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Nuclear Physics experiments

* Rare Isotopes
— Pushing ‘ab initio’ further...
— Thermal properties of a rotating nucleus

* Beyond Standard Model Physics

— Ovpp decay; super allowed p-decay
* Nuclear Astrophysics Observations

— Interplay between nuclear structure and astrophysics (r-process)

— Core collapse mechanisms

Computers are useless. They can only
give you answers. — Pablo Picasso




Structure computing challenges

 ltis still a question of the underlying nuclear interactions
« See Gaute’s talk — Pounding away at what should be a solvable problem

* |nteractions are not observables

« What happens in light nuclei with the new interaction?

| | | | | | |
B no 3NF forces
B with 3NF forces (cD= 02)

[ with 3NF forces (cD= -20)

GT matrix element

$ P sd pf sdg pfh sdgi pfhj sdgik pfhjl

shell
Maris, Vary, Navratil, Ormand, Nam, Dean,
PRL 106, 202502 (2011)

We've been saying for a long time that
3NFs are important.

“In conclusion, the chiral 3NF in ab initio nuclear
physics produces a large amount of cancellation
in the matrix element Mgy governing the beta
decay of '*C. This cancellation signals a major
signature of 3NF effects in the spin-isopin content
of the Op orbitals in ™“C and ™N.”

Such conclusions will need to be revisited...
Stay tuned...
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From another field: Liquid Crystal Phases

Intermediate Phase Region for a Liquid Crystal
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“Re-entrance” discovered for liquid crystals

New Liquid-Crystal Phase Diagram

P, E, Cladis
Bell Labovatories, Muyvay Hill, New Jersey
(Received 7 April 1975)

N:C- ) -CH=N- ) -0CgH7
N- p - cyanobenzylidene - p-n- octyloxyaniline
NzC- () -N=CH- (D -0CgH3

p- [(p-hexyloxybenzyﬁdene) - amino] benzonitrile

FIG. 1. CBOOA (top) and HBAB.

“By mixing HBAB in CBOOA, I have found
that a smectic phase may be formed which

reverts to the nematic phase at still lower
temperatures. As far as I can ascertain, this is the
first time such an effect has been observed.”
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Early work on thermally assisted pairing

Exact model shows a pairing-deformation relation

Tamura, Prog. Theor. Phys. 31, 595 (1964) Sheikh et al, PRC 72, 041301 (2005)
— ho= k=0
I ] 1o
é 5 %&8 é
A/4 < . L,_/:_:‘_:.'—'-ZT—_-_—‘ """ |, <

T/Te.

A, (MeV)

TFig. 2. Ratio of the energy
gap to the gap at T=0 vs L : : ) ) .

. 1 1 5
temperature for various - (l\ieV) > T (I\ieV)
values of spin projection
M- (1) M=0, (2) M=m, FIG. 2. (Color online) Results of the total isovector (A;—;) and
(3) M=2m, (4) schematic isoscalar (A,—¢) pair gaps are plotted as a function of temperature for
?

three different rotational frequencies of iw = 0, 2, and 4 MeV. The
upper panel shown the results for k = 0 and the lower panel depicts
the results for x = 3 MeV.
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Hamiltonian for this work

* Pairing+Quadrupole Hamiltonian

/ 0g,,-1d-2
H = E Jmf Jmt E JT= Olt JT 0L, (O{ )_XE(_l)M QzMQz_H S >
Jjmt, aat " Of- 1p-0g9/2

* Solve using Auxiliary Field Monte Carlo techniques

x=00104 MeV™!

