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Abstract

Relativistic symmetries of the Dirac Hamiltonian had been discovered many years ago but only recently have

these symmetries been recognized empirically in nuclear and hadronic spectroscopy. The empirical data supporting

spin symmetry in hadron spectroscopy and pseudospin symmetry in nuclear spectroscopy are reviewed. Realistic

relativistic mean field calculations of nuclei and QCD sum rules are reviewed and shown to support approximate

pseudospin symmetry. These revelations suggest a more fundamental rationale for pseudospin symmetry motivating

an investigation for pseudospin conservation in the nucleon–nucleon interaction. Open questions regarding hadron

spin symmetry and nuclear pseudospin symmetry are discussed.
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Almost 45 years ago a  quasi-degeneracy was observed in 
single-nucleon doublets  in nuclei with quantum numbers

12On the other hand, the two-nucleon interactions in these Hamiltonians do not in general have

spin and orbital angular momentum symmetries as dynamical symmetries. These Hamilto-

nians have a central interaction, a spin-spin two nucleon interaction, a two-body orbital

angular momentum interaction, and two body spin-orbit interaction which conserve total

spin and total orbital angular momentum. In addition, the interaction contains tensor,

dipole, and spin dependent spin-orbit interactions, which do not conserve spin and orbital

angular momentum.

The tensor interaction has been shown to be important for shell evolution in exotic nuclei

[10]. At the same time pseudospin doublets are also seen in these nuclei [11]. Perhaps the

interactions discussed in this paper will be able to explain both effects in a unified way.
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The Dirac Hamiltonian has an invariant SU(2) symmetry for two limits: 

Spin Symmetry occurs in the spectrum of a:
1) meson with  one heavy quark (PRL 86, 204 (2001) )
2) anti-nucleon bound in a nucleus (Phys. Rep. 315, 231 (1999) )

Pseudospin Symmetry occurs in the spectrum of nuclei
                     PRL 78, 436 (1997)

 

VS (r) – VV (r) = CS Spin Symmetry
VS (r) + VV (r) = CS Pseudospin Symmetry
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QCD SUM RULES

is the chiral symmetry breaking nucleon sigma term

is the average quark mass

     Uncannily close to the ratio of central values of 
                              mean field potentials                 

T.D. Cohen, R.J. Furnstahl, D.K. Griegel, X. Jin, Prog. Part. Nucl. Phys. 35 (1995) 221.

VS
VV

≈ −
σ N

8mq

VS
VV

≈ − 1.1
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The Dirac eigenfunctions with a Lorentz vector potential with non-zero three components, !A(!r) "= 0,

will not conserve parity. To date there has not been an application for S′
k with

!A(!r) "= 0 for single-particle

dynamics. Thus, we shall limit ourselves to the symmetries with !A(!r) = 0. However, beyond single-

particle dynamics, the Bell–Reugg symmetries with !A(!r) "= 0 may prove to be very useful as speculated

in Section 18.

2.2. Spin symmetry

Spin symmetry occurs for VV (!r) = VS(!r) + Cs in the Dirac Hamiltonian in Eq. (4) where Cs is a

constant. This is the equivalent to !′ = !, !"′ = !", p′ = p and M ′c2 = Mc2 + Cs in Eq. (13). The Dirac

Hamiltonian with spin symmetry is

Hs = !" · c !p + VV (!r)(1+ !) + !(Mc2 + Cs) , (19)

and the spin generators are

!S =
(

!s 0

0 !̃s

)

, (20)

where !s = !#/2 and !̃s = Up!sUp where Up = !# · !p is the helicity unitary transformation [8]. We can write
the eigenstates $s

k,%(!r) of the Dirac Hamiltonian,

Hs$
s
k,%(!r) = Ek$

s
k,%(!r) , (21)

as a four dimensional vector,

$s
k,%(!r) =









g+
k,%(!r)

g−
k,%(!r)
if +

k,%(!r)
if −

k,%(!r)









, (22)

where g±
k,%(!r) are the “upper Dirac components”, f ±

k,%(!r) are the “lower Dirac components” and +
indicates spin up and − spin down.

Since these eigenstatesmust also belong to the spinor representation of the spin group, these amplitudes

in the doublets with % = ±1
2
must be related as indicated in Eqs. (17)–(18),

Sz$
s
k,%(!r) = %$s

k,%(!r) , (23)

and the eigenstates in the doublet will be connected by the generators S±,

S±$s
k,%(!r) =

√

(

1

2
∓ %

) (

3

2
± %

)

$s
k,%±1(!r) . (24)

Clearly from the fact that the upper component of the spin generators in Eq. (20) is simply !s, Eq. (23)
implies that [9]

g+
k,−1/2(!r) = g−

k,1/2(!r) = 0 , (25)
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Pseudospin Generators

These pseudo-spin generators commute with the Dirac 
Hamiltonian in the pseudo-spin limit independent of the form 

of the potentials, spherical, deformed, triaxial: 

and have spin-like commutation relations 

Physics Reports 414 (2005) 165–261
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Fig. 31. Left: Evolution of the binding energies of the 9/2+ and 7/2+ states compared to those of the 5/2+ states. The 9/2+ and 5/2+ states are the ground
states of the N = 49 and N = 51 isotones respectively, the 7/2+ states being those drawn in the right part of Fig. 30. Energy splitting between the 9/2+

and 7/2+ states (stars) and the N = 50 gap (empty circles). Right: Evolution of the proton–neutron residual interactions extracted from the slopes of the
binding energies of the neutron states shown in the left part. The proton orbitals which are getting filled as a function of increasing Z are given in the top
of the figures.

states have been populated in 87
36Kr,

89
38Sr,

91
40Zr, and

93
42Mo, their angular momenta being assigned to � = 4 or � = 0,

respectively. The 7/2+
1 and 1/2+

1 states have the largest spectroscopic factors. It is therefore likely that the 7/2+
2 and 1/2+

2
states displayed in the left part of Fig. 30 correspond mainly to νd5/2 ⊗ 2+ configurations. The same holds true for the 9/2+

1
statewhich has not been populated in the stripping reactions. This confirms the assumptionmade in the previous paragraph.

Stripping (d, p) reactions in inverse kinematics have been recently performed with the radioactive 82
32Ge and 84

34Se
nuclei [216,218]. The two radioactive beams were produced from the proton-induced fission of uranium, separated on-
line, and post-accelerated to 330 MeV and 378 MeV respectively. With such low-energy beams, only the single-neutron
states at low-energy could be identified in 83

32Ge51 and 85
34Se51 through the detection of the protons in a highly-segmented

silicon detector array. Angular distributions of protons associated to the population of their ground and first excited states
have been obtained. They are consistent with � = 2 and � = 0 transferred momenta giving rise to 5/2+ and 1/2+ spin
assignments, respectively. Spectroscopic factors account for only half of the single-particle strengths. The remaining part is
likely to be present at higher excitation energy. A similar result had been already obtained in 87Kr, which displays around
half of the single-particle strengths, both for the νd5/2 and the νs1/2 orbits.

