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Abstract

We give an overview of the development of the Monte Carlo shell model
(MCSM). MCSM was originally based on the auxiliary-field Monte Carlo tech-
nique, but it is more like a stochastic variational method within multiple Slater
determinants incorporating symmetry restoration. It is shown that compli-
cated shell-model wave functions can be satisfactorily approximated with the
MCSM calculation. MCSM has been applied to several cases, one of which is
the neutron-rich region around N = 20, often called the island of inversion. A
unified picture of the island of inversion is obtained with the MCSM calcula-
tions. The study of the island of inversion leads to a general concept of the shell
evolution.
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1 Introduction

Large-scale computing has been an indispensable tool in various fields of science.
For instance, Japan has recently completed a new 10-PFlops supercomputer called
K computer [1] in order to solve urgent problems in science and technology. Among
various applications of the K computer, basic science including nuclear physics, has
been regarded as one of the most important. In nuclear physics, large-scale computing
enables one to describe nuclei from a more fundamental viewpoint. According to the
forecast of Ref. [2], ab initio calculations in which a nucleus is built from nucleons
interacting one with another via a bare nucleon-nucleon force only, will be extended
to the sd-shell region in a near future. As for medium-heavy nuclei, the nuclear shell
model, or the configuration interaction (CI) approach in terms of quantum chemistry,
will be applicable up to the region around 132Sn. Both methods need capability to deal
with a huge number of many-body states. While exact calculation of the innumerable
states such as the Lanczos diagonalization is developing accordingly, approximate
methods should also be developed for surpassing the current limitation. The Monte
Carlo shell model (MCSM) [3] is one of such methods, being developed to give a
precise description of the CI problems with huge dimensionality. Its applicability
is not limited to the conventional shell model which assumes an inert core and a
relatively small number of valence orbits, but also includes ab initio calculations due
to recent methodological and computational progress [4].

In this paper, we show some basics of MCSM and its early successful applications
to the structure of exotic nuclei in the region near N = 20 which is often called “island
of inversion” [5]. It is noted that a recent development of MCSM and a benchmark
test for the ab initio calculation are presented in another paper [6]. We also show how
the large-scale MCSM calculation plays an essential role in deeper understanding of
exotic nuclei as exemplified by the so-called “shell evolution” that has been strongly
motivated by the success of MCSM in the island of inversion.
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2 Brief overview of the Monte Carlo shell model

The methodology of MCSM was proposed by Honma, Mizusaki and Otsuka in 1995
[7]. It is aimed at overcoming the limitation of CI due to huge dimensionality. It is
noted that the first application was not the shell model but was the Interacting Boson
Model (IBM). The computational method employed by MCSM is named the Quantum
Monte Carlo Diagonalization (QMCD). QMCD was hinted by the shell model Monte
Carlo (SMMC) method [8]. Thus, we first introduce basic ideas of SMMC in Sect. 2.1,
and then present the QMCD method in Sect. 2.2.

2.1 SMMC: an auxiliary-field Monte Carlo method for the

shell model

In general, the ground state of a quantum many-body system with the Hamiltonian
H can be obtained, in principle, as

exp(−βH)|Φ〉 (1)

with β → ∞ for any state |Φ〉 that is not orthogonal to the ground state. How-
ever, in practice, a direct operation of exp(−βH) is almost impossible for a general
Hamiltonian including two-body terms or higher. On the other hand, according to
Thouless theorem [9], the operation of exp(−βh) on a Slater determinant leads to
another Slater determinant for a one-body operator h. This is the starting point of
SMMC.

Let us then take a simple two-body operator H = O2 with O being a one-body
operator. In this case, exp(−βH) is analytically expressed as

exp(−βH) =

∫ ∞

−∞

dσ
√

β/π exp(−βσ2 − 2βσO). (2)

Since any two-body operator disappears in Eq. (2), Eq. (1) can be computed for a
Slater determinant |Φ〉. For an arbitrary two-body operator H , a similar expression
is obtained but is associated with more integration variables, which prevent one from
directly performing the integration in practice. On the other hand, the integration
can be practically carried out by using the Monte Carlo sampling. This is the essence
of the so-called auxiliary-field Monte Carlo method where the integral variable σ is
called the auxiliary field. The SMMC method [8] is based on this technique.

