Intntl Conf on Nuclear Theory in the Supercomputing Era 2013

Ab initio calculations of p-shell nuclei with the JAmes Iowa State Potential 16

Pieter Maris
pmaris@iastate.edu
Iowa State University

IOWA STATE UNIVERSITY

SciDAC project – NUCLEI lead PI: Joe Carlson (LANL) http://computingnuclei.org

PetaApps award lead PI: Jerry Draayer (LSU)

INCITE award – Computational Nuclear Structure lead PI: James P Vary (ISU)

NERSC computer time

Ab initio nuclear physics – Quantum many-body problem

Given a Hamiltonian operator

$$\hat{\mathbf{H}} = \sum_{i < j} \frac{(\mathbf{p}_i - \mathbf{p}_j)^2}{2 \, m \, A} + \sum_{i < j} V_{ij} + \sum_{i < j < k} V_{ijk} + \dots$$

solve the eigenvalue problem for wave function of A nucleons

$$\mathbf{\hat{H}} \Psi(r_1, \dots, r_A) = \lambda \Psi(r_1, \dots, r_A)$$

Carbon 12 Proton Densitie

4.5

- eigenvalues λ discrete (quantized) energy levels
- eigenvectors: $|\Psi(r_1, \ldots, r_A)|^2$ probability density for finding nucleons 1, ..., A at r_1, \ldots, r_A

Nuclear interaction

Nuclear potential not well-known,

though in principle calculable from QCD (r

$$\mathbf{\hat{H}} = \mathbf{\hat{T}}_{\mathsf{rel}} + \sum_{i < j} V_{ij} + \sum_{i < j < k} V_{ijk} + \dots$$

In practice, alphabet of realistic potentials

- Argonne potentials: AV8', AV18
 - plus Urbana 3NF (UIX)
 - plus Illinois 3NF (IL7)
- Bonn potentials
- Chiral NN interactions
 - plus chiral 3NF, ideally to the same order (more on Friday)
- **_**
- JAmes Iowa State Potential

Phenomeological NN interaction: JISP16

JAmes Iowa State Potential tuned up to ¹⁶O

- Constructed to reproduce np scattering data
- Finite rank seperable potential in H.O. representation
- Nonlocal NN-only potential
- Use Phase-Equivalent Transformations (PET) to tune off-shell interaction to
 - binding energy of ³H and ⁴He
 - Iow-lying states of ⁶Li (JISP6, precursor to JISP16)
 - binding energy of ¹⁶O

PHYSICS LETTERS B

Physics Letters B 644 (2007) 33-37

www.elsevier.com/locate/physletb

Realistic nuclear Hamiltonian: Ab exitu approach

A.M. Shirokov^{a,b,*}, J.P. Vary^{b,c,d}, A.I. Mazur^e, T.A. Weber^b

^a Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow 119992, Russia
^b Department of Physics and Astronomy, Iowa State University, Ames, IA 50011-3160, USA

^c Lawrence Livermore National Laboratory, L-414, 7000 East Avenue, Livermore, CA 94551, USA

^d Stanford Linear Accelerator Center, MS81, 2575 Sand Hill Road, Menlo Park, CA 94025, USA ^e Pacific National University, Tikhookeanskaya 136, Khabarovsk 680035, Russia

J-matrix Inverse Scattering Potentials

- Constructed as matrix in H.O. basis
 - $2n + l \le 8$ for even partial waves, limited to $J \le 4$
 - $2n+l \le 9$ for odd partial waves, limited to $J \le 4$
 - $\hbar\omega = 40 \text{ MeV}$
- \checkmark χ^2 /datum of 1.05 for the 1999 np data base (3058 data)
- No charge symmetry breaking
- Use PET to improve
 - deuteron quadrupole moment
 - ³H and ⁴He binding energies
 - binding energies low-lying states of ⁶Li: JISP6

Shirokov, Vary, Mazur, Zaystev, Weber, PLB 621, 96 (2005)

binding energy of ¹⁶O: JISP16

Shirokov, Vary, Mazur, Weber, PLB 644, 33 (2007)

additional tuning, more accurate calculations: JISP16₂₀₁₀ reproduces ¹⁶O within numerical error estimates of 3% Shirokov, Kulikov, Maris, Mazur, Mazur, Vary, arXiv:0912.2967

No-Core Configuration Interaction nuclear physics calculations

Barrett, Navrátil, Vary, Ab initio no-core shell model, PPNP69, 131 (2013)

- Expand wave function in basis states $|\Psi\rangle = \sum a_i |\Phi_i\rangle$
- Express Hamiltonian in basis $\langle \Phi_j | \hat{\mathbf{H}} | \Phi_i \rangle = H_{ij}$
- Diagonalize Hamiltonian matrix H_{ij}
- \checkmark Complete basis \longrightarrow exact result
 - caveat: complete basis is infinite dimensional
- No-Core Configuration Interaction
 - all A nucleons are treated the same
- In practice
 - truncate basis
 - study behavior of observables as function of truncation
- Computational challenge (more on Thursday)
 - construct large sparse symmetric real matrix H_{ij}
 - use Lanczos algorithm to obtain lowest eigenvalues & -vectors