The β-decay of 101Sn has been newly studied at the GSI on-line mass separator, this very neutron-deficient isotope being
produced by using the 50Cr(58Ni, α3n) fusion-evaporation reaction [222]. By comparing the experimental energy spectrum
of β-delayed protons to a theoretical prediction, the 5/2+ spin and parity assignments for the 101Sn ground state have
been confirmed. Moreover the 46Ti(58Ni,3n) reaction was used to determine the first excited state of 101Sn at the Argonne
facility [223]. Prompt γ -rays emitted by 101Sn have been identified through correlations with β-delayed protons following
its decay, using the recoil-decay tagging (RDT)method. The γ -rayswere detected in a large array of Ge detectors surrounding
the target, whereas the products of the reaction were separated from the unreacted beam and dispersed according to their
M/Q ratio in the fragment mass analyzer. A new γ -ray line with an energy of 171.7(6) keV has been assigned to 101Sn and
interpreted as the transition between the single-neutron g7/2 and d5/2 orbitals.

The right part of Fig. 30 displays the average energy (filled symbols) of all the 1/2+ and 7/2+ states, weighted by their
SF values. These states were populated in the (d, p) stripping reactions on the stable targets (using the same method as in
Section 4.2.3). Added to these points the empty symbols display the energy of the 1/2+

1 and 7/2+
1 states identified in the

lightest and heaviest N = 51 isotones, respectively. The obvious outcomes of this figure are (i) a reduction of the energy
between the νd5/2 and νg7/2 orbits when Z increases, (ii) a similar decrease of the energy spacing between the νd5/2 and
νs1/2 orbits for low Z values. Nevertheless the excitation energy of the 1/2+

1 (7/2+
1 ) state measured in the lightest (heaviest)

isotones is not an absolute determination of the single-particle energy spacing because their wave functions may contain
an unknown fraction of mixing to the νd5/2 ⊗ 2+ configuration.

Item (i) can be ascribed to the attractive term of the interaction between the πg9/2 protons and the νg7/2 neutrons, from
the tensor term. It is very strong in this particular configuration in which proton and neutron orbits with identical angular
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Fig. 33. Left: Binding energies of the states located just above and just below the Z = 50 magic number and differences of the binding energies of the

two states surrounding the gap at Z = 50 (empty circles) and of the binding energies of the two � = 4 spin-orbit partners (stars) (see the Appendix). The

proton drip line has been delineated at
105

Sb54 (being a proton emitter, its proton binding energy is positive). The neutron orbitals which are getting filled

as a function of increasing N are given in the middle of the figure (see text). Right: Absolute values of the slopes of the experimental binding energies of

the 9/2+
, 5/2+

and 7/2+
proton states bounding the Z = 50 shell closure, as functions of neutron number.

Between Z = 28 and Z = 38 the attractive tensor part of the π f5/2νg9/2 interaction could explain the steep increase of

the νg9/2 binding energy as compared to the νd5/2 one during the filling of the π f5/2 orbit.

Above Z = 40 the repulsive tensor component of the πg9/2–νg9/2 interaction reduces the size of the N = 50 shell

gap. Simultaneously the strongly attractive component of the πg9/2–νg7/2 interaction provokes a reduction of the νg SO

splitting and the quasi-degeneracy of the d5/2 and g7/2 orbits at Z = 50. Altogether, significant reductions of the N = 50

shell evolution are found with hints of increasing core excitations. Nevertheless, the present experimental results indicate

that all the N = 50 isotones keep on behaving as spherical nuclei. Whether this assertion would hold or not for
100

50
Sn and

78

28
Ni cannot be given today, as some experimental information is still missing. The study of the two far edges of the N = 50

isotone chain offers a wonderful challenge for the future. Thanks to the new worldwide facilities soon available, they are

close at hand.

6.2. Evolution of the Z = 50 shell closure

The Z = 50 shell gap is formed between the proton g9/2 and d5/2 or g7/2 orbits. The 50Sn isotopic series contains the

two doubly-magic nuclei
100

Sn50 and
132

Sn82. The synthesis of the self-conjugated
100

Sn isotope, located at the proton drip

line, is a very difficult task because of the very low cross sections. Thus no experimental data on its excited states has been

obtained up to now. On the other hand, the
132

Sn can be produced with a higher rate in the asymmetric fission of actinides.

Therefore properties of this neutron-rich nucleus and its close neighbors are better documented.

As for other shell gaps, possible variation of the proton single-particle energies could be caused by proton–neutron

interactions. As the five neutron orbits involved betweenN = 50 andN = 82 are very close in energy, the pairing correlation

dilutes their respective occupancies and smoothens possible changes of binding energies due to specific proton–neutron

interactions over several components.

The present section intend first to address the evolution of the proton single-particle energies and collectivity around the

Sn isotopic chain. Afterwards the following paragraphs present experimental data on the 51Sb isotopes obtained by transfer

reactions, followed by theoretical interpretations. As experimental results disagree with respect to the single-particle or

mixed configuration of the proton states, the possibility to extract the strength of the SO or tensor interactions directly from

experimental data is uncertain. This also sheds doubt on the possibility to implement the tensor interaction there, as many

mean-field calculations tried without success.

6.2.1. Binding energies

The evolution of the experimental binding energies of the proton orbits located below and above the Z = 50 shell

closure is shown in the left part of Fig. 33. The slope of the binding energy of the 9/2+
state changes at the N = 64 subshell

closure: it is steeper when neutrons are filling the first shells, d5/2 and g7/2, than when filling the next s1/2, h11/2, and d3/2

ones. This shell ordering is reported in Fig. 33. It has been established from the ground-state spin values of the odd-A Sn

isotopes. As mentioned earlier pairing correlations induce a simultaneous filling of the neutron orbits located either below
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Fig. 40. Left Evolution of the binding energies of the 11/2−
and 9/2−

states compared to those of the 7/2−
states, around the N = 82 gap. Right Evolution

of the neutron–proton residual interactions (absolute values) extracted from the slopes of the binding energies of the three neutron states. The proton

orbitals which are getting filled as a function of increasing Z are given on the top of each figure.

assigned. Noticeable is the fact that the excitation energy of the 13/2+
1

state of the N = 83 isotones closely follows that

of the 3
−
collective state measured in the corresponding N = 82 cores, displaying in concert a minimum for Z = 64 (as

shown in the right part of Fig. 39). By converting the measured half-life of the 13/2+
1
level into B(E3) values, it is found that

the B(E3) values are much larger than expected for a νi13/2 → νf7/2 single-neutron transition. These two sets of energies

and lifetimes have been analyzed with a schematic two-state mixing calculation in Ref. [250]. Using a constant value of

2.1 MeV (indicated by dashed line in the right part of Fig. 39) for the νi13/2 single-particle energy from Z = 56 to Z = 70,

the measured energies of the 13/2+
1
and 13/2+

2
states (known for Z = 56–62), as well as the (E3, 13/2+

1
→ 7/2−)values

are quite well reproduced [250]. Contrary to what is said in Ref. [240], this result rather indicates no change of the binding

energy of the νi13/2 orbit for increasing Z values, but a fragmentation of the νi13/2 force occurring from the coupling with the

3
−
state. A similar conclusion was obtained in Section 6.2.3 with respect to a possible evolution of the πh11/2 orbit within

the Z = 50 − 82 major shell.