Although SMMC is suitable for studying properties of ground states and of systems
at finite temperature, it is not so for properties of discrete excited levels. In addi-
tion, SMMC suffers from the sign problem for general two-body operators. These
shortcomings are the motivation to develop another method called QMCD.

2.2 MCSM: application of the Quantum Monte Carlo

Diagonalization method to the shell model

In the SMMC method, observables are obtained by using the Monte Carlo integration.
In the QMCD method instead, a many-body wave function is obtained by using the
diagonalization of the Hamiltonian in which basis states are generated by following
the Monte Carlo sampling. This is the original idea of QMCD, and its efficiency has
been demonstrated with an IBM Hamiltonian [7].

Once the many-body wave function is calculated with a finite number of basis
states, it follows the variational principle. Namely, the energy of this wave function
must be higher than the exact energy of the lowest state. In addition, the exact wave
function must have good quantum numbers due to the symmetry of the Hamiltonian.
Thus, keeping a stochastic procedure, the QMCD method has been developed to
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directly utilize those properties. QMCD has adopted the projection technique in
Ref. [10], and has been applied to the shell model in Ref. [11].

In the late 1990s, MCSM, the application of the QMCD method to the shell model,
has been rather close to the present form and has been applied to systems beyond the
limit of the exact diagonalization at that time [12]. Here, the formulation of MCSM
is presented briefly. The many-body wave function of MCSM having total angular
momentum J and its z component M is expressed as

|ΨJM 〉 =

NMCSM
∑

k=1

f (k)P π
J
∑

K=−J

g
(k)
K P J

MK |Φ(D(k))〉, (3)

where P π and P J
MK are the parity and angular-momentum projectors. g

(k)
K denotes

the mixing amplitude of the state having the intrinsic K and the basis index k. f (k) is
the mixing amplitude for the k-th basis state (Slater determinant1) |Φ(D(k))〉 defined
as

|Φ(D(k))〉 =
∏

l

(

∑

i

D
(k)
il c†i

)

|−〉. (4)

In this expression, g
(k)
K , f (k) and D

(k)
il are the parameters to be determined. Once

all the D
(k)
il are fixed, g

(k)
K and f (k) that follows the variational principle are easily

calculated by the diagonalization of the Hamiltonian. On the other hand, it is not

straightforward to obtain the optimum form of each basis state, D
(k)
il .

In the MCSM calculation, D
(k)
il are determined as follows. The number of the basis

states, NMCSM, increases step by step: only D
(k)
il of the last basis with k = NMCSM

can be varied at a time. The other D
(k)
il with k ≤ NMCSM are kept unchanged. As for

determining D
(k=NMCSM)
il , at first, initial candidates are generated according to the

Monte Carlo sampling using the auxiliary field σ (see Eq. (2)), and the σ 7→ Dil that
gives the lowest energy is selected. The total energy labeled by σ is denoted as E(σ).
Next, around this σ, a small variation δσ is applied. If E(σ+ δσ) < E(σ) is satisfied,
σ + δσ is adopted as the new σ. Otherwise, this σ + δσ is discarded. This process is
repeated until E(σ) is saturated.

When the number of the basis states NMCSM increases, the energy is lowered. The
lowering of the energy at each increment becomes very small as the wave function is
close to the eigenstate. Hence, the number of basis states NMCSM increases until the
energy is well converged. NMCSM is typically several tens to hundred even though
the dimension of the shell-model Hamiltonian is very large. In fact, it has been
demonstrated that the ground-state energy of 56Ni in the full pf -shell calculation
with 1 billion M -scheme dimension is very well approximated by about 100 basis
states in MCSM [12, 14].

