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least up to Nmax = 10. We therefore give these results
only up to 14 neutrons.

V. RESULTS FOR NEUTRON DROPS

A. Total energy

In Table II we present the principal results of this
study: the total energies for neutron drops confined in 5
MeV, 10 MeV, and 20 MeV HO wells with the AV8′+UIX
and JISP16 potentials. These HO wells are convenient
for ab-initio calculations because one can probe very low
to very high densities with a simple asymptotic form of
the wave function and an arbitrary number of neutrons
can be bound in the well. In order to provide a very dif-
ferent probe of density functionals in the extreme isospin
limit, we also include select results in a WS well with the
AV8′+UIX potential.
We show the lowest 0+ energy for even N and low-

est values for several Jπ for odd N . We present results
only for natural parity states. The AV8′+UIX values
up to N=14 were computed by GFMC while the larger
drops were computed using AFDMC, with the exception
of the 20 MeV HO well results. There are no results
from GFMC available for the 20 MeV HO well, due to
the strong fermion sign problem with that external field
strength; those results were all obtained using AFDMC.
The JISP16 values were all computed by NCFC. There

are no results from NCFC available in the 5 MeV trap
above 14 neutrons due to poor convergence with available
computer resources. Above 22 neutrons we only provide
strict upper bounds; for the 20 MeV HO well we expect
the converged energies to be within a few percent of these
upper bounds.
Figure 4 shows the energies of N neutrons in two dif-

ferent HO wells, scaled by !ΩN (4/3); for odd N only the
lowest energy found is shown. The scaling by !ΩN (4/3)

is motivated by the expected results in local density ap-
proximation. The factor N4/3 comes from the tradi-
tional scaling with N times the increase in potential en-
ergy arising from the increase in radius of the system
with particle number proportional to N1/3. In addition
to the AV8′+UIX and JISP16 values presented in Ta-
ble II, we also show results for AV8′ without any TNI
and AV8′+IL7. All interactions show a very pronounced
peak for three neutrons, and dips at the expected HO
magic numbers, N = 2, 8, 20, and 40. The dips at the
HO magic numbers are expected due to the HO nature
of the confining well.
With an equation of state of the form E = ξ !

2

2mk2F
with kF = [3π2ρ]1/3, the energy is given by the Thomas–
Fermi expression: ETF = ξ1/2!Ω (3N)(4/3)/4. For free
fermions (ξ = 1) the Thomas–Fermi results would be a
horizontal line at 34/3/4 ≈ 1.081, for a unitary Fermi gas
with ξ = 0.4 the Thomas–Fermi results would be a hori-
zontal line at 0.684. The calculated results are all below
the free Fermi gas (even for the case of three neutrons)
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FIG. 4. (color online) Energy of the lowest neutron drop
states confined in a HO well with !Ω = 10 MeV (top) and
!Ω = 20 MeV (bottom) as a function of the number of neu-
trons. Results for AV8′ (plus TNI) where obtained using
AFDMC, with MC statistical error bars as well as a band in-
dicating the 1% systematic uncertainty discussed in Sec. IIID;
results for JISP16 are obtained from NCFC with error bars
reflecting the total numerical uncertainty, and strict upper
bounds obtained with NCSM in finite basis spaces. Note the
pronounced dips at the expected HO magic numbers N = 2,
8, and 20.

since the interaction is attractive. All our results are
above the unitary Fermi gas because there are significant
finite-range corrections for neutron matter. In addition
repulsive gradient terms in the density functional are re-
quired to reproduce the ab-initio results [6]. A detailed
investigation of these effects is being pursued.
From Fig. 4 it is evident that adding UIX to AV8′

increases the energies of neutron drops, whereas IL7 de-
creases the energies. These results were expected; the
two-pion part of UIX is attractive in the isospin T = 1/2
triples that appear in nuclei. However neutron drops con-
tain only T = 3/2 triples for which the two-pion part is
very small [31, 44]; this leaves only the repulsive cen-
tral part of UIX. On the other hand, IL7 contains the
three-pion term that is strongly attractive in T = 3/2
triplets [14].
The energies with the nonlocal 2-body interaction

JISP16 are generally below the AV8′ results, but above
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Inhomogeneous Cold Atoms:    What do we expect?