* Parameters:

One-body from ¢,, =0.000 ¢, =642 G =0.106 MeV
W-S for *°Ni
€, =430 ¢, =6.54 Reproduces collective
¢y, =8980 ¢, =17.59 Spectrum in %Ni and *Ge
€, =1295 ¢, =1599
e,, =14.64
" Langanke, Dean, Nazarewicz, NPA757, 360 (2005);
For rotations: Dean, Langanke, Nam, Nazarewicz, PRL105, 212504 (2010)
H”=H-wJ,
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Shell Model Monte Carlo Essentials

1) - Trlexpl- A1 |

Z=Tilexpl- pA)] — (A .

exp(—/jﬁ) |V fdaexp( B\V|o? /2)exp( /J’h)

h=¢Q+sVoQ |
Koonin et al., Phys. Repts. 287, 1 (1997)

s=1 for V<0
s=i for V>0
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Competition between pairing and rotation in nuclei

« Pairing phase transitions in nuclei; effects of rotation on

pairing; effects of temperature on rotation and pairing 20
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Nuclear Specific heat
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. Due to pairing
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Specific heat and pairing: reentrance
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Fundamental Symmetries: 0v(3 Decay

hierarchical cancellation quasi—degenerate
1 (only normal)
VAm3 Gy cos 20y, e
0 l V A’i‘f\‘%ﬁl
> > 0
= 001 .
z . "l(’l—l'l;;'fa
0.(x)] mpcy l ‘f_]
x 2 2 —\/Am - mistycly
Ve m!,,,s’._, :
:t\/A;z*Als""” —vAm3 + misi,
213
0.0001 | !
0.0001 0.001 0.01 0.1

m [eV]

my, =(7.59+0.21)x107 eV’
m;, = (243 013)><10 eV’

World wide, several experimental
B-decay techniques under development...ORNL
is the lead Lab for the Majorana
Demonstrator (John Wilkerson, PM)

li

(my) = (2”"2
oo

172
2 i .
e’“’) o, = Majorana Phases

Why do it? Lepto-genesis
2= Em Cosmology
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Majorana - Neutrinos

p w& allowed Bp

Ov
0.5 1 15 '

2
Summed electron energy (MeV)

Physics Questions:
Are neutrinos their own antiparticles?
What is the neutrino hierarchy?

Majorana Demonstrator Project

* Demonstrate technology for tonne scale

* 30 kg enriched 76Ge crystals

4e At 4850 feet in Sanford Underground Lab, SD
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Ov(3p calculation status
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FIG. 3 (color online). Nuclear matrix elements calculated for
Q — 1 Q — (—): (—)’. Q — different methods (ISM [5,22], QRPA(Jy) [8], QRPA(Tu) [7],
F ’ GT 1Y 2> T 12 IBM-2 [12], PHFB [10]) with UCOM short-range correlations.
QRPA values are calculated with g4 = 1.25 and IBM-2 and
PHFB results are multiplied by 1.18 to account for the difference

between Jastrow and UCOM [29].

Experimentalists see a spread of a factor
of 2-3 in the theory matrix element
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Ovi3p: EXO 200 first results prL 109, 032505 (2012)
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We report on a search for neutrinoless double-beta decay of *¢Xe with EXO-200. No signal is
observed for an exposure of 32.5kg-yr, with a background of ~ 1.5 x 10 > kg 'yr 'keV~! in the
+10 region of interest. This sets a lower limit on the half-life of the neutrinoless double-beta decay
Tf}’fﬁ(wGXe) > 1.6 x 10 yr (90% CL), corresponding to effective Majorana masses of less than

140-380 meV,

depending on the matrix element calculation.

Mass derived from matrix elements. UQ? Quantitative would be good here.
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NUMBER OF PROTONS

Connections to Fundamental Symmetries

Towner & Hardy, 2010
401 m Superallowed B emitters aE= 2
30| L
|I i 0+1
[ e
20+ -
[
| | Q.
[ BR
100 o HH —&d
10 20 30 40 50 60
NUMBER OF NEUTRONS
vV E+V.F+V.[ =0.99990(60
ud + us + ub =Y. ( )

* Super-allowed beta decay places stringent
limits on physics beyond the standard model

(CKM quark mixing matrix)

* Tremendous worldwide effort

Parity doublet

W= (|oy - |B)V2
55 keV
W= (|oy + [BY)V2
Closely spaced parity doublet
gives rise to enhanced EDM