3 MCSM description of the island of inversion

After the feasibility of MCSM was confirmed with some benchmark studies for the pf -
shell calculation as shown in the last section, MCSM has been applied to cases where
the exact diagonalization was impossible at that time. The neutron-rich region around
N = 20, often referred to as the “island of inversion” [5], is one of the most successful
applications of MCSM. The island of inversion is known as a region, including 32Mg,
where a strong deformation occurs in spite of the neutron magic number N = 20. The
nuclei in the island are considered to be dominated by the 2p-2h excitation across the
N = 20 shell gap. The dominance of the 2p-2h state is caused by energy gain due to

1For different form of the basis state, the pair-condensed basis has been used for a description of
medium-heavy nuclei [13].
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Figure 1: The neutron effective single-particle energies for (a) oxygen isotopes from
N = 8 to 20 and (b) N = 20 isotones from Z = 8 to 20. See Ref. [3] for details . For
the definition of the effective single-particle energy, see Ref. [15].

correlation or deformation that is larger than the energy loss of the spherical single-
particle energy. Thus, accurate calculation of the correlation energy is needed for the
description of the island of inversion.

Although the shell model is suitable for calculating the correlation energy, its
application to the island of inversion was a difficult task due to the numerical limit of
exact diagonalization. In order to describe excitation of nucleons from the sd to pf
shell, the full sd shell and part of the pf shell should be included as the valence shell.
Even if the pf shell is truncated up to 0f7/2 and 1p3/2, the number of single-particle
states (including the degeneracy of jz) reaches 24, which is larger than that of the full
pf shell. For instance, the M = 0 dimension of 32Mg in the sd+ f7/2 + p3/2 valence
shell is larger than 109, which is beyond the computational limit in the early 2000s.

Thus, MCSM was best fitted for the shell-model calculation of the island of in-
version. Taking the advantage of MCSM that is applicable to any nucleus on the
same footing, we have succeeded in obtaining a unified picture for the N = 20 region
ranging from stable to unstable nuclei [15]. As mentioned above, the shell gap is one
of the most important ingredients for the theoretical framework. We have proposed
a neutron shell structure which strongly changes from a smaller to a larger Z as pre-
sented in Fig. 1. Whereas the N = 20 shell gap is large for stable nuclei around 40Ca,
it is sharply reduced for lower Z. Instead of the disappearance of the normal N = 20
magicity, a new N = 16 magic structure appears near oxygen isotopes. This strong
change of the shell structure was phenomenologically introduced in the shell-model
Hamiltonian named SDPF-M [15] so that the drip line of oxygen isotopes, N = 16,
can be reproduced with the shell-model calculation. In Ref. [15], a systematic cal-
culation of yrast states of even-even nuclei has been carried out, demonstrating good
agreement with the experimental energy levels and the B(E2) values.

According to the varying shell gap shown in Fig. 1, the N = 20 shell gap is rather
reduced for nuclei in the island of inversion with Z = 10−12. This helps those nuclei
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to be dominated by the 2p-2h configurations. When the shell gap is reduced, it is
expected that the extent of the island of inversion is enlarged. Thus, investigating
the boundary of the island is of a great interest for probing the quenching of the shell
gap proposed in Ref. [15]. This has been conducted with a systematic calculation
of neutron-rich sodium isotopes (Z = 11) in Ref. [16]. In sodium isotopes, although
electromagnetic moments of the ground states were known, their dominant configu-
rations were not clear due to the lack of precise nuclear-structure calculations such
as the shell model. The MCSM calculation has clarified that the 2p-2h dominance
takes place at N = 19 from comparison between theoretical and experimental mo-
ments [16], enlarging the extent of the island of inversion from the original map [5]. It
has been also demonstrated that this early onset of the 2p-2h dominance occurs only
with a Hamiltonian having a reduced N = 20 shell gap. Thus, exotic properties of
neutron-rich nuclei around N = 20 are successfully accounted for by the sharp change
of the shell structure from stable to unstable nuclei.