NCCI – Basis space expansion

- Expand wave function in basis $\Psi(r_1, \ldots, r_A) = \sum a_i \Phi_i(r_1, \ldots, r_A)$
- Many-Body basis states $\Phi_i(r_1, \ldots, r_A)$ Slater Determinants of Single-Particle states $\phi_{ik}(r_k)$

$$\Phi_{i}(r_{1},...,r_{A}) = \frac{1}{\sqrt{A!}} \begin{vmatrix} \phi_{i1}(r_{1}) & \phi_{i2}(r_{1}) & \dots & \phi_{iA}(r_{1}) \\ \phi_{i1}(r_{2}) & \phi_{i2}(r_{2}) & \dots & \phi_{iA}(r_{2}) \\ \vdots & \vdots & & \vdots \\ \phi_{i1}(r_{A}) & \phi_{i2}(r_{A}) & \dots & \phi_{iA}(r_{A}) \end{vmatrix}$$

- Single-Particle basis states $\phi_{ik}(r_k)$
 - eigenstates of SU(2) operators $\hat{\mathbf{L}}^2$, $\hat{\mathbf{S}}^2$, $\hat{\mathbf{J}}^2 = (\hat{\mathbf{L}} + \hat{\mathbf{S}})^2$, and $\hat{\mathbf{J}}_z$ with quantum numbers n, l, s, j, m
 - radial wavefunctions
 - Harmonic Oscillator
 - Wood–Saxon basis
 - Coulomb–Sturmian

<u>_</u>___

Negoita, PhD thesis 2010

Caprio, Maris, Vary, PRC86, 034312 (2012)

(more on Thursday)

NCCI – Sparse matrix

Express Hamiltonian in basis

$$H_{ij} = \int_{\Omega} \left(\Phi_i^*(r_1', \dots, r_A') \, \hat{\mathbf{H}} \, \Phi_j(r_1, \dots, r_A) \right) \, \mathrm{d}r_1 \dots \mathrm{d}r_A \, \mathrm{d}r_1' \dots \mathrm{d}r_A'$$

Sparse matrix

A-body problem with N-body interaction: nonzero matrix elements iff at least A - N nucleons are in identical SP states

- many-body problem with 2-body (and 3-body) interactions
- each many-body basis states is single Slater Determinant

$$H_{ij}^{(A)} = (-1)^{\text{permutations}} \delta_{i_1, j_1} \dots \delta_{i_{(A-2)}, j_{(A-2)}}$$
$$\int_{\Omega} \left(\Phi_i^*(r_c, r_d) \, \hat{\mathbf{H}}_{\mathbf{cd} \leftarrow \mathbf{ab}}^{(2)} \, \Phi_j(r_a, r_b) \right) \, \mathrm{d}r_a \mathrm{d}r_b \mathrm{d}r_c \mathrm{d}r_d$$
$$= (-1)^{\text{permutations}} \, \delta_{i_1, j_1} \dots \delta_{i_{(A-2)}, j_{(A-2)}} \, H_{cd \leftarrow ab}^{(2)}$$

NCCI – Truncation schemes

M-scheme: Many-Body basis states eigenstates of $\hat{\mathbf{J}}_{\mathbf{z}}$

$$\hat{\mathbf{J}}_{\mathbf{z}}|\Phi_i\rangle = M|\Phi_i\rangle = \sum_{k=1}^A m_{ik}|\Phi_i\rangle$$

- single run gives entire spectrum
- alternatives:
 Coupled-J scheme, Symplectic basis, ...
- N_{\max} truncation: Many-Body basis states satisfy $\sum_{k=1}^{A} (2n_{ik} + l_{ik}) \leq N_0 + N_{\max}$
 - exact factorization of Center-of-Mass motion
 - alternatives:
 - No-Core Monte-Carlo Shell Model (more on Thursday)

Abe, Maris, Otsuka, Shimizu, Utsuno, Vary, PRC86, 054301 (2012)

- Importance Truncation
 Roth, PRC79, 064324 (2009) (Friday)
- SU(3) Truncation NSF PetaApps collaboration (Draayer & Dytrych next)

_ ...

Challenge: achieve numerical convergence for No-Core Full Configuation calculations using finite basis space calculations

- Perform a series of calculations with increasing N_{max} truncation
- Extrapolate to infinite model space \longrightarrow exact results
 - Empirical: binding energy exponential in Nmax

 $E_{\text{binding}}^{N} = E_{\text{binding}}^{\infty} + a_1 \exp(-a_2 N_{\text{max}})$

- use 3 or 4 consecutive N_{max} values to determine $E_{\text{binding}}^{\infty}$
- use $\hbar \omega$ and N_{max} dependence to estimate numerical error bars

Maris, Shirokov, Vary, PRC79, 014308 (2009)

- Recent studies of IR and UV behavior
 - exponentials in $\sqrt{\hbar\omega/N}$ and $\sqrt{\hbar\omega N}$ Coon *et al*, PRC86, 054002 (2012)

Furnstahl, Hagen, Papenbrock, PRC86, 031301(R) (2012)

(more on Thursday)