Scale-free Interaction:

E = ξ
3

5

�2
2m

[3π2ρ]2/3

E [ρ(r)] = E [ρ(xr)] x5/3

Ground-State 
Energy

Energy Density

Scale Invariance and
large pairing gap place
very strong constraints
on the density functional.



Computational Method:  Auxiliary Field MC
Branching random walk; evolving single-particle orbitals
Each `configuration’: L3 x N amplitudes

Importance sampling and overlap with BCS wave function (critical)
Each step requires 2N  3D FFTs:

   Kinetic energy in momentum space
   Potential energy in coordinate space

Typically L=24, N=66, Nt (time steps) ~ 10000)
 ~10,000 configurations
10-100 GB total memory for amplitudes

Time step governed by interaction: ~ .005 [depends upon algorithm]
Total time evolution governed by low-lying modes ~ 5-10 ω
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3.1. Unitarity
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Fig. 1. AFMC lattice calculations of the unitary Fermi Gas ξ parameter, updated from Ref. 23).
Symbols are for different kinetic terms as a function of particle number and lattice size. The
lattice spacing is denoted as α. Simulations have been performed with L3 lattices, for different
values of lattice length L in each direction; open symbols are for even L=16,20,24; closed are
for odd L (see text). All extrapolations are consistent with ξ = 0.372(5).

A history of results for the Bertsch parameter is given in Ref. 28). The first DMC
calculation used up to 40 particles and a Poschl-Teller potential with kF re ≈ 0.3,
where re is the effective range of the interaction, and yielded a fixed-node energy of
ξ = 0.44(1).17) Subsequent DMC calculations used improved trial functions, larger
particle numbers, and better extrapolations to kF re → 0 to yield ξ = 0.40(1).33)

The best present DMC result is from the calculations of Ref. 34), while an updated
extrapolation to re → 0 gives ξ = 0.390(1)35) for an upper bound. This calculation
also carefully compared results at finite particle number to a superfluid Local Density
Approximation (LDA) to extrapolate to large N. It was found that calculations for
N = 38 or larger are very close to the thermodynamic limit.

There is also a substantial history of lattice simulations, both for the ground-
state,22), 24), 36)–38) and at finite temperature.21), 39) The earliest ground-state calcula-
tions estimated ξ = 0.25(3), for systems up to 22 particles on lattices up to 63. The
recent calculations of Ref. 23) use branching random walks and a BCS trial function
and importance sampling for systems of 66 particles on lattices up to 273 and obtain
ξ = 0.372(5) for several different actions. Updated results for these calculations are
shown in Figure 1.

In the figure, the upper curves use a k2 dispersion relation tuned to unitarity.

Equation of state: cold atoms
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FIG. 1. (color online) The calculated ground state energy

shown as the value of ξ versus the lattice size for various

particle numbers and Hamiltonians.

100× reduction in computer time, compared to the usual
FG importance function. The improvement increased to
1500× for N = 38 in a 123 lattice. For larger systems,
the discrepancy is much larger still; indeed the statistical
fluctuations from the latter are such that often meaning-
ful results cannot be obtained with the run configurations
described above.

In Fig. 1 we summarize our calculations of the energy
as a function of ρ1/3 where ρ = N/N3

k , and the particle
number is N = 38, 48 or 66. We plot ξ, Eq. 1, where we
have in all cases used the infinite system free-gas energy

EFG = 3
5
�2k2

F
2m with k3F = 3π2 N

αN3
k
as the reference.

Hamiltonian N ξ err A err

�(2)k 14 0.39 0.01 0.21 0.12

38 0.370 0.005 0.14 0.04

66 0.374 0.005 0.11 0.04

�(4)k 38 0.372 0.002

48 0.372 0.003

66 0.372 0.003

�(h)k 4 0.280 0.004 -0.28 0.05

38 0.380 0.005 -0.17 0.03

48 0.367 0.005 -0.05 0.03

66 0.375 0.005 -0.13 0.03

TABLE II. Energy extrapolations to infinite volume, zero

range limit for various particle numbers N and different
Hamiltonians. The term linear in the effective range, A, is

also shown where it is not tuned to zero.