7.1.4. Reverse behaviors of the νh11/2 and νh9/2 orbits for Z > 64

The present paragraph intends to show a plausible evolution of the νh11/2–νh9/2 SO splitting as the proton orbit πh11/2

is progressively filled.

The left-hand side of Fig. 40 displays the binding energies of the 9/2−
and the 7/2−

states of the N = 83 isotones, as well

as the binding energies of the 11/2−
level of the N = 81 isotones. For Z = 56–64 the energy of the 9/2−

has been averaged

from the two 9/2−
states, weighted by their spectroscopic factors. Beyond Z = 64, it was discussed in the previous section

that the 9/2−
become more of single-particle character. The binding energies of these three states display a quasi-linear

behavior in the Z = 50–64 interval, while steeper (smoother) slopes are observed beyond Z = 64 for the 9/2−
(11/2−

)

states. These changes of slopes are directly connected to the new neutron–proton residual interactions that come into play

beyond Z = 64. Using the method explained in Section 2.2.2 the corresponding monopole interactions have been derived

from the binding-energy slopes and are drawn in the right part of Fig. 40. When the protons are filling the πg7/2 and πd5/2

orbits, their residual interactions with νh11/2, νf7/2, or νh9/2 have almost the same values, between −300 and −350 keV.

On the other hand, as soon as the πh11/2 orbit starts to be filled, the νh11/2 and νh9/2 orbits exhibit reverse behaviors, the

V
pn

h11/2h9/2
matrix element (∼−450 keV) ismuchmore attractive than the V

pn

h11/2h11/2
one (∼−200 keV). This change of effective

interaction can be ascribed to the tensor force.

7.1.5. Study of the N = 82 shell closure below Z = 50, Astrophysical implications

As mentioned in the previous sections of the present work, the properties of NN interactions, such as those of the tensor

forces, can significantly alter or reinforce the strength of a shell closure. In addition, the change of themean-field potential of

the nucleus, in particular the increased surface diffuseness for largeN/Z , weakly bound systems, alsomodifies the energy of

the orbits. Taken together a profound change of the spacing and ordering of levels can occur when moving from stability to

the drip line, following for instance a given isotonic chain. The present section shows how these structural changes impact

on the development of the rapid-neutron-capture nucleosynthesis. We refer the reader for instance to Refs. [251,252] for

recent review papers.

After a brief introduction on the role of this process and the possible astrophysical site where it prevails, the key ‘integral’

parameters (binding energy, β-decay lifetime and neutron-capture cross section) to its development will be listed. Nuclear
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three decades. Then the postulate of permanent magic numbers was definitely abandoned

and the reason for these structural mutations has been in turn searched for. General

trends in the evolution of shell closures are discussed using complementary experimental

information, such as the binding energies of the orbits bounding the shell gaps, the trends

of the first collective states of the even–even semi-magic nuclei, and the behavior of
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describes the underlying physics of the shell evolution which is not yet fully understood

and indicates future experimental and theoretical challenges. The nuclear mean field

embodies various facets of the nucleon–nucleon interaction, among which the spin-orbit
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of hitherto unreachable systems.
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Anti-nucleon Spectrum

       Charge Conjugation

232 J.N. Ginocchio / Physics Reports 414 (2005) 165–261

13. Anti-nucleon spectrum

The anti-nucleon is the anti-particle of the nucleon. Therefore, the potential of the anti-nucleon in

the nuclear environment is the charge conjugate of the nucleon. Under charge conjugation the scalar

potential remains invariant, V̄S(!r) = C†VS(!r)C = VS(!r), but the vector potential changes sign, V̄V (!r) =
C†VV (!r)C = −VV (!r). Therefore for an anti-nucleon in a nuclear environment V̄S(!r) ≈ V̄V (!r), and
we have approximate spin symmetry [130]. In fact the negative energy solutions to the nucleon mean

field do show a strong spin symmetry [131]. However, there are self-consistent effects which mitigate this

conclusion [132]. Also the annihilation potential needs to be taken into account to give a reliable prediction

of the anti-nucleon spectrum. But, since the annihilation potential exists only for the anti-nucleon mean

field potential and not the nucleon mean field potential, the annihilation potential must be equally scalar

and vector so that it will vanish under charge conjugation. This means that approximate spin symmetry

will remain intact. Indeed, the limited polarized antinucleon scattering data available shows a vanishing

small polarization which implies approximate spin symmetry [133].

14. Spin symmetry in hadrons

14.1. Introduction

Spin–orbit splittings in meson and baryon systems, which might be expected to originate from one-

gluon-exchange (OGE) effects between quarks, are absent from the observed spectrum for mesons com-

posed of one light quark (antiquark) and one heavy antiquark (quark) [134]. We first elucidate the exper-

imental evidence for small spin–orbit splittings.

14.2. Experimental and lattice QCD spectrum

In the limit where some of the (anti)quarks are infinitely heavy, the angular momentum of the light

degrees of freedom, j, is separately conserved [135]. The states can be labelled by lj , where l is the orbital
angular momentum of the light degrees of freedom. In non-relativistic models of conventional mesons

and baryons the splitting between ll+1/2 and ll−1/2 levels, e.g. the p3/2 and p1/2 or d5/2 and d3/2 levels,
can only arise from spin–orbit interactions [134]. The lj level corresponds to two degenerate broad states
with different total angular momenta J = j ± sQ, where sQ is the spin of the heavy (anti)quarks [135].
For example in the case of D-mesons, which have a charm quark and a light quark, lj = p1/2 and p3/2
and sQ = 1

2
. For p1/2 the two states are calledD∗

0 andD′
1 and for p3/2 statesD1 the two states are called

D∗
2 [135]. The degenerate states separate as one moves slightly away from the heavy quark limit, and

their spin-averaged mass remains approximately equal to the mass before separation.

For theD-mesons, the Belle collaboration [136] observes two broad states with massesMD∗
0
=2308±

17 ± 15 ± 28MeV and MD′
1
= 2427 ± 26 ± 20 ± 15MeV and two narrow states with masses MD∗

2
=

2461.6 ± 2.1 ± 0.5 ± 3.3MeV and MD1
= 2421.4 ± 1.5 ± 0.4 ± 0.8MeV giving a remarkably small

p3/2 − p1/2 spin–orbit splitting of 49± 50MeV.