4 Shell evolution

In Sec. 3, guided by large-scale shell-model calculations with MCSM, a strongly vary-
ing shell structure was phenomenologically introduced. Its origin and universality
were not clear. After the MCSM study of the island of inversion, the understanding
of the evolution of the shell structure, often called shell evolution, has been advanced.
Thus, the shell evolution is one of good examples that a large-scale nuclear structure
calculation leads to a deeper understanding of the nuclear structure from the funda-
mental point of view. In the following, a brief overview about the shell evolution is
presented on the basis of our works.

As for the single-particle structure shown in Fig. 1, what causes the shift of magic-
ity is the strong lowering of the neutron 0d3/2 orbit as protons occupy the 0d5/2 orbit.
This is a consequence of a strong attraction between a proton in 0d5/2 and a neu-
tron in 0d3/2. Since those two orbits are opposite in spin direction, the nuclear force
dependent on spin seems to be essential. In Ref. [17], we have pointed out that the
spin dependent central force can explain this strong attraction, generalizing a strong
T = 0 attraction between the j> orbit and the j< orbit, where j> and j< stand for
the orbits whose j’s are l+1/2 and l− 1/2, respectively. Indeed, realistic p-shell and
pf -shell interactions have a strong attraction between 0p1/2 and 0p3/2 and between
0f5/2 and 0f7/2, respectively. As a result of this property, a new N = 34 magic
number has been predicted in the neutron-rich calcium region.

Further study has clarified that the origin of this spin dependence is the tensor
force [18], while the spin dependence of the central force plays a minor role. The
tensor force gives the strong attraction between j> and j′< orbits even with different
orbital angular momenta l and l′. The tensor force thus works to change the spin-
orbit splitting. The effective tensor force turns out to be very close to the bare
π + ρ exchange force. This finding is based on comparison with experiment [18] and
also on the analysis of the microscopic effective interaction [19, 20] using the spin-
tensor decomposition [21]. It has also been found recently that the monopole part
of the interaction, which is responsible for the shell evolution, after subtracting the
tensor part is well simulated by a simple Gaussian force [19]. The tensor-subtracted
effective interaction includes various effects such as a renormalization of the model
space and the effect of the three-body force. Nonetheless, its monopole part can be
well described by a simple interaction in terms of phenomenology. The reason for the
validity of the Gaussian central force is yet to be clarified. The interaction consisting
of the π + ρ tensor force and the Gaussian central force seems to describe the shell
evolution in a wide range of the nuclear chart, being named the monopole-based
universal interaction (VMU) [19]. It has been shown that the phenomenological shell
evolution of Fig. 1 is followed by the VMU interaction.
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Quite recently, VMU has been applied to the effective interaction of the shell-model
calculation in the neutron-rich region around N = 28 [22]. Using the shell-model
calculation, we are able to discuss the shell evolution beyond the framework of the
single-particle state. It is shown that the distribution of the spectroscopic factors for
one-proton removal from 48Ca is excellently reproduced by a Hamiltonian based on
VMU. This result indicates that the proton spin-orbit splitting is strongly reduced
from N = 20 to 28 by the tensor force, and that the reduction is quantitatively
reproduced with VMU including the π + ρ tensor force. It is also shown that a very
neutron-rich nucleus 42Si is strongly oblate deformed because of quenching of proton
sub-shell gaps induced by the tensor force. This deformation accounts for the low 2+1
state in 42Si measured recently [23].

5 Summary

In summary, this paper reports a brief overview of the development of the Monte
Carlo shell model (MCSM) and its earliest successful application to the neutron-rich
region around N = 20. The shell evolution due to the effective interaction, an idea
following the success of the MCSM calculation, is also presented. In the present paper,
we stress that the development of large-scale nuclear-structure calculation leads not
only to a quantitative description of various nuclei from a fundamental point of view
but also to the construction of a new paradigm of nuclear physics.
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Abstract

We report recent developments of the Monte Carlo Shell Model (MCSM)
and its application to the no-core calculations. It is shown that recent develop-
ments enable us to apply the MCSM to the shell-model calculations without a
core. Benchmarks between the MCSM and Full-Configuration Interaction (FCI)
methods demonstrate consistent results with each other within estimated uncer-
tainties. No-Core Full Configuration (NCFC) results are also presented as full
ab initio solutions extrapolated to the infinite basis limit.