DMC calculations have found converged results when
using 66 particles[11, 12], and our results confirm this.
The differences between 38 and 66 particles are rather
small. Our calculations with 14 particles show a signif-
icant size dependence, and with 26 particles the effects
are still noticeable. These are not shown on the figure.
We have also computed the energy for 4 particle systems

for a variety of lattice sizes and find agreement with Ref.
[25]. The error bands in the figure provide least-squares
estimates for the one sigma error based upon quadratic
fits to the finite-size effects. The fits are of the form
E/EFG = ξ+Aρ1/3 +Bρ2/3. For the interactions tuned
to re = 0, a fit with A fixed to zero is used. Including
a linear coefficient in the fit yields a value statistically
consistent with zero.
The extrapolation in lattice size for the k2 and Hub-

bard dispersions show opposite slope as expected from
the opposite signs of their effective ranges. The extrap-
olation to ρ → 0 is consistent with ξ = 0.372(0.005) in
all cases. Our final error contains statistical component
and the errors associated with finite population sizes and
finite time-step errors. This value is below previous ex-
periments, but more compatible with recent experimental
results of the Zwierlein group[8].
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FIG. 2. (color online) The ground-state energy as a function

of kF re: comparison of DMC and AFQMC results. Dashed

lines are DMC results, shifted down by 0.02 to enable com-

parison of the slopes.

We have also examined the behavior of the energy
as a function of kF re for finite effective ranges. It has
been conjectured[28] that the slope of ξ is universal:
ξ(re) = ξ+SkF re. Of course a finite range purely attrac-
tive interaction is subject to collapse for a many-particle
system, but a small repulsive many-body interaction or
the lattice, where double occupancy of a single species is
not allowed, is enough to stabilize the system. Our re-
sults are consistent with the universality conjecture. In
particular our results for zero effective range approach
the continuum limit with a slope consistent with zero.

Figure 2 compares the AFQMC results for the �(2)k in-
teraction with the DMC results [11, 12] for various values
of the effective range. The AFQMC produces somewhat
lower energies than the DMC, consistent with the upper-
bound nature of the DMC calculations. For the slope S of
ξ with respect to finite re, the fit to the N = 66 AFQMC
results yields S = 0.11(.03). Similar fits to the AFQMC

data with the Hubbard dispersion �(h)k for N = 66 yield

E / EFG = ξ + S kF re + ....
ξ = 0.372(5) QMC

           0.375(5) Expt (MIT)

S = 0.12(3) QMC

Ground State: Homogeneous Cold Atoms

Effective Range

Carlson, Gandolfi, Schmidt, Gezerlis (PRA 2011)



Comparison of Cold Atoms to Neutrons : Bulk
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Large Pairing Gap: Low Energy Excitations are Bosons
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Comparison of Cold Atoms to Neutrons : Drops
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FIG. 5: (color online) Energy of the lowest neutron drop
states confined in a HO well with �Ω = 10 MeV (top) and
�Ω = 20 MeV (bottom) as a function of the number of neu-
trons. Results for AV8� (plus TNI) where obtained using
AFDMC, with MC statistical error bars but without system-
atic error bars; results for JISP16 are obtained from NCFC
with error bars reflecting the total numerical uncertainty, and
strict upper bounds obtained with NCSM in finite model
spaces. Note the pronounced dips at the expected HO magic
numbers (2, 8, & 20).
UPDATE FIGURE?
Can these two figures be made as one figure with no x-axis
labeleling in the upper figure??? This should be done in all
such stacked figures.
All figures should have just N as the x-axis label
Stefano – what about the wiggles in the AFDMC – particu-
larly N=26??