For theK-mesons, which have a strange quark and a light quark, the p1/2 level is at 1409±5MeV, with
p3/2 nearby at 1371 ± 3MeV, corresponding to a p3/2 − p1/2 splitting of −38 ± 6MeV. The splitting

between the higher-lying d5/2 and d3/2 levels is −4± 14 or 41± 13MeV, depending on how the states
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potential remains invariant, V̄S(!r) = C†VS(!r)C = VS(!r), but the vector potential changes sign, V̄V (!r) =
C†VV (!r)C = −VV (!r). Therefore for an anti-nucleon in a nuclear environment V̄S(!r) ≈ V̄V (!r), and
we have approximate spin symmetry [130]. In fact the negative energy solutions to the nucleon mean

field do show a strong spin symmetry [131]. However, there are self-consistent effects which mitigate this

conclusion [132]. Also the annihilation potential needs to be taken into account to give a reliable prediction

of the anti-nucleon spectrum. But, since the annihilation potential exists only for the anti-nucleon mean

field potential and not the nucleon mean field potential, the annihilation potential must be equally scalar

and vector so that it will vanish under charge conjugation. This means that approximate spin symmetry

will remain intact. Indeed, the limited polarized antinucleon scattering data available shows a vanishing

small polarization which implies approximate spin symmetry [133].

14. Spin symmetry in hadrons

14.1. Introduction

Spin–orbit splittings in meson and baryon systems, which might be expected to originate from one-

gluon-exchange (OGE) effects between quarks, are absent from the observed spectrum for mesons com-

posed of one light quark (antiquark) and one heavy antiquark (quark) [134]. We first elucidate the exper-

imental evidence for small spin–orbit splittings.

14.2. Experimental and lattice QCD spectrum

In the limit where some of the (anti)quarks are infinitely heavy, the angular momentum of the light

degrees of freedom, j, is separately conserved [135]. The states can be labelled by lj , where l is the orbital
angular momentum of the light degrees of freedom. In non-relativistic models of conventional mesons

and baryons the splitting between ll+1/2 and ll−1/2 levels, e.g. the p3/2 and p1/2 or d5/2 and d3/2 levels,
can only arise from spin–orbit interactions [134]. The lj level corresponds to two degenerate broad states
with different total angular momenta J = j ± sQ, where sQ is the spin of the heavy (anti)quarks [135].
For example in the case of D-mesons, which have a charm quark and a light quark, lj = p1/2 and p3/2
and sQ = 1

2
. For p1/2 the two states are calledD∗

0 andD′
1 and for p3/2 statesD1 the two states are called

D∗
2 [135]. The degenerate states separate as one moves slightly away from the heavy quark limit, and

their spin-averaged mass remains approximately equal to the mass before separation.

For theD-mesons, the Belle collaboration [136] observes two broad states with massesMD∗
0
=2308±

17 ± 15 ± 28MeV and MD′
1
= 2427 ± 26 ± 20 ± 15MeV and two narrow states with masses MD∗

2
=

2461.6 ± 2.1 ± 0.5 ± 3.3MeV and MD1
= 2421.4 ± 1.5 ± 0.4 ± 0.8MeV giving a remarkably small

p3/2 − p1/2 spin–orbit splitting of 49± 50MeV.

For theK-mesons, which have a strange quark and a light quark, the p1/2 level is at 1409±5MeV, with
p3/2 nearby at 1371 ± 3MeV, corresponding to a p3/2 − p1/2 splitting of −38 ± 6MeV. The splitting

between the higher-lying d5/2 and d3/2 levels is −4± 14 or 41± 13MeV, depending on how the states

232 J.N. Ginocchio / Physics Reports 414 (2005) 165–261

13. Anti-nucleon spectrum

The anti-nucleon is the anti-particle of the nucleon. Therefore, the potential of the anti-nucleon in

the nuclear environment is the charge conjugate of the nucleon. Under charge conjugation the scalar

potential remains invariant, V̄S(!r) = C†VS(!r)C = VS(!r), but the vector potential changes sign, V̄V (!r) =
C†VV (!r)C = −VV (!r). Therefore for an anti-nucleon in a nuclear environment V̄S(!r) ≈ V̄V (!r), and
we have approximate spin symmetry [130]. In fact the negative energy solutions to the nucleon mean

field do show a strong spin symmetry [131]. However, there are self-consistent effects which mitigate this

conclusion [132]. Also the annihilation potential needs to be taken into account to give a reliable prediction

of the anti-nucleon spectrum. But, since the annihilation potential exists only for the anti-nucleon mean

field potential and not the nucleon mean field potential, the annihilation potential must be equally scalar

and vector so that it will vanish under charge conjugation. This means that approximate spin symmetry

will remain intact. Indeed, the limited polarized antinucleon scattering data available shows a vanishing

small polarization which implies approximate spin symmetry [133].

14. Spin symmetry in hadrons

14.1. Introduction

Spin–orbit splittings in meson and baryon systems, which might be expected to originate from one-

gluon-exchange (OGE) effects between quarks, are absent from the observed spectrum for mesons com-

posed of one light quark (antiquark) and one heavy antiquark (quark) [134]. We first elucidate the exper-

imental evidence for small spin–orbit splittings.

14.2. Experimental and lattice QCD spectrum

In the limit where some of the (anti)quarks are infinitely heavy, the angular momentum of the light

degrees of freedom, j, is separately conserved [135]. The states can be labelled by lj , where l is the orbital
angular momentum of the light degrees of freedom. In non-relativistic models of conventional mesons

and baryons the splitting between ll+1/2 and ll−1/2 levels, e.g. the p3/2 and p1/2 or d5/2 and d3/2 levels,
can only arise from spin–orbit interactions [134]. The lj level corresponds to two degenerate broad states
with different total angular momenta J = j ± sQ, where sQ is the spin of the heavy (anti)quarks [135].
For example in the case of D-mesons, which have a charm quark and a light quark, lj = p1/2 and p3/2
and sQ = 1

2
. For p1/2 the two states are calledD∗

0 andD′
1 and for p3/2 statesD1 the two states are called

D∗
2 [135]. The degenerate states separate as one moves slightly away from the heavy quark limit, and

their spin-averaged mass remains approximately equal to the mass before separation.

For theD-mesons, the Belle collaboration [136] observes two broad states with massesMD∗
0
=2308±

17 ± 15 ± 28MeV and MD′
1
= 2427 ± 26 ± 20 ± 15MeV and two narrow states with masses MD∗

2
=

2461.6 ± 2.1 ± 0.5 ± 3.3MeV and MD1
= 2421.4 ± 1.5 ± 0.4 ± 0.8MeV giving a remarkably small

p3/2 − p1/2 spin–orbit splitting of 49± 50MeV.

