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I met James at MIT in 
the 70’s

I was a grad student, he was a post-doc

My project- formation/decays of double 
isobaric analog states in proton heavy-nucleus 
scattering -couldn’t find sizable contribution

James suggestion: include  pairing 
correlations in Po210  -this enhanced matrix 
element by a factor of 7

I graduated- I am forever grateful to James



Interest in Isobaric 
analog states decayed 

focus changed to isospin violating nucleon-nucleon 
forces & consequences in few body reactions   

Comment- tools discussed at NTSE can lead to much 
better treatment of nuclear isospin violations than in 
the old days-super allowed beta decay 



Charge Symmetry is invariance 
under 1 isospin rotation
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CS is broken slightly by  light quark 
mass difference and E&M



Examples where CS holds, 
isospin (CI) violated
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Scale of CSB is Smaller
than CIB 

Scale is ~(Mn-Mp)/Mp~ 1/1000

Much less than pion mass difference effect ~1/27

NN Scattering- CIB discovered before 1965

NN Scattering- CSB found after  1976

Expectation is CSB is a small effect, uncovered 
only with special effort

CIB > CSB Natural in Chiral perturbation theory 
van Kolck, Friar



Highlights since 1972 

   1S0 nn force is more attractive than pp force,        
π- d→nn γ       

 Nolen-Schiffer anomaly explained using that CSB

charge symmetry breaking seen in np→np, np→d π0, 
dd →α π0

Reviews -Miller, Nefkens Slaus Phys. Rpts.  (1990) 
Miller, Opper Stephenson ARNPS (2006)



Charge Symmetry Breaking 
and PV Electron Scattering 



Parity Violating Electron Scattering 
and Strangeness E&M Nucleon Form 

Factors
PV electron scattering requires weak neutral 
form factors

 sensitivity to nucleon strangeness content

Parity-violating Electron Scattering... 27

Figure 7: Results for the strange vector form factors extracted from combining
the forward and backward-angle G0 experiments on hydrogen and deuterium
(29); also shown are the results from PVA4 at Q2 = 0.23 GeV2 (52, 54),and a
global fit (56) to world data at Q2 = 0.1 GeV2. The grey bands are correlated
systematic errors for the G0 data.

Parity-violating Electron Scattering... 29

Figure 9: The world data constraints on (Gs
E , G

s
M ) at Q2 = 0.1(GeV/c)2 . The

form factors of Kelly are used. Different bands in the plot represent SAMPLE-H
(45) (solid red), SAMPLE-D (48) (dashed red), HAPPEx-H-a (26) (dashed blue),
HAPPEx-H-b (28) (solid blue), HAPPEx-He-a (27) (dashed pink), HAPPEx-He-
b (28) (solid pink), PVA4-H-b (53) (solid green), and the lowest three Q2 bins
in G0 forward angle (25) (solid black). The yellow and gray blue (dark) ellipses
represent 68.27% (∆χ2 = 2.3) and 95% (∆χ2 = 5.99) confidence contours around
the point of maximum likelihood at (Gs

E = 0.006, Gs
M = 0.33). The black cross

represents Gs
E = Gs

M = 0.

Armstrong McKeown
ARNPS 2012

convincing signal
not seen

.01 =error bar



Relevance of CSB to PV
F γ
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CSB and Form Factors

Is CSB correction large compared to 0.01?
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David Armstrong says

  I am delighted to hear that you are revisiting the 
important question of  charge symmetry in these 
processes - the present belief amongst the 
experimentalists is that the uncertainty attached to 
charge symmetry  is now limiting the ability to push 
further on the strange form factors, i.e. any more precise 
experimental results would be hard to interpret 
cleanly in terms of strangeness or CSV.

“

”

Does CSB really limit 
ability to push further?



My paper 1 Q^2=0
• 1 % refers to GE, GM 

• Standard now is  << experimental error bar 0.01 

Nucleon charge symmetry breaking and parity violating electron-proton scattering

Gerald A. Miller
Department of Physics, University of Washington, Box 351560, Seattle, Washington 98195

!Received 17 November 1997"

The consequences of the charge symmetry breaking effects of the mass difference between the up and down

quarks and electromagnetic effects for searches for strangeness form factors in parity violating electron scat-

tering from the proton are investigated. The formalism necessary to identify and compute the relevant observ-

ables is developed by separating the Hamiltonian into charge symmetry conserving and breaking terms. Using

a set of SU!6" nonrelativistic quark models, the effects of the charge symmetry breaking Hamiltonian are
considered for experimentally relevant values of the momentum transfer and found to be less than about 1%.

The charge symmetry breaking corrections to the Bjorken sum rule are also studied and shown to vanish in

first-order perturbation theory. #S0556-2813!98"03403-7$

PACS number!s": 24.80.!y, 13.40.Dk, 13.40.Gp, 14.20.Dh

I. INTRODUCTION

If one neglects the mass difference between the up and

down quarks and ignores electromagnetic effects, the QCD

Lagrangian that governs hadronic physics would be invariant
under the interchange of up and down quarks. This invari-
ance is called charge symmetry, which is more restrictive
than isospin symmetry, which involves invariance under any
rotation in isospin space. Small, but interesting, violations of
charge symmetry have been discovered and are described in
the reviews #1–3$. All charge symmetry breaking effects
arise from the mass difference between the up and down
quarks and from electromagnetic effects.
The second European Muon Collaboration !EMC" effect