Keywords: Shell model; Monte Carlo shell model; ab initio approaches

1 Introduction

One of the major challenges in nuclear physics is to understand nuclear structure
and reactions from ab initio calculations. Such calculations have recently become
feasible for nuclear many-body systems beyond A = 4 due to the rapid evolution of
computational technologies. Together with the Green’s Function Monte Carlo [1] and
Coupled Cluster theory [2], the No-Core Shell Model (NCSM) is one of the relevant
ab initio methods and has been emerging for about a decade. It is now available for
the study of nuclear structure and reactions in the p-shell nuclei [3].

As the NCSM treats all the nucleons democratically, computational demands for
the calculations explode exponentially as the number of nucleons increases. Current
computational resources limit the direct diagonalization of the Hamiltonian matrix
using the Lanczos algorithm to basis spaces with a dimension of around 1010. In
order to access heavier nuclei beyond the p-shell region with larger basis dimensions,
many efforts have been devoted to the NCSM calculations. One of these approaches
is the Importance-Truncated NCSM [4] where the model spaces are extended by
using an importance measure evaluated using perturbation theory. Another approach
is the Symmetry-Adapted NCSM [5] where the model spaces are truncated by the
selected symmetry groups. Similar to these attempts, the no-core Monte Carlo Shell
Model (MCSM) [6, 7, 8] is one of the promising candidates to go beyond the Full
Configuration Interaction (FCI) method which is a different truncation of the basis
states that commonly used in the NCSM.

In these proceedings, we focus on the latest application of the MCSM toward
the ab initio no-core calculations, which has become viable recently with the aid
of major developments in the MCSM algorithm [8, 9, 10] and also a remarkable
growth in the computational power of state-of-the-art supercomputers. The overview
of the benchmarks in the no-core MCSM is based on the results mostly presented in
Refs. [7, 8].

33
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2 MCSM

The MCSM has been developed mainly for conventional shell-model calculations with
an assumed inert core [11]. Recently the algorithm and code itself have been heavily
revised and rewritten so as to accommodate massively parallel computing environ-
ments [8, 9, 10]. In this section, we briefly overview the MCSM and introduce some
of recent developements.

2.1 Brief overview

The MCSM approach [11] proceeds through a sequence of diagonalization steps within
the Hilbert subspace spanned by the deformed Slater determinants in the HO single-
particle basis as the selected importance-truncated bases. A many-body basis state
|ΨJπM 〉 is a linear combination of non-orthogonal angular-momentum (J) and par-
ity (π) projected deformed Slater determinants with good total angular momentum
projection (M) as a stochastically selected basis,

|ΨJπM 〉 =

Nb
∑

n=1

fn

J
∑

K=−J

gnKP J
MKP π|φn〉, (1)

where the deformed Slater determinant is |φ〉 =
∏A

i=1 a
†
i |−〉 with the vacuum |−〉

and the creation operator a†i =
∑Nsp

α=1 c
†
αDαi. Nsp is specified by the cutoff of the

single particle orbits, Nshell. One then stochastically samples the coefficient Dαi in all
possible many-body basis states around the mean field solutions through the auxiliary
fields and diagonalizes the Hamiltonian matrix within the subspace spanned by these
bases Nb. Stochastically sampled bases are accepted so as to minimize the energy
variationally. Therefore the MCSM can evade the so-called negative sign problem,
which is the fundamental issue that cannot be avoided in quantum Monte Carlo
methods. With increasing MCSM basis dimension, Nb, the ground state energy of a
MCSM calculation converges from above to the exact value. The energy, therefore,
always gives the variational upper bound in this framework.

An exploratory no-core MCSM investigation demonstrating a proof-of-the princi-
ple has been done for the low-lying states of the Berylium isotopes by applying the
existing MCSM algorithm with a core to a no-core problem [6]. Recent improvements
on the MCSM algorithm have enabled significantly larger calculations [8, 9, 10]. We
adopt these improvements in the present work [7, 8].