For theK-mesons, which have a strange quark and a light quark, the p1/2 level is at 1409±5MeV, with
p3/2 nearby at 1371 ± 3MeV, corresponding to a p3/2 − p1/2 splitting of −38 ± 6MeV. The splitting

between the higher-lying d5/2 and d3/2 levels is −4± 14 or 41± 13MeV, depending on how the states

Anti-nucleon potential will have absorption potential as well. However, 
the vector and scalar absorption potentials must be equal so that under 
charge conjugation the sum of the them will be zero for nucleons. 
Therefore, the absorption potential will conserve spin symmetry as well. 
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Spin polarization in antiproton scattering from 
Carbon is almost zero supporting this prediction, 

but data set is limited (NPA 487, 563 (1988)). 

Perhaps additional antiproton scattering will be 
forthcoming at GSI
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Abstract

Relativistic symmetries of the Dirac Hamiltonian had been discovered many years ago but only recently have

these symmetries been recognized empirically in nuclear and hadronic spectroscopy. The empirical data supporting

spin symmetry in hadron spectroscopy and pseudospin symmetry in nuclear spectroscopy are reviewed. Realistic

relativistic mean field calculations of nuclei and QCD sum rules are reviewed and shown to support approximate

pseudospin symmetry. These revelations suggest a more fundamental rationale for pseudospin symmetry motivating

an investigation for pseudospin conservation in the nucleon–nucleon interaction. Open questions regarding hadron

spin symmetry and nuclear pseudospin symmetry are discussed.
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Beyond the Relativistic Mean Field:
Non Relativistic Shell Model Hamiltonians that have Pseudo-spin and 

Pseudo-Angular Momentum as Dynamic Symmetries

3We note that, although the pseudospin generators depend on momentum, they depend on

the unit vector of momentum and therefore are equivalent to spin as far as momentum power

counting in effective field theory.

Likewise the generators for the non-relativistic pseudo-orbital momentum algebra are

�̃�k = Upk
��k Upk

= −2 sk · p̂ p̂k + ��k + 2�sk. (2)

where the orbital angular momentum is ��k =
(�rk×�pk)

� where �rk is the coordinate of the k-th

nucleon.

III. PSEUDOSPIN SYMMETRY CONSERVING HAMILTONIAN

The shell model Hamiltonian, H, will depend on the momenta and will have a single-nucleon

Hamiltonian h0 and an interaction V ,

H =

A�

k=1

h(�pk) +

A�

k≤t

V (�pk, �pt), (3)

where A is the total number of nucleons. We determine the conditions for this Hamiltonian

to conserve the total pseudospin,
�̃
S =

�A
k=1

�̃sk, total pseudo-orbital angular momentum,

�̃
L =

�A
k=1

�̃�k, and total angular momenutum, �J =
�̃
L +

�̃
S.

A. The Single-Nucleon Hamiltonian

The general single-particle Hamiltonian which conserves pseudospin, pseudo-orbital angular

momentum, and the total angular momentum is given by a sum of a central, pseudo-orbital

angular squared term, and pseudospin-pseudo-orbital angular momentum interaction,

h(�pk) = h̃c(pk) + h̃po(pk)
�̃�k · �̃�k + h̃pso(pk)

�̃sk · �̃�k, (4)

2I. INTRODUCTION

Pseudospin symmetry is a relativistic symmetry of the Dirac Hamiltonian that occurs when

the scalar potential plus a constant is equal in magnitude to the vector potential but opposite

in sign [1]. This condition approximately holds for the relativistic mean fields of nuclei [2].

Indeed, nuclear energy levels and transition rates in both spherical and deformed nuclei

are consistent with approximate pseudospin symmetry [3]. Beyond the mean field the non-

relativistic shell model with effective interactions has been very successful in describing

nuclei. However, the bare nuclear interaction and the effective shell model interactions

between nucleons are expressed in terms of spin operators and not pseudospin operators. In

this paper we shall determine the interactions which conserve pseudospin symmetry. These

interactions are written in momentum space rather than coordinate space because pseudospin

involves the intertwining of spin and momentum. However, this may be an advantage since

recent effective interactions, including effective field theories with and without pions [4] and

the low-k effective interactions [5], are written terms of momentum.

II. PSEUDOSPIN SYMMETRY

Pseudospin symmetry is an SU(2) symmetry as is spin symmetry. The relativistic generators

are given in [6]. We shall need only the non-relativistic generators �̃sk, where k is the nucleon

number,

�̃sk = Up �sk Up = 2 �sk · p̂ p̂k − �sk. (1)

where �sk = �σk/2 are the usual spin generators, �σ the Pauli matrices, and Up = �σk · p̂ is the

momentum-helicity unitary operator [7], and p̂k =
�pk

p is the unit three momentum of a single

nucleon.

3We note that, although the pseudospin generators depend on momentum, they depend on

the unit vector of momentum and therefore are equivalent to spin as far as momentum power

counting in effective field theory.

Likewise the generators for the non-relativistic pseudo-orbital momentum algebra are

�̃�k = Upk
��k Upk

= −2 sk · p̂ p̂k + ��k + 2�sk. (2)

where the orbital angular momentum is ��k =
(�rk×�pk)

� where �rk is the coordinate of the k-th

nucleon.

III. PSEUDOSPIN SYMMETRY CONSERVING HAMILTONIAN

The shell model Hamiltonian, H, will depend on the momenta and will have a single-nucleon

Hamiltonian h0 and an interaction V ,

H =

A�

k=1

h(�pk) +

A�

k≤t

V (�pk, �pt), (3)

where A is the total number of nucleons. We determine the conditions for this Hamiltonian

to conserve the total pseudospin,
�̃
S =

�A
k=1

�̃sk, total pseudo-orbital angular momentum,

�̃
L =

�A
k=1

�̃�k, and total angular momenutum, �J =
�̃
L +

�̃
S.

A. The Single-Nucleon Hamiltonian

The general single-particle Hamiltonian which conserves pseudospin, pseudo-orbital angular

momentum, and the total angular momentum is given by a sum of a central, pseudo-orbital

angular squared term, and pseudospin-pseudo-orbital angular momentum interaction,

h(�pk) = h̃c(pk) + h̃po(pk)
�̃�k · �̃�k + h̃pso(pk)

�̃sk · �̃�k, (4)
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4The pseudospin-pseudospin interaction
�A

k=1
�̃sk · �̃sk =

3A
4 since the single-nucleon wavefunc-

tions are spinors in pseudospin, and hence this term is absorbed in the central term. This

Hamiltonian commutes with the total angular momentum Ji. The first two terms commute

with
�̃S and

�̃L and thus, if h̃pso(pk) = 0, hk has an invariant pseudospin and pseudo-orbital

angular momentum symmetry. This means that the eigenfunctions can be labeled by the

pseudospin and pseudo-orbital angular momentum quantum numbers and the energies do

not depend on the orientation of the pseudospin and pseudo-orbital angular momentum.

If h̃pso(pk) �= 0, then h(�pk) has a dynamic pseudospin and pseudo-orbital angular momen-

tum symmetry. This means that the eigenfunctions can be labeled by the pseudospin and

pseudo-orbital angular momentum quantum numbers but the energies will depend on the

orientation of the pseudospin and pseudo-orbital angular momentum.