We clearly see the effect of the HO shells: jumps at 2,
8, and 20 neutrons, at which the next neutron has to
go to the next HO level. Note that these closed shells
are entirely due to the HO well, and are not caused by
the nuclear interactions. Without interactions between
the neutrons, we would still have this shell structure, but
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FIG. 6: (color online) Single energy differences in a 10 MeV
(top) and 20 MeV (bottom) HO well. Results of different
Hamiltonians are compared. AFDMC and GFMC error bars
are statistical only; NCFC error bars reflect the total numer-
ical uncertainty.
UPDATE FIGURE?
shift the results for different cases slightly so the error bars
from one case don’t obscure the ones from another case. I.e.,
plot JISP at N-.2, UIX(afdmc) at N-.1, IL7(afdmc) at N,
UIX(GFMC) at N+.1, IL7(GFMC) at N+.2

within each shell, all single energy differences would be
equal, as indicated by the solid reference lines in Fig. (6).
That is the gross feature of shell structure arises from the
confining potential and is evident in the plot of the single
differences as a jump in the calculated energy differences
as one goes from one shell to the next.

The detailed fluctuations within a shell are entirely due
to the neutron interactions. The most prominent feature
is the neutron pairing, in particular in the p-shell and also
in the (beginning) of the sd-shell. This effect can be seen
even better by looking at the double difference in total en-
ergy ∆(N) = −1N+1[E(N)− 1

2 (E(N − 1) + E(N + 1))],

Neutron Drops: Different Interactions
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the AV8′+IL7 ground state energies. In fact, in the 10
MeV HO trap, the JISP16 results are nearly identical to
those with AV8′+IL7 up to about 12 neutrons; as the
number of neutrons increases, the results with JISP16
deviate more and more from the AV8′+IL7 results. In
the 20 MeV HO trap, for which we have more accurate
results with JISP16, the results with JISP16 and with
AV8′ without TNI are quite similar, even in the sd-shell
and beyond. The trend of the upper bounds obtained
with JISP16 follows the trend of the AV8′ ground state
energies through the sd-shell and into the pf -shell, both
in the 10 MeV and in the 20 MeV trap.
As discussed in Sec. II A and in Sec. VI below, recent

studies of the neutron star mass-radius relationship [31,
45] suggest that, at least at higher densities, the AV8′

+ UIX interactions gives a reasonable neutron matter
equation of state. The requirement of a two-solar mass
neutron star implies a repulsive three-neutron interaction
at moderate and high densities.
On the other hand, AV8′+IL7 gives a much better de-

scription of the ground state energies, spectra, and other
observables for light nuclei (up to A = 12) than either
AV8′ or AV8′+UIX. This may be why the results with
AV8′+IL7 and with JISP16 (which also gives a good de-
scription of light nuclei) are quite similar below 12 neu-
trons. However, none of these interactions have been fit
to any data beyond the p-shell, and it is unclear which of
these interactions is more realistic for the neutron drops
in the N = 8 to N = 40 range. At larger densities
AV8′+IL7 is too attractive as discussed below.
In the 10 MeV well, the dips in the energies at N = 16

and N = 32 suggest subshell closure with AV8′+IL7, but
not with AV8′+UIX, while the results for AV8′ show a
hint of subshell closure at N = 32. The IL7 TNI does
provide a larger spin-orbit splitting than the UIX three-
nucleon interaction. Similarly, the energies with JISP16
suggest subshell closure at N = 16 and N = 32 in the 20
MeV well. The JISP16 results in the 10 MeV well are not
quite accurate enough to draw firm conclusion regarding
subshell closure; and we have insufficient results for AV8′

in the 20 MeV well.
Somewhat surprisingly, there is no indication of sub-

shell closure at N = 28. In other words, these results
seem to suggest closure of the combined f 7

2

and p 3

2

sub-
shell at N = 32, rather than closure of just the f 7

2

at
N = 28. Note that the closure of the combined d 5

2

and
s 1

2

subshell at N = 16 corresponds to the recently dis-

covered subshell closure at 24O [46].

B. Energy differences

In Fig. 5 we show the difference in total energy between
neutron drops with N and with N − 1 neutrons. We
clearly see the effect of the HO shells: jumps at 2, 8,
and 20 neutrons, at which the next neutron has to go
to the next HO shell. Without interactions between the
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FIG. 5. (color online) Single energy differences in a 10 MeV
(top) and 20 MeV (bottom) HO well. Results of different
Hamiltonians are compared. AFDMC and GFMC error bars
are statistical only; NCFC error bars reflect the total nu-
merical uncertainty. Horizontal line segments indicate energy
differences expected from pure HO energies.

neutrons, we would still have this shell structure, but
within each shell, all single energy differences would be
equal, as indicated by the solid reference lines in Fig. 5.
That is, the gross feature of shell structure arises from
the confining well and is evident in the plot of the single
differences as a jump in the calculated energy differences
as one goes from one shell to the next.