2.2 Recent developments

Among the recently achieved developments of our MCSM algorithm [8, 9, 10], in this
subsection, we focus on two improvements: (1) the efficient computation of the two-
body matrix elements (TBMEs) for the most time-consuming part in our calculations
[8, 9] and (2) the energy-variance extrapolation for our MCSM (approximated) results
to the FCI (exact) ones [8, 10]. There are other improvements such as the conjugate
gradient method in the process of the basis search and the re-ordering technique in
the energy variance extrapolations. Because of space limitations, we refer for the
details of these improvements to Refs. [8, 10].

2.2.1 Efficient computation of the TBMEs

One of the main issues in the shell-model calculations is to evaluate TBMEs efficiently.
As the matrix for the TBMEs is sparse in general, the indirect-index (list-vector)
method is usually adopted in the shell-model calculations by keeping the value of the
non-zero matrix elements and their indices. However, it tends to give slow perfor-
mance due to the irregular memory access patterns.
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Figure 1: Schematic illustraion of the (vector)t × (matrix) × (vector) operation.

Alternatively, in our recent MCSM code, we transform the sparse matrix to a block
matrix with dense blocks by utilizing the symmetries of the two-body interaction [9].
The one-body density-matrix elements ρll′ are grouped as ρ̃(∆m) according to ∆m ≡
jz(l

′)− jz(l) where l and l′ are the labels for the state. The TBMEs are also similarly
categorized. Then, the two-body part of the Hamiltonian overlap can be expressed
as schematically indicated in Fig. 1. Furthermore, most of the computational time is
devoted to the (matrix) × (vector) operation. It is usually repeated a number of times
for different ρ̃’s. By binding Nvec ρ̃-vectors into a matrix, repeated (matrix)×(vector)
operations are replaced by a (matrix)×(matrix) operation at once. As shown in Fig. 2,
we can achive 70−80 % of the peak performance with Nvec ∼ 30−100 in the test case
of the (matrix) × (matrix) operation [9].

2.2.2 Energy-variance extrapolation to the FCI results

With increasing Monte Carlo basis dimension Nb, the MCSM results converge to the
FCI results from above. In order to estimate the exact FCI answer, we extrapolate the
energy and other observables evaluated by MCSM wave functions using the energy

Figure 2: Comparison of the computational performance among the indirect-index
method (Ind.), matrix-vector method (M-V) and matrix-matrix method (M-M) with
different Nvec measured on the SPARC64 VII and Xeon X5570 systems. The values
are normalized by their theoretical peak performance. See Ref. [9] for the details.
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Figure 3: 4He ground-state energies as functions of number of basis states (left) and
energy variance (right). From the above to the bottom, the symbols (horizontal
dashed lines in the left figure and open symbols at the zero energy variance in the
right figure) are the MCSM (FCI) results in Nshell = 2, 3, 4 and 5, respectively. See
Ref. [7] for the details.

variance [8, 10]. That is, the MCSM results are plotted as a function of the evalu-

ated energy variance, ∆E2 = 〈Ψ|H2|Ψ〉 − (〈Ψ|H |Ψ〉)2, and then extrapolated to zero
variance.

As a typical example, the behavior of the ground-state energies of 4He (0+) with
respect to the number of basis states and to the energy variance are shown in Fig. 3.
From Fig. 3, one can see that the MCSM results can be extrapolated to the FCI ones
by using the quadratic fit function of E(∆E2) = E(∆E2 = 0) + c1∆E2 + c2(∆E2)

2

with the fitting parameters E(∆E2 = 0), c1, and c2.

3 Benchmarks

Augmented by the recent development of the MCSM algorithm [8, 9, 10], we have
performed benchmarks of the no-core MCSM calculations [7, 8]. The main outcome
of the initial benchmark project is summarized in Table 1. In Table 1, we illustrates
the comparisons of the energies for each state and model space between the MCSM
and FCI methods. The FCI gives the exact energies in the given model space while
the MCSM gives approximate energies. Thus the comparisons between them show
how well the MCSM works in no-core calculations. Furthermore, we also put the
No-Core Full Configuration (NCFC) [12] results for the states of 4 ≤ A ≤ 10 as the
fully converged energies in the infinite model space.