B. The Two-Nucleon Interaction

The general two nucleon interaction which conserves pseudospin, pseudo-orbital angular

momentum, and the total angular momentum is

V (�pk, �pt) =

(Ṽ (0)
c (pk, pt, θk,t) + Ṽ (0)

ps (pk, pt, θk,t)s̃k · s̃t + Ṽ (0)
po (pk, pt, θk,t)�̃k · �̃t + Ṽ (0)

pso (pk, pt, θk,t)(s̃k · �̃t + s̃t · �̃k))
(1−τk·τt)

4

+(Ṽ (1)
c (pk, pt, θk,t) + Ṽ (1)

ps (pk, pt, θk,t)s̃k · s̃t + Ṽ (1)
po (pk, pt, θk,t)�̃k · �̃t + Ṽ (1)

pso (pk, pt, θk,t)(s̃k · �̃t + s̃t · �̃k))
(3+τk·τt)

4 ,

(5)

where τ are isospin Pauli matrices and where cos(θk,t) = p̂k · p̂t and we include the possibility

that the coefficients Ṽ (T )
G (pk, pt, θk,t), G = c, ps, po, pso, could depend on isospin, T = 0, 1.

If Ṽ (T )
pso (pk, pt, θk,t) = 0 then pseudospin and pseudo-orbital angular momentum are invariant

symmetries; that is, the eigenfunctions have conserved pseudospin and pseudo-orbital angular
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7Therefore we get for the various terms

�̃sk · �̃st = �Dk · �Dt − (�sk · �Dt + �st · �Dk) + �sk · �st, (13)

�̃sk · �̃�t +�̃st · �̃�k = −2 �Dk · �Dt +3(�sk · �Dt +�st · �Dk)+ �Dk ·��t + �Dt ·��k−(�sk ·��t +�st ·��k)−4�sk ·�st, (14)

�̃�k · �̃�t = �Dk · �Dt−( �Dk ·��t + �Dt ·��k)−2(�sk · �Dt +�st · �Dk)+ �̃�k · �̃�t +2(�sk ·��t +�st ·��k)+4�sk ·�st. (15)

Thus we obtain central, spin, spin-orbit and orbital interactions plus additional interactions.

The interaction �Dk · �Dt contains a tensor and dipole interaction

�Dk · �Dt = 4([skst]
(2) · [p̂kp̂t]

(2) − [skst]
(1) · [p̂kp̂t]

(1) +
1

3
�sk · �st) cos(θk,t). (16)

The interaction �sk · �Dt + �st · �Dk contains a tensor interaction

�sk · �Dt + �st · �Dk = 2[skst]
(2) · ([p̂kp̂k]

(2) + [p̂tp̂t]
(2)) +

4

3
�sk · �st. (17)

Finally the interaction �Dk · ��t + �Dt · ��k is a momentum dependent spin-orbit interaction

�Dk · ��t + �Dt · ��k = 2([sk · p̂k]p̂k · ��t + [st · p̂t]p̂t · ��k) (18)

After some manipulation the interaction becomes

V (�pk, �pt) = V (0)(�pk, �pt)
(1− τk · τt)

4
+ V (1)(�pk, �pt)

(3 + τk · τt)

4
, (19)

where

V (T )(�pk, �pt) =

V (T )
c (pk, pt, θk,t) + V (T )

s (pk, pt, θk,t)sk · st + V (T )
o (pk, pt, θk,t)�k · �t + V (T )

so (pk, pt, θk,t)(sk · �t + st · �k)

+V (T )
t (pk, pt, θk,t)[skst](2) · ([p̂kp̂k](2) + [p̂tp̂t](2)) + V (T )

dt (pk, pt, θk,t)([skst](2) · [p̂kp̂t](2) − [skst](1) · [p̂kp̂t](1))

+V (T )
mso(pk, pt, θk,t)([sk · p̂k]p̂k · ��t + [st · p̂t]p̂t · ��k) (20)
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Thus we obtain central, spin, spin-orbit and orbital interactions plus additional interactions.

The interaction �Dk · �Dt contains a tensor and dipole interaction

�Dk · �Dt = 4([skst]
(2) · [p̂kp̂t]

(2) − [skst]
(1) · [p̂kp̂t]

(1) +
1

3
�sk · �st) cos(θk,t). (16)

The interaction �sk · �Dt + �st · �Dk contains a tensor interaction

�sk · �Dt + �st · �Dk = 2[skst]
(2) · ([p̂kp̂k]

(2) + [p̂tp̂t]
(2)) +

4

3
�sk · �st. (17)

Finally the interaction �Dk · ��t + �Dt · ��k is a momentum dependent spin-orbit interaction

�Dk · ��t + �Dt · ��k = 2([sk · p̂k]p̂k · ��t + [st · p̂t]p̂t · ��k) (18)

After some manipulation the interaction becomes

V (�pk, �pt) = V (0)(�pk, �pt)
(1− τk · τt)

4
+ V (1)(�pk, �pt)

(3 + τk · τt)

4
, (19)

where

V (T )(�pk, �pt) =

V (T )
c (pk, pt, θk,t) + V (T )

s (pk, pt, θk,t)sk · st + V (T )
o (pk, pt, θk,t)�k · �t + V (T )

so (pk, pt, θk,t)(sk · �t + st · �k)

+V (T )
t (pk, pt, θk,t)[skst](2) · ([p̂kp̂k](2) + [p̂tp̂t](2)) + V (T )
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+V (T )
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In addition to spin and orbital angular momentum interactions,
tensor, dipole and momentum dependent spin-orbit interactions.
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Relativistic Harmonic Oscillator

In the symmetry limits the eigenfunctions and eigen-energies can be 
solved analytically. The eigenfunctions are similar to the non 

relativistic limit. That is, the upper and lower components can be 
written in terms of Gaussians and Laguerre polynomials. This true 

for spherical and non-spherical harmonic oscillator. 

JNG, PRC 69, 034318 (2004)

 

VS (
r ) = M

2 i=1

3

∑ ω 2
S ,i xi

2

VV (
r ) = M

2 i=1

3

∑ ω 2
V ,i xi

2
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EN = M B(AN ) +
1
3
+

4
9 B(AN )

⎡

⎣
⎢

⎤

⎦
⎥

B(AN ) =
AN + AN

2 − 32
27

2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

2
3

 

AN = C (N +
3
2
),C =

2 ω
M

,

N = 2n +  = 0,1,….

Energy Eigenvalues in the Spin Symmetry 
and Spherical Symmetry Limit

ωS =ωV =ω
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EN = M B(AN ) +
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+

4
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AN = C (N +
3
2
),C =

2 ω

M
,

N = 2n +  = 0,1,….