Large intrinsic Schiff moment
Relativistic atomic structure

19Hg (Seattle, 1980’s — present)
225Ra (Starting at ANL and KVT)
Potential at FRIB (10!%/s w ISOL
target (far future); 1010 initially
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Core-Collapse Supernovae: making elements

Cassiopeia A

R an

-

 Mark the death of a
massive star (> 10 solar
mass) and the formation

of a neutron star (or black
hole)

- Dominant source of heavy H’ }
elements, observable via .. { SN 1987a
optical, X-ray and y-ray + f H + |
emission and terrestrial i
samples 1 -

* Also produce neutrinoand [T e 5
gravitational wave signals

__5 _ Pro:p/t convection (E;f:rostlz;_

0.0 0.2 0.4 0.6 0.8 1.0
Time after bounce [s] 2



Modeling CCSN

An example of a multi-physics problem

Chimera model: B12-WHH07  Time = 400 ms

Simulations reveal that the explosion is ¢ m—
powered by neutrinos carrying off the
binding energy of the newly-formed neutron
star.

Spherically symmetric simulations fail
because neutrino heating occurs only in a

very restricted, stratified region.
Bruenn et al. (2013)

. H . H “ X ) '- Radial velocity (km/s)
Axisymmetric (2D) simulations allow more ) e RIS ot
efficient heating through buoyancy

3D is under investigation at various
institutions (ORNL, Garching, Caltech...)

2D models with 1° resolution in latitude each
cost 0.4 M core-hours

3D models at 1° resolution in latitude &
longitude would cost at least 100 M core-hours

™ M




Large beta decay probabilities for neutron rich nuclei
Phys. Rev. Letters 109, 112501, 2012 and Phys. Rev. C 87, 034315, 2013
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Experimental beta half-lives are shorter than
global model predictions

Further from 78Ni, improved calculations also
depart from experiment, see 86Ga and 8’As.
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+ post r-process abundances

—— simulations with T,,,’s from the global model

— = simulations with new exp and CQRPAs T,,,’s
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r-process sensitivity study

Experiment: shorter half-lives near "8Ni.
Fast decays: faster flow towards higher
mass nuclei A > 140

(*) R. Surman and J. Engel, PR C 64, 035801, 2001.
R. Surman et al., Astrophys. J. 679, L117, 2008.
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Supernovae and the Earth

While the solar system was built from the products of supernova nucleosynthesis, we also
find evidence of ongoing contributions to the solar system.

" Rugel et al., PRL 103, 072502 (2009)

Any %0Fe, half-life of 2.6 Myr, found on Earth must have been
created deposited on Earth by recent supernovae.

O s
5 T
§4

o { C. Fitoussi et al, PRL101 (2008) ® s wees
Ferro-Manganese Crust samples 2000"] K Knieetal, PRL93 (2004) "t 2004 4 Al
raised from the seafloor show { S S
evidence for these recent £ 2 i t~2.2 Myr ago *
contributions £ /

L

00+v’—111*1*
S. Bishop, APS S a“"""'ol"""‘z R

meeting, (2013)

Magnetotactic Bacteria also contain ®Fe!
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Early Universe computing challenges

* Process is not reversible

« QCD is the underlying theory

« Do we understand hadronization?

* Over what scales does Hydrodynamics apply?
« Error propagation from initial to final state?

. | 3oy o6 it e | Experiment
% p4, N‘t=8 . ]
& asqtad, N;=8 —=— |

Represents a classic multiscale physics problem
« QCD gives EOS
Ll  Hydro runs to ‘freeze out’
« QMD to the detectors
(Bazavov et al PRS0, 014504 (2009) « Geant-4 simulates detector response

¥ , T[MeV]
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Conclusions

* Big investments are being or may be made on experiments
— FRIB
— 1-tonne neutrinoless double beta decay
— nEDM (more theoretical);

— From HEP: Dark matter detection (WIMPS + nuclei as detectors — didn’t talk
about)

— Upgrades at RHIC/LHC; upgrade of Jlab
* Theory should inform the investments: implies computational effort

» Thanks to efforts of people like James Vary, theory is making
significant advances in lock step with computing in order to resolve
Interesting science questions...