For this benchmark comparison, the JISP16 two-nucleon interaction [13] is adopted
and the Coulomb force is turned off. Isospin symmetry is assumed. The energies
are evaluated for the optimal harmonic oscillator frequencies where the calculated
energies are minimized for each state and model space. Here the contributions from
the spurious center-of-mass motion are ignored for simplicity.

The comparisons are made for the states; 4He (0+), 6He (0+), 6Li (1+),
7Li (1/2−, 3/2−), 8Be (0+), 10B (1+, 3+) and 12C (0+). The model space ranges
from Nshell = 2 to 5 for A ≤ 6 (4 for A ≥ 7). Note that the energies of 10B (1+, 3+)
and 12C (0+) in Nshell = 4 are available only from the MCSM results. The M -scheme
dimensions for these states are already close to or above the current limitation in the
FCI approach. The numbers of basis states are taken up to 100 in Nshell = 2−4 and
50 in Nshell = 5.

As seen in Table 1, the energies are consistent with each other where the FCI
results are available to within ∼ 100 keV (∼ 500 keV) at most of the MCSM re-
sults with(out) the energy-variance extrapolation of the MCSM results. The other
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Table 1: Energies in MeV calculated for seven ground states and two excited states
within the MCSM and FCI methods using the JISP16 NN interaction. The entries
of the MCSM indicate the MCSM results before the energy variance extrapolation,
while those of the “extrp” line denote the MCSM results after the extrapolations.
Uncertainties in extrapolated results are quoted in parenthesis. See Ref. [7] for the
details.

E (MeV)
Nuclei Method Nshell = 2 3 4 5 NCFC
4He MCSM -25.956 -27.914 -28.737 -29.011 -29.164(2)
(0+) extrp -28.738(1) -29.037(1)

FCI -25.956 -27.914 -28.738 -29.036
6He MCSM -13.343 -19.186 -23.480 -25.080 -29.51(5)
(0+) extrp -19.196(1) -23.687(4) -26.086(76)

FCI -13.343 -19.196 -23.684 -26.079
6Li MCSM -14.218 -21.549 -26.757 -28.410 -33.22(4)
(1+) extrp -21.581(1) -27.166(16) -29.873(83)

FCI -14.218 -21.581 -27.168 -29.893
7Li MCSM -14.459 -24.073 -30.904 -39.8(1)

(1/2−) extrp -24.167(2) -31.780(51)
FCI -14.458 -24.165 -31.748

7Li MCSM -17.232 -25.978 -32.494 -40.4(1)
(3/2−) extrp -26.061(4) -33.272(89)

FCI -17.232 -26.063 -33.202
8Be MCSM -28.435 -41.242 -50.222 -59.1(1)
(0+) extrp -41.293(1) -50.753(32)

FCI -28.435 -41.291 -50.756
10B MCSM -29.755 -41.965 -52.239 -68.5(1.5)
(1+) extrp -42.357(46) -54.89(16)

FCI -29.755 -42.338
10B MCSM -34.221 -46.263 -56.346 -69.8(2)
(3+) extrp -46.618(22) -58.41(13)

FCI -34.221 -46.602
12C MCSM -62.329 -76.413 -90.158
(0+) extrp -76.621(4) -91.957(43)

FCI -62.329 -76.621

observables besides the energies; the point-particle root-mean-square matter radii and
electromagnetic moments also give reasonable agreements between the MCSM and
FCI results. The detailed comparisons among the MCSM, FCI, and NCFC methods
are discussed in Ref. [7].

4 Summary

By exploiting the recent development in the efficient computation of the Hamilto-
nian matrix elements between non-orthogonal Slater determinants and the technique
of energy-variance extrapolation, the observables give good agreement between the
MCSM and FCI results in the p-shell nuclei. From the benchmark comparison, the
no-core MCSM is now verified in the application to the ab initio no-core calculations
for light nuclei. The application to heavier nuclei is expected in the near future.
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