Extrapolating to complete basis – in practice

- Perform a series of calculations with increasing N_{max} truncation
- **J** Use empirical exponential in N_{max} :

• H.O. basis up to $N_{max} = 16$: $E_b = -31.49(3)$ MeV

Cockrell, Maris, Vary, PRC86 034325 (2012)

Hyperspherical harmonics up to $K_{max} = 14$: $E_b = -31.46(5)$ MeV
Vaintraub, Barnea, Gazit, PRC79 065501 (2009)

NCCI calculations – main challenge

- \blacksquare Increase of basis space dimension with increasing A and N_{max}
 - need calculations up to at least $N_{max} = 8$ for meaningful extrapolation and numerical error estimates
- More relevant measure for computational needs
 - number of nonzero matrix elements
 - current limit 10^{13} to 10^{14} (Hopper, Edison, Jaguar/Titan, Intrepid, Mira)

Ground state energy of p-shell nuclei with JISP16

Maris, Vary, IJMPE, to appear

IOB – most likely JISP16 produces correct 3^+ ground state,
but extrapolation of 1^+ states not reliable due to mixing of two 1^+ states

11 Be – expt. observed parity inversion within error estimates of extrapolation

¹²B and ¹²N – unclear whether gs is 1^+ or 2^+ (expt. at $E_x = 1$ MeV) with JISP16

Energies of narrow A=6 to A=9 states with JISP16

Cockrell, Maris, Vary, PRC86 034325 (2012); Maris, Vary, IJMPE, to appear

Excitation spectrum narrow states in good agreement with data

Details: excitation spectrum 7Li

Cockrell, Maris, Vary, PRC86 034325 (2012)

- Narrow states well converged, no extrapolation needed
- Broad resonances generally not as well converged; may need to incorporate continuum (more on Wednesday)

Details: spin components of 7Li

$$J = \frac{1}{J+1} \left(\langle \mathbf{J} \cdot \mathbf{L}_p \rangle + \langle \mathbf{J} \cdot \mathbf{L}_n \rangle + \langle \mathbf{J} \cdot \mathbf{S}_p \rangle + \langle \mathbf{J} \cdot \mathbf{S}_n \rangle \right)$$

■ Converged with N_{max} , persistent weak $\hbar\omega$ dependence $\frac{5}{2}^{-}$ states

• Two $\frac{5}{2}^{-}$ states have very different structure

Positive vs. negative parity states of Be-isotopes

- Unnatural parity states systematically underbound by about one MeV compared to lowest natural parity states
 - interaction JISP16 not good enough?
 - difference in convergence of pos. and neg. parity states?

Details: Positive and negative spectrum of 9Be

- **Solution** Excitation energy $\frac{5}{2}^{-}$ at 3 MeV well converged (narrow)
- Excitation energy $\frac{7}{2}^-$ reasonably converged
- Excitation energies broad neg. parity not well converged
- Excitation energies pos. parity well converged

Emergence of rotational bands

- Solutional energy for states with axial symmetry $E(J) \propto J(J+1)$
- Quadrupole moments for rotational band

$$Q(J) = \frac{3K^2 - J(J+1)}{(J+1)(2J+3)} Q_0^K$$

• Large B(E2) transition rates between members rotational band B(E2; $i \to f$) = $\frac{5}{16\pi} (Q_0^K)^2 (J_i, 2; K, 0 | J_f, K)^2$

Details: one-body density of 9Be ground state $(\frac{3}{2}^{-}, \frac{1}{2})$

and their difference

Translationally-invariant proton and neutron densities Cockrell, PhD thesis, 2012

neutron

0.1

0.08

0.06

0.04

0.02

0

3

- Emergence of α clustering
 - extra neutron appears to be in π orbital

2

1

Details: spin components of 9Be

Consistent with picture of two α particles plus a neutron

- contribution intrinsic spin neutron approximately $\frac{1}{2}$
- contribution intrinsic spin proton approximately 0

• Consistent with neutron $\frac{3}{2}^-$ in π orbital, neutron $\frac{1}{2}^+$ in σ orbital

Magnetic moments of p-shell nuclei with JISP16

Maris, Vary, IJMPE, to appear

given that we do not have any meson-exchange currents

Conclusions

- No-core Configuration Interaction nuclear structure calculations
 - Binding energy, spectrum, magnetic moments
 - $\langle r^2 \rangle$, Q, transitions, wfns, one-body densities
- Main challenge: construction and diagonalization of extremely large (D ~ 10^{10}) sparse (NNZ ~ 10^{14}) matrices
- JAmes Iowa State Potential
 - Nonlocal phenomenological 2-body interaction
 - Good description of *p*-shell nuclei
 - Good convergence for energies and magnetic moments
 - Slower convergence for $\langle r^2 \rangle$, Q, B(E2), ...
 - improved extrapolation methods?
 - basis functions w. realistic asymptotic behavior instead of HO basis?
 - Include selection of additional basis states from higher N_{\max} spaces?
- Would not have been possible without collaboration with applied mathematicians and computer scientists Aktulga, Yang, Ng (LBNL); Çatalyürek, Saule (OSU); Sosonkina (ODU/AL)