Energy Eigenvalues in the Pseudo-spin 
Symmetry and Spherical Symmetry Limit

 ωV = −ωS =ω
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Spherical Relativistic Harmonic Oscillator
U(3) and pseudo-U(3)

In these symmetry limits the energy depends only on N 
or N, as in the non-relativistic harmonic oscillator. In the 
non-relativistic case this is because the Hamiltonian has 

an U(3) symmetry.
Although the energy spectrum dependence on N is 
different than in the non-relativistic case, the Dirac 

Hamiltonian for the spherical harmonic oscillator has 
been shown to have an U(3) symmetry for the spin 
symmetry limit and a pseudo-U(3) in the pseudosin 

limit. 

JNG, PRL 95, 252501 (2005)

 
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   Generators of Spin and U(3) Symmetry

 


S =

s 0
0 Up

s Up

⎛

⎝
⎜

⎞

⎠
⎟ ,

L =


 0
0 Up


Up

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 

s = σ / 2,

 =

(r × p)


, Up =

σ ·p
p
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Quadrupole Generator

 

Qm = λ2
Mω 2 (Mω 2 r2 + 2M )[rr]m

(2) + [pp]m
(2) Mω 2 [rr]m

(2) σ ·p

σ ·p Mω 2 [rr]m

(2) [pp]m
(2)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

where the norm is

 
λ2 =

3
Mω 22 (H + M )

JNG, PRL 95, 252501 (2005)
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N̂ =

H + M (H − M )
 2Mω 2

−
3
2

The Generator that counts the number of 
oscillator quanta is
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H − M (H + M )
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

S =

Up
s Up 0
0 s
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Pseudo U(3) Generators

 

Qm =
3

Mω 22 ( H − M )
[pp]m

(2) 
σ ·p Mω 2 [rr]m

(2)

Mω 2 [rr]m
(2) σ ·p Mω 2 (Mω 2 r2 − 2M )[rr]m

(2) + [pp]m
(2)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
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Relativistic Harmonic Oscillator  
with no symmetries:  VS (

r ) ≠ ±VV (
r )

The pseudo-spin limit is approximately valid for nuclei. However in 
this limit there are no bound Dirac valence states, only bound Dirac 
hole states. Therefore we would like to solve analytically the Dirac 

Hamiltonian for general scalar and vector harmonic oscillator 
potentials to obtain eigenfunctions with a realistic spectrum relevant 

for nuclei. 
Furthermore, this is an interesting problem because there exists a 

symmetry limit for which perturbation theory is not valid even 
though 

as is the case for nuclei.
 VS (
r ) ≈ −VV (

r )
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•Dirac Hamiltonian has an SU(2) symmetry for

•Nuclei exhibit pseudo-spin symmetry which 
may improve as isospin increases
•Predicts that anti-nucleons in a nuclear 

environment exhibit spin symmetry
•Mesons and Baryons seem to exhibit spin 

symmetry

 

VS r
( ) −VV r

( ) = Cs spin symmetry

VS r
( ) +VV r

( ) = Cps pseudo − spin symmetry

Summary
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n The relativistic harmonic oscillator has a spin and U(3) 
symmetry when the scalar and vector potentials are 
equal. This limit is relevant for hadrons and anti-
nucleons in a nuclear environment and perturbation 
theory is possible.

n The relativistic harmonic oscillator has a pseudo-spin and 
a pseudo U(3) symmetry when the scalar and vector 
potentials are equal in magnitude and opposite in sign. 
This limit is relevant for nuclei, but, in the exact limit, 
there are no bound Dirac valence states so perturbation is 
not an option.

n Therefore we are attempting to solve analytically the 
relativistic harmonic oscillator with arbitrary vector and 
scalar potentials.

Summary
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Future

1) What is the connection between QCD and pseudo-spin 
symmetry suggested by QCD sum rules?

2) Does Chiral Effective Field Theory produce an 
interaction that approximately conserve pseudo-spin?

3) Why do hadrons have spin symmetry whereas nuclei 
have pseudo-spin symmetry?

More fundamental rationale for pseudo-spin symmetry
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5/2/13 9:26 AMKay's Thinking Cap: Happy Birthday, Ronni!!!!!
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This is where I think out loud about Life, the Universe and Everything. I consider
life an adventure and this is part of mine whether I'm ranting on politics or taking
you on a ramble through Kay's World.

Kay's Thinking CapKay's Thinking Cap

Home About Me

Saturday, April 07, 2012

Happy Birthday, Ronni!!!!!
It's Ronni Bennett's birthday today so it's party time!!! Do stop by and

wish her many more. 

May you have a wonderful day and many, many more birthdays,

Ronni!!!!!!

Here's some champagne!!!!!!!!!

And lollipops . . . 

Kay Dennison
Northeasten, Ohio, United
States

Just another cranky old lady!!!

View my complete profile

About Me

Kay Dennison

Email me!

Follow by Email
Email address... Submit

I am a very . . .

1 of 3

HAPPY  BIRTHDAY  JAMES
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Fig. 15. Effective Single Particle Energies (ESPE) of neutrons in the 8O isotopic chain (left) and in the N = 20 isotones with 8 < Z < 20 (right). These
figures have been adapted from Fig. 5 of Ref. [105] and Fig. 1 of Ref. [106].

which strengthen this statement, in particular derived from atomic masses, 2+ excitation energies, and reduced transition
probabilities B(E2; 0+ → 2+). From atomic masses, it is found that the size of the N = 20 shell gap remains almost
constant and large, as shown in the left part of Fig. 14. The 2+ energies amount to about 4 MeV for 40Ca and 3.5 MeV for the
36S and 34Si isotones, (see the right part of Fig. 14). In 40Ca, a minimum of 2p–2h excitations is required to create a J = 2
positive-parity state across the gap formed by orbits of different parities (sd (fp) orbits have positive (negative) parities). As
a consequence the B(E2; 0+ → 2+) value (drawn in the right part of Fig. 14) is low as quadrupole excitations to the fp shells
can proceed only via small matrix elements provided by the overlap of the sd and fp wave functions. While decreasing the
number of protons from 40

20Ca20, the vacant proton holes created within the sd shells should a priori increase the possibility
to generate p–h excitations to reach a maximum value of the B(E2) at the mid-proton sd shell. As the full sd shell contains a
total of 12 protons, we would have expected a maximum collectivity for 6 protons in the sd shells, i.e. for the 34

14Si20 isotope.
Experimental B(E2) values [11,96] clearly deviate from this simple argument, which assumed that the sd states were quasi-
degenerate in energy. It is the presence of significant subshell closures at Z = 14 (∼4.3 MeV) and Z = 16 (∼2.5 MeV) and
the persistence of a large N = 20 shell gap that keep the B(E2) at small values and the 2+ state at high energy in the 36S and
34Si nuclei [97].

For isotopes below Z = 14 the picture changes suddenly. The 2+ energy drops down to 885 keV [8] in 32
12Mg20, whereas

the B(E2) value increases by a factor of about 4. The value reported in the right part of Fig. 14 is obtained from the
weighted averaged results of the measurements obtained by Coulomb excitation at intermediate energy at RIKEN [98,99]
and NSCL [100,101]. The energy of the first 2+ state in 30Ne has been tentatively determined to be 791(26) keV from proton
inelastic scatteringmeasurement [102] at RIKEN. A liquid hydrogen targetwas bombarded by a radioactive beamof 3010Ne20 at
intermediate energywith amean intensity of 0.2 ions per second.γ -rays emitted in-flightwere detected by an array ofNa(Tl)
scintillator detectors placed around the target. As mentioned by the authors, the identification of the scattered particles
based on the energy loss and total energy method was difficult. Despite this problem, a B(E2) value of 460(270) e2 fm4 has
been derived for 30

10Ne. This value is, within error bars, similar to that of 32
12Mg. The sudden increase of the B(E2) values at

Z = 12 indicates that neutrons are occupying not only the sd but also the fp shells. Otherwise the B(E2) values would have
been much lower [98].

The large values of B(E2) in the Mg chain can arise only if the valence neutrons include the fp orbits. Within the NpNn

scheme, the B(E2) values are expressed as functions of the product of the number of valence protonsNp and neutronsNn [43].
If the N = 20 shell gap is large, the twelve neutrons above the 16O core are blocked inside the sd shells. Thus Nn � 0 and
hence the value of B(E2) value is small. Conversely, if the N = 20 shell gap vanishes, neutrons can move in a wider space
which extends to the fp shells, leading to Nn = 12. Shell-model calculations restricted to the sd shells cannot account for the
sudden increase of B(E2) from 34Si to 32Mg (see the right part of Fig. 14). It is sufficient to invoke 2p–2h neutron excitation
from the sd to the fp shells to increase the B(E2) value. For the nucleiwhich reside in the Island of Inversion, the ground states
are dominated by 2p–2h configurations. There, the loss of energy due to the promotion of 2 neutrons across theN = 20 shell
gap (2Egap) is largely compensated by the gain of correlation energy obtained from 2p–2h excitations [103]. As described by
Heyde et al. [104] this correlation energy comprises proton–neutron and neutron–neutronmonopole and quadrupole terms,
the sum of which is larger than 2Egap in 32Mg. Naturally the dominance of 2p–2h over the normal sd configuration will also
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Fig. 23. Left: Neutron single particle energies (SPE) of the fp orbitals for the 47
18Ar29 and 49

20Ca29 nuclei. Right: Schematic view of the proton–neutron
interactions involved to change the f (top) and p (bottom) SO splittings (derived from Refs. [139,149]).

Fig. 24. Evolution of the binding energies of the states bounding the N = 28 shell closure. The 7/2− states are the ground states of the N = 27 isotones.
The 3/2− , 1/2− and 5/2− energies are the average of all the states populated in (d, p) pick-up reactions on the stable N = 28 isotones [171]. The results
on 57Ni are drawn with empty symbols as the spectroscopic factors of its three first states are not known.

p1/2 and 4MeV above the p3/2 ground state. The single-particle energies in 57Ni28 were determined at the ATLAS accelerator
at Argonne National Laboratory using the d(56Ni,p)57Ni reaction at 250 MeV [170]. It was found that the major part of the
f5/2 single-particle energy is located at 768 keV excitation energy, below that of the p1/2 ones located at 1.13 MeV. However,
the authors admitted that large uncertainties in the spectroscopic factors (up to 50%) are possible.

The variation of the binding energies of the f7/2 and f5/2 orbits as a function of the proton number is shown in Fig. 24. From
the mean slopes of the two curves, the monopole matrix elements Vpn

f7/2f7/2
and V

pn

f7/2f5/2
can be tentatively determined to be

� −0.6MeV and−1.0 MeV, respectively. Their large difference could be related to the spin–isospin term of the interaction.
The variation of the single-particle states p3/2 and p1/2 is also shown in the same figure. The energy spacing between

these two spin-orbit members does not vary very much with the addition of eight protons in the f7/2 orbit. There, no tensor
force is changing this SO splitting as the proton and neutron orbits are separated by 2 units of orbital angular momentum.
Noteworthy is the fact that this is clearly at variancewith the abrupt change of the p SO splittingwith the addition or removal

N = 28 isotones
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a b s t r a c t

The main purpose of the present manuscript is to review the structural evolution along

the isotonic and isotopic chains around the ‘‘traditional’’ magic numbers 8, 20, 28, 50, 82

and 126. The exotic regions of the chart of nuclides have been explored during the last

three decades. Then the postulate of permanent magic numbers was definitely abandoned

and the reason for these structural mutations has been in turn searched for. General

trends in the evolution of shell closures are discussed using complementary experimental

information, such as the binding energies of the orbits bounding the shell gaps, the trends

of the first collective states of the even–even semi-magic nuclei, and the behavior of

certain single-nucleon states. Each section is devoted to a particular magic number. It

describes the underlying physics of the shell evolution which is not yet fully understood

and indicates future experimental and theoretical challenges. The nuclear mean field

embodies various facets of the nucleon–nucleon interaction, among which the spin-orbit

and tensor terms play decisive roles in the shell evolutions. The present review intends

to provide experimental constraints to be used for the refinement of theoretical models

aiming at a good description of the existing atomic nuclei and at more accurate predictions

of hitherto unreachable systems.
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C (N + 3
2
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+)

For the mass large compared to the potential, the eigenenergies go approximately like

that is linearly with N like the non-relativistic spectrum. For the mass small the 
spectrum goes like

or approximately like N to the 2/3 power. Therefore the harmonic oscillator in the 
relativistic limit is not harmonic!
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Spherical Symmetry Limit
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Quadrupole Generators

 
qm =

1
Mω

3
2
(2M 2ω 2[rr]m

(2) + [pp]m
(2) )

Qm =
qm 0
0 Up qm Up

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

From the examples of the spin and orbital angular mometum the 
following ansatz seems plausible but, in fact, does not work:

Non-relativistic quadrupole generator:
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 Quadrupole Generators
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 Conditions for Generators to Commute 
with the Hamiltonian

[Qm ,H ] = 0
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 Conditions for Generators to Commute 
with the Hamiltonian

[Qm ,H ] = 0
implies that

(Qm )12 = (Qm )21,
2[(Qm )11,V ]+ [(Qm )12 , p

2 ] = 0,
2[(Qm )12 ,V ]+ [(Qm )22 , p

2 ] = 0,
(Qm )11 = (Qm )12 2(V + M ) + (Qm )22 p

2 .

Thursday, May 9, 2013



Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D
LANS Company Sensitive — unauthorized release or dissemination prohibited

A solution is:
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Mω 2 (Mω 2 r2 + 2M )[rr]m
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(2) Mω 2 [rr]m
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 Number of Quanta Operator
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U(3) Commutation Relations

 

[N̂ ,

L] = [N̂ ,Qm ] = 0,

[

L,

L](t ) = − 2


L δ t ,1,

[

L,Q](t ) = − 6 Q δ t ,2 ,

[Q,Q](t ) = 3 10

L δ t ,1.

Thursday, May 9, 2013


