92, 162501 (2004).)
 - The tensor force (included in GT2) reproduces experiment.

Persistency of the tensor force

- How strong is the tensor force as the effective interaction?
 - Model space dependence?
- Analysis by a microscopic effective interaction theory
 - V_{low k}: short range correlation is treated
 - Q_{box}: in-medium effect is included further.
- Very similar to the bare (long range) tensor force

T. Otsuka et al., Phys. Rev. Lett. 104, 012501 (2010).

Comparison with empirical interaction

- GXPF1: an empirically fitted interaction for the pf shell
- The tensor part is extracted with the spin-tensor decomposition

$$V = \sum_{k=0}^{2} V_{k} = \sum_{k=0}^{2} U^{(k)} \cdot X^{(k)}$$

 $\langle ABLSJ'T | V_k | CDL'S'J'T \rangle$ $= (-1)^{J'}(2k+1) \begin{cases} LSJ' \\ S'L'k \end{cases} \sum_{J} (-1)^{J}(2J+1) \begin{cases} LSJ \\ S'L'k \end{cases}$ $\times \langle ABLSJT | V | CDL'S'JT \rangle$

T=0 monopole centroid of the tensor force (MeV)

i	j	GXPF1	π+ρ
f7	f7	0.223	0.210
f7	р3	0.036	0.035
f7	f5	-0.335	-0.315
f7	p1	-0.073	-0.070
р3	р3	0.092	0.150
р3	f5	-0.048	-0.046
р3	p1	-0.229	-0.376
f5	f5	0.382	0.360
f5	p1	0.097	0.093
p1	p1	0.306	0.501

quite similar

Non tensor part of the monopole interaction

- Very mild spin dependence
- Some node dependence
- Can be fitted by a Gaussian central force

Monopole-based universal interaction (V_{MU})

T. Otsuka et al., Phys. Rev. Lett. 104, 012501 (2010).

- Ansatz
 - Strongly renormalized central part is well approximated by the Gaussian force at least as far as the monopole part is concerned.

Application of $V_{\rm MU}$ to the N≈28 region

- Evolution of the sd shell from N=20 to 28 is focused.
 - cross shell part
- Effect of correlation is included by the shell model.
- Setup of the calculation

- Full sd-pf orbit is taken, but excitation of nucleons across the N=20 is not allowed.
- $-V_{MU}$ (slightly refined) is used as the cross shell interaction.
- The sd shell part and the pf shell part are substituted with USD and GXPF1B (empirical interactions), respectively.

Probing the proton Is splitting

- Proton one-hole state
 - Good measure for probing the single-proton state
 - However, the d_{5/2} state is strongly fragmented because of high excitation energy.
 - Distribution of the spectroscopic factor is helpful.

Spectroscopic factor for 1p removal from ⁴⁸Ca

(e,e'p): G.J. Kramer et al., Nucl. Phys. A 679, 267 (2001).

Effect on collectivity: Si and S isotopes

Comparison of the effective SPE

 Coherent quenching of proton and neutron shell gaps which increase toward the j-j closure

Potential energy surface

- obtained by constrained HF calc. in the shell-model space
- The tensor force drives shape to oblate deformation in Si.
 - caused by near degeneracy: Jahn-Teller effect

Summary

- The Monte Carlo shell model (MCSM) has been developed to overcome the limitation of conventional diagonalization.
 - Description of many-body wave function with a small number of symmetry-restored Slater determinants
- The disappearance of the N=20 magic number in neutron-rich nuclei has been studied with MCSM.
 - Correlated system; shell model calculation is helpful.
 - Effective single-particle energy, monopole interaction
- Recent understanding of the shell evolution has been shown.
 - Revival of the tensor force as the effective interaction
 - (semi-phenomenological) universal monopole interaction
 - Neutron-rich N~28 systems