Utilizing Symmetry Coupling Schemes in Ab Initio Nuclear Structure Calculations

Tomáš Dytrych, Jerry P. Draayer, Kristina D. Launey

Collaborators:

James P. Vary, Pieter Maris

Iowa State University

Mark Caprio

University of Notre Dame

Erik Saule, Umit Catalyurek

Ohio State University

Daniel Langr

Czech Technical University

Masha Sosonkina

Old Dominion University

Symmetry-Guided Approach

Motivation

- ${\ensuremath{\,\circ\,}}$ nuclear collective modes span high $N\hbar\Omega$ spaces
- ullet definition of model space based on many-body cutoff $N_{
 m max}$ may become computationally prohibitive

Utilizing symmetry-coupling schemes

- naturally "designed" for efficient desription of nuclear collective dynamics and geometry
- ${\ensuremath{\,\circ\,}}$ restrict high $N\hbar\Omega$ spaces to subspaces of physically relevant configurations
- preserve exact factorization of center-of-mass degrees of freedom

Nuclear Many-body Collective Dynamics

Symmetry of the nuclear collective dynamics - Sp(3,R)

Proof-of-principle: small number of Sp(3,R) basis states realize ~90% of 12C and 16O low-lying wave functions

Bottlenecks:

Sp(3,R) coupling/recoupling coefficients unknown

Can not compute matrix elements of realistic interaction

• Each Sp(3,R) state is a linear combination of nearly all m-scheme configurations

Solution: utilize SU(3)-coupling scheme

• SU(3) is a subgroup of Sp(3,R)

SU(3) Symmetry-Adapted Basis

Physical SU(3) Basis:

- ullet $(\lambda \ \mu)$ related to shape variables $\ eta$ and γ of the collective model
- Relevant for description of spatially deformed nuclei & nuclear collective motion

SU(3)-coupling scheme in NCSM

multi-shell + proton-neutron + intrinsic spin degrees of freedom

	intrinsic spin part spatial part
$ \dots N\hbar\Omega $	$S_p S_n S (\lambda \mu) \kappa L J M \rangle$

Structure of NCSM Model Space in SU(3) Coupling Scheme

⁶Li : $N_{\rm max} = 12$

ullet Each disk represents a subspace of all states with quantum numbers: $N\hbar\Omega~~S_pS_nS~~(\lambda\,\mu)$

• Center-of-mass factorization exact within each subspace

 $N\hbar\Omega S_p S_n S(\lambda \mu) \longrightarrow \psi_{intr} \otimes \psi_{c.m.}^{(n\,0)}$

Refining NCSM Model Space

Selecting basis states according to: (1) intrinsic spins

		<u>0ħ</u>	2 2	2ħΩ		4	ħΩ				67	îΩ					BħΩ						10	ħΩ							1 2 ħΩ				
	(3/2,3/2,3)	-	· · ·	•	· · ·	••	•	, , ,	•	• •	••	00	000		00	••	• •	000) o¦	000	000	000	000				000		0000	000		00	000(000-
	(3/2,3/2,2)	-	•			• •	0	0 0	·¦o	• •	0 0	00	000	0 0	00	00	00	000	000	o	000	000	000	000	000	000	00	000	000	0000	000	000	00	000	000-
$\widehat{\mathbf{S}}$	(3/2,3/2,1)	-	ŀ	•	•	• •	•		• 0	• •	0 0	0 0	000	o c	00	00	00	000	000		0000	000	000	000	000	000	00	000	000	0000	000	000	00	0000	000-
'n,	(3/2,3/2,0)	_	ŀ		I I I	• •	•	•	¦0	0	0	0 0	•	0	00	0	0	000	0 0)	000	00	0	00	000	0	0	00	00	000	00	0	0	000	0 -
	(3/2,1/2,2)	-	0	• •	·	• •	0	00	o¦o	0 0	00	00	000	00	00	00	00	000	000	o	000	000	000	000	000	000	00	000		0000	000		00	000	000-
$\overline{\mathbf{S}}$	(3/2,1/2,1)	-	•	• •	• •	• •	0	000	o	00	00	00	000	oc	00	00	00	000	000		0000	000	000	000	0000	000	00	000	000	2000	000	000	00	0000	000-
ins	(1/2,3/2,2)	-	•	• •	÷	• •	00	000	•	0 0	00	00	000	00	00	00	00	000	000	0	000	000	000	000	000	000	00	000	000	0000	000		00	000	000-
Sp	(1/2,3/2,1)	-	0	• •	۰¦۰	• •	0	000	o¦o	00	00	00	000	oc	00	00	00	000	000	oolo	0000	000	000	000	0000	000	00	000	000	2000	000	000	00	0000	000-
	(1/2,1/2,1)	Ļ.,	•¦o	• •	•¦•	0 0	00	000	olo	00	00	00	000	oloc	00	00	00	000	000		0000	000	000	000				000		0000	000		00	0000	000-
	(1/2,1/2,0)	- .	0	•		• •	0	0	0	0	0	00	0	0	00	0	0	000	0 0		000	oc	0	00	000	0	0	00	00	000	00	0	0	000	0 -
			ų,	<u>+</u> +	tite.	노는	4	4	Line.	<u>+</u> +	는는	44	<u></u>		<u>++</u>	<u>++</u>	<u>+</u> +	<u></u>		<u>, </u>	1444	<u></u>	<u></u>	1		<u></u>		<u></u>			<u></u>		<u>++</u>	***	<u></u>
						-3 -3			<u>5</u>	202	30 1.4		46,2		2,13		0,2 5,4					214 2,4	000 000	625		8,2,10,1					2000	540 50 50 50	76,4	9,1) 9,1)	14,0 12,1 10,2
																				Ŭ	(λ μ)												00	