#4$, the discovery that valence quarks carry only a small
fraction of the nucleon spin, and the resulting search for
strangeness in the nucleon have brought some attention to
understanding the role of nucleonic charge symmetry break-
ing. If this symmetry holds, measurements of a parity violat-
ing electron left-right asymmetry in electron-proton scatter-
ing can determine new form factors whose origin lies only in
the strange and antistrange quarks of the nucleon #5,6$. How-
ever, the symmetry does not hold precisely and it is of inter-
est to estimate how small the effects can be. This is espe-
cially true now that the first measurement of the proton’s
neutral weak magnetic form factor finds a value of the
strange magnetic form factor that is consistent with zero #7$.
Another issue concerns the momentum transfer Q2 depen-

dence of any charge symmetry breaking effects. In principle,
the charge symmetry breaking terms, which act as a perturb-
ing Hamiltonian, can cause the nucleon to mix with states
which would otherwise be orthogonal. Such components
could cause the form factor to have a Q2 dependence which
could emphasize the effects of charge symmetry breaking.
The purpose of this paper is to present arguments that such a
possibility cannot occur.
It is worthwhile to discuss briefly how the assumption of

charge symmetry simplifies the analysis of parity violating
electron scattering #6$. The difference in cross section for
right and left handed incident electrons arises from the inter-
ference of the photon and Z-boson exchange terms. In par-
ticular, the photon-electron coupling is vector and the

Z-electron coupling is axial, while the boson-proton coupling
is vector. The matrix element for the vector Z-boson proton

coupling, M fi
% (Q2) is given by #8$

M fi
%!Q2""&p , f !ū'%u# d̄'%d!p ,i(# 1

3 &p , f ! s̄'%s!p ,i(

#4 sin2 )WJp , f i
% !Q2". !1.1"

Our notation is that the !p ,i( denotes a proton in an initial
state with momentum and spin denoted by i . The terms

ū'%u and d̄'%d are evaluated at the space-time origin. The
electromagnetic matrix element of the proton is denoted as

Jp , f i
% (Q2), and the nucleonic term N"p ,n is defined as

JN , f i
% !Q2"*&N , f ! 23 ū'%u# 1

3 d̄'%d# 1
3 s̄'%s!N ,i(.

!1.2"

The second term of Eq. !1.1" is directly related to the
strangeness of the nucleon, and is the new feature of parity-
violating electron scattering. The third term of Eq. !1.1" is
well measured, but to extract the strange properties it is nec-
essary to determine the first term from independent experi-

ments. We define this term as X f i
% (Q2) with

X f i
%!Q2"*&p , f !ū'%u# d̄'%d!p ,i( . !1.3"

If charge symmetry holds, the (u ,d) quarks in the proton are
in the same wave function as the (d ,u) quarks in the neutron,
and the strange quark wave functions of the neutron and
proton are identical. In that case

X f i
%!Q2""Jp , f i

% !Q2"#Jn , f i
% !Q2", !1.4"

and the right-hand side can be well measured. We aim to
study the error involved in asserting that the equality holds
exactly.
Here is an outline of this paper. The next section is con-

cerned with displaying the charge symmetry formalism
which allows a definition of the terms that cause the charge

symmetry breaking correction to X f i
% (Q2). This correction

+X f i
% (Q2) is obtained as a specific matrix element involving

the charge symmetry breaking Hamiltonian. This formalism
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∆H : md−mu in kinetic energy & one gluon exchange, + one photon exchange
Λ projects out of ground state, if "q=0, δZµ(0) = 0 (∆H does not excite the ∆)

Effect must be small at low values of Q2



Three Non-Relativistic Models:
one gluon exchange causes 0.8, 0.67, 0.33

of Δ N Splitting- same Mn-Mp

CSB Effect is negligible at low Q2 in these models
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Effect I left out -  pion cloud- 
proportional to Mn-Mp
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(a) (b) (c)

(d) (e)

FIG. 1: One-pion-loop diagrams. Full/dashed/wiggly lines
denote nucleons/pions/vector currents, respectively. The
filled circles in diagrams (d) and (e) represent the magnetic

couplings from L
(2)
πNγ∗ . The crossed diagrams of (c) and (e)

are not depicted separately. Mass insertions on the nucleon
propagator lines, yielding the physical proton and neutron
masses, are not explicitly shown.

!
+

np p

!
+

np p

FIG. 2: A pair of two-loop diagrams. The closed wiggly lines
denote virtual photons. The sum of both contributions to the
magnetic form factor drops out.

without mass corrections, therefore leading loop contri-
butions are also of order p4. This means that, while a
prediction of the isospin violating magnetic moments is

hampered by the a priori unknown L(4)
πNγ∗ counterterms,

both electric and magnetic radii can be unambiguously
predicted at leading order, and for the magnetic radii
even the next-to-leading-order corrections are free of un-
known parameters. The leading infrared singularity in
the magnetic radius scales like ∆m/M2

π , the leading elec-
tric and subleading magnetic radius terms like ∆m/Mπ.

A calculation of the isospin violating Pauli (or mag-
netic) form factor up to O(p5) is massively facilitated by
the fact that no two-loop diagrams contribute. This can
be seen as follows:

1. As mentioned in Section III A, the pion mass differ-
ence alone cannot generate charge symmetry break-
ing terms. Therefore, diagrams with two pion loops
would require another (subleading) charge symme-
try breaking vertex or the nucleon mass difference
in order to contribute, which would then, however,
be at least of order p6.

2. Two photon loops are of second order in isospin
breaking and can be disregarded. In addition, it is
easily seen in the heavy-baryon formalism that such
diagrams with only leading-order photon couplings
cannot generate the spin operators necessary for a
magnetic contribution.

FIG. 3: One-photon-loop diagrams with magnetic couplings.
The sum of both diagrams