The detailed fluctuations within a shell are entirely
due to the neutron interactions. The most promi-
nent feature is the neutron pairing, in particular in
the p-shell and also in the (beginning) of the sd-
shell. This effect can be seen more clearly by look-
ing at the double difference in total energy ∆(N) =
(−1)N+1[E(N) − 1

2 (E(N − 1) + E(N + 1))], see Fig. 6.
The phase (−1)N+1 is included to make the pairing posi-
tive definite in the standard BCS theory. Without inter-
actions, the double differences would be zero, except at
the magic numbers 2, 8, and 20.

Overall, the pairing seems to decrease as N increases,
except for the closed (sub)shells. Note that the pairing
in nuclei also decreases for larger nuclei [47]. On the
other hand, the numerical uncertainties increase with N ,

Shell Closures in Neutron Drops
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FIG. 6. (color online) Double energy differences ∆(N) =
(−1)N+1[E(N) − 1

2
(E(N − 1) +E(N + 1))] in a 10 MeV

(top) and 20 MeV (bottom) HO well. Results of different
Hamiltonians are compared. AFDMC and GFMC error bars
are statistical only; the NCFC error bars are omitted for the
10 MeV HO well, because they would cover the entire vertical
range for 12 neutrons and above, though a significant part of
the NCFC numerical error is systematic, and cancels between
neighboring neutron drops; for completeness, we did include
the total numerical uncertainty for the NCFC results in the
20 MeV HO well.

preventing us from obtaining meaningful results for the
pairing beyond 22 neutrons using the NCFC approach.
AFDMC calculations of the pairing gaps will be more
reliable once BCS correlations have been included in the
trial state and this is being pursued. For all methods
we expect that the error in neighboring neutron drops is
correlated, resulting in a reduced error in calculations of
energy differences and pairing.
Despite the numerical uncertainties, there are some

features that are likely to be robust in Fig. 6. As ex-
pected, the peaks in the double difference ∆(N) at the
magic numbers 8 and 20 stand out for all of the inter-
actions for which we have results, in particular for the
10 MeV HO well. In addition, our results suggest sub-
shell closure at N = 16 for AV8′ without TNIs, with
AV8′+IL7, and with JISP16, but not with AV8′+UIX.
This closed subshell corresponds to the recently discov-
ered subshell closure at 24O [46], in which TNIs play a

crucial role.
In addition to the closure at N = 16, we see evidence

for subshell closure at N = 6 (the p 3

2

) in the 20 MeV

HO well both with AV8′+IL7 and with JISP16, but not
in the 10 MeV HO well. We do not have sufficient data
yet to examine the expected closure of the f 7

2

at N = 28,

which was not evident in the plots of the total energy (see
Fig. 4), nor for a more detailed analysis of the closure at
N = 32 suggested in Fig. 4.

C. Level splittings

If we look at the single-particle and single-hole states
at the beginning and end of the p-shell, see Fig. 7, we
find that the spin-orbit splitting between the 1

2

−
and 3

2

−

increases with !Ω for all interactions. For three neutrons,
the splitting between these levels is almost the same for
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FIG. 7. (color online) Spin-orbit splitting in the p-shell (top)
and level splittings in the sd-shell (bottom) and as a function
of external field strength. Results of different Hamiltonians
are compared. Inset: blowup of the s 1

2

and d 5

2

levels for the

5 MeV and 10 MeV H.O. wells.
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JISP16 and AV8′+IL7; however, for seven neutrons the
splitting is significantly enhanced with IL7. On the other
hand, AV8′ without TNI and AV8′+UIX have almost the
same splitting.
The systematic increase in level splittings with increas-

ing !Ω can be understood as follows: With increased !Ω,
the radial shape is increasingly constrained by the HO
potential and the associated gaussian falloff of the ra-
dial densities in the surface region. This increase in level
splittings with !Ω may then be interpreted as a conse-
quence of the increased density gradient in the surface
region.
In the sd-shell the splitting between the d 5

2

and s 1

2

lev-

els (solid lines in Fig. 7) is much smaller than the splitting
between these two levels and the d 3

2

level, in particular for

AV8′+IL7. This confirms the subshell closure at N = 16
that was evident from the pairing, see Fig. 6. It is also in
apparent agreement with the observation in known nuclei
that the subshell closure at 16 neutrons (both d 5

2

and s 1

2

levels filled) is much stronger than the subshell closure
at 14 neutrons (only the d 5

2

level filled).
Furthermore, notice that the level ordering can change

as the strength of the HO well increases in the case of 9
neutrons: in the weakest well of 5 MeV (i.e. at very low
density), the s 1

2

is slightly below the d 5

2

level, but as !Ω
increases, the d 5

2

becomes the lowest level. Interestingly,

this happens both with JISP16 and with AV8′+IL7,
whereas with AV8′+UIX and with AV8′ (without TNIs)
the d 5

2

and s 1

2

are basically degenerate for the 5 MeV
HO well.
In the pf -shell we find qualitatively similar results

with JISP16: a large spin-orbit splitting between the
f 7

2

and f 5

2

levels and between the p 3

2

and p 1

2

levels,
a smaller splitting between the p 1

2

and f 5

2

levels, and
an even smaller splitting between the f 7

2

and p 3

2

lev-
els. All of these level splittings increase significantly
with the strength of the HO well: at !Ω = 5 MeV, the
splittings are almost negligible, less than an MeV, and
within the numerical uncertainty. On the other hand, at
!Ω = 20 MeV (the largest value that we have considered)
the spin-orbit splittings are of the order of ten(s) of MeV.

D. Internal energies and radii

In Table III we list our results for the internal energy
Eint = 〈H〉 − 〈Uext〉, as well as for the rms radii for sys-
tems up to 14 neutrons in a HO well with JISP16 and
with AV8′+UIX, as well as in a WS well with AV8′+UIX.
Note that for neutron drops in a HO well the radius is di-
rectly related to the external energy, 〈Uext〉 =

1
2mω2〈r2〉

for a HO external field. Overall, the internal energy is
typically slightly less than half of the total energy (see
Table II for comparison), and 〈Uext〉 is slightly more than
half the total energy. This is to be expected, since the
total energy scales approximately as !ΩN (4/3) ∝ ρ2/3,
and for all cases where the equation of state is propor-
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FIG. 8. (color online) Internal energy for up to 14 neutrons
in a HO trap with AV8′+UIX and with JISP16. For details
see Table III.
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FIG. 9. (color online) Radii for the lowest J states up to 14
neutrons in a HO trap with AV8′+UIX and with JISP16. For
details see Table III.

tional to ρ2/3, the virial theorem will give equal internal
energies and one-body potential energies, each one-half
of the total energy.
In Fig. 8 we show the internal energy Eint, scaled by

!ΩN (4/3), of the lowest J = 0 and J = 1
2 states for

up to 14 neutrons in a HO well. In the 10 MeV trap
the JISP16 and the AV8′+UIX results are rather close
to each other, significantly closer than the total energies
shown in Fig. 4. Apparently, the larger differences ob-
served in Fig. 4 arise primarily from differences in their
〈Uext〉 energy shifts. Indeed, the corresponding rms radii,
and thus 〈Uext〉, start to deviate from each other above
N = 10, see Fig. 9. The two interactions also give quite
similar internal energy results in the 5 MeV trap as seen
in Fig. 8, given the rather large error bars of the NCFC
results, and the corresponding radii are almost identical,

RMS radii of neutron drops



Future Efforts

Cold atoms:   2d drops -comparison w/ experiment
                    Spin and Density Response
                    Exotic states in 2d-3d

Neutron Drops, Matter :

  Add few (10%) protons
  Different interactions, methods
  Smooth interpolation from
        neutron rich nuclei, drops
  Weak response of nuclei, matter