Refining NCSM Model Space

Selecting basis states according to: (1) intrinsic spins

(2) deformations

		<u>0ħ</u>	<u>n</u>	2 <u>ħΩ</u>		4	ħΩ				6	ħΩ					<u>8ħΩ</u>							10 ħ Ω	2							12ħ	<u>n</u>			
	(3/2,3/2,3))- -				•••	• •	00		••	••	00	• • •		000	••	• •	00	••	• •¦	00	• •	000	000		0000	<u> </u>	0	000	000	 	000	000	200	0000	000-
	(3/2,3/2,2))-				• •	• •	• • •	•	• •	0 0	00	000	o	00	00	00	00	00	0 0	00	00	000	000	000	0000	000	00	000	000	000	000	000	200	000	000-
$\widehat{\mathbf{s}}$	(3/2,3/2,1))-		•	•	• •	• •	• • •	•	0 0	0 0	0 0	000	00	00	00	00	00	00	0 0	000	00	000	000	000	0000	000	00	000	000	000	000	000	000	000	000-
, e	(3/2,3/2,0))-	ŀ			••	•	•	0	0	0	0 0	•	0	00	0	0	00	0	0	00	0	000	C	00	000	0	0	00	00	00	000	0	0	000	0 -
°.	(3/2,1/2,2))-	0	• •		• •	0 0	000	o	0 0	00	00	000		00	00	00	00	00	o o	00	00	000	000		0000	000	00	000	000	000	000	000	200	000	000-
Ś	(3/2,1/2,1))-	0	• •	• • •	• •	0 0	000	o	0 0	00	00	000		000	00	00	00	00	00	000	00	000	000	000	0000	000	00	000	000	000	000	000	200	0000	000-
ins	(1/2,3/2,2))-	0	• •		• •	0 0	000	0	00	0 0	00	000	0	00	00	00	00	00	••	00	00	000	000		0000	000	00	000	000	000	000	000	200	000	000-
$\mathbf{S}\mathbf{p}$	(1/2,3/2,1))-	¦•	• •	•¦• (• •	0 0	000	o¦o	0 0	00	00	000	olo	00	00	00	00	00	0 0	000	00	000	000	000	0000	000	00	000	000	000	000	000	200	000	000-
	(1/2,1/2,1))- ·	۰¦۰	• •	• •	0 0	0 (00	o	00	00	00	000		000	00	00	00	00	00	000	00	000	000		0000	000	00	000	000	000	000	000	00	0000	000-
	(1/2,1/2,0))- ·	0	•		0 0	0	0	0	0	0	00	0	0	00	0	0	00	0	0	00	0	000	C	00	000	0	0	00	00	00	000	0	0	000	0 -
		L		<u> </u>		느슴	5			5-	늢귿	50			5	수수	승승		5	<u></u>	<u> </u>	유	<u> </u>				<u> </u>		수약독	5	부구약	<u></u>			***	<u></u>
		,1)	66	55	565	_w	Ö	SES	E	50	÷÷	<u>5</u>	5 <u>5</u> 5	201	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	55	5 <u>4</u>	<u>–</u>	60	.1.0 .0	556	<u>u</u> g	<u>ü</u> E4	500	1 <u>0</u>	565		559	5 <u>5</u> 3	600	<u>5</u> <u>6</u> <u>6</u>	Sec.	550	<u>±</u>		[2,1] (2,1)
																					(λ	μ)														

Refining NCSM Model Space

Selecting basis states according to: (1) intrinsic spins

(2) deformations

Realistic interactions: enormous mixing of different $\,S_pS_nS\,\,(\lambda\,\,\mu)\,$ subspaces

Coherent mixing ?

Emergence of Simple Patterns

Emergence of Simple Patterns

Role of Model Space Truncation

Effects of higher N_{\max}

- intrinsic spin mixing decreasing
- ullet Contribution of the most deformed configurations $N\hbar\Omega~(2\!+\!N0)$ rapidly increasing

Chiral N3LO Interaction

⁶Li - structure of T=0 states

Symmetry-Guided Selection of Model Space

• Model Space in SU(3)-scheme: $N_{\max}^{\top} \langle N_{\max}^{\perp} \rangle$

$$^{6}\mathrm{Li}:\!12\langle 6
angle$$

Interaction: JISP16 + Vcoul $17.5 \leq \hbar\Omega \leq 25~{
m MeV}$

Excitation Energies

Binding energy: 98% - 99% of complete space result

Physical Observables in 12<6> Model Space

Magnetic dipole moments: agreement within 0.3% for odd-J and 5% for J=2

					$\hbar\Omega = 20 \ \mathrm{Me}$	eV
		Magneti	c dipole mome	nts $[\mu_N]$		
		1^+_{gs}	3+	2^+	1_{2}^{+}	
	$N_{\rm max} = 12$	0.838	1.866	0.970	0.338	
	$12\langle 6 angle$	0.839	1.866	1.014	0.338	
_						1

point-particle rms matter radii: agreement within 1%

				$\hbar\Omega = 20 \text{ M}$	[eV
	Mat	ter rms radii [fm]		
	1^+_{gs}	3^+	2^+	1_{2}^{+}	
$N_{\rm max} = 12$	2.119	2.063	2.204	2.313	
$12\langle 6 angle$	2.106	2.044	2.180	2.290	

Physical Observables in 12<6> Model Space

BE2 transitions

E2 moments

⁶He in Symmetry-Guided Model Space

Rotational band dominated by $(\lambda_0\,\mu_0)=(2\,0)$ means same set of important shapes

Binding energy: over 99% of complete space result

	$N_{\rm max} = 12$	$12\langle 8 angle$
$B(E2; 2_1^+ \to 0_1^+)[e^2 \text{fm}^4]$	0.181	0.184
$Q(2_1^+)[e \mathrm{fm}^2]$	-0.690	-0.711
$\mu(2^+_1)[\mu_N]$	-0.873	-0.817
$r_m(2_1^+)[{\rm fm}]$	2.153	2.141
$r_m(0^+_1)[{ m fm}]$	2.113	2.110

Outlook: Towards ds-shell Nuclei

Outlook: Towards ds-shell Nuclei

SRG-N3LO $\lambda = 2.0 \text{ fm}^{-1} \hbar\Omega = 15 \text{ MeV}$

Outlook: Utilizing Sp(3,R) States

Expansion of Sp(3,R)-scheme states in SU(3) basis

$\hat{T}^{(0\,0)}$

- ullet Block diagonal in SU(3)-basis $N\hbar\Omega \; S_pS_nS \; (\lambda\,\mu)$
- Eigenvalues are analytical function of Sp(3,R) quantum labels
- Eigenvector have good Sp(3,R) symmetry

Computations combining SU(3) & Sp(3,R) basis are the next goal

- We have combined SU(3)-coupling basis with ab initio NCSM framework
- Unveiled simple patterns that favor strong quadrupole deformation and low intrinsic spins in light p-shell nuclei
- Patterns seem not to depend on particular NN forces and support model space truncation scheme
- Expansion of Sp(3,R) states in terms of SU(3)-basis implemented

Outlook

- Move towards ds-shell nuclei
- Combine SU(3) & Sp(3,R) basis
- Inclusion of NNN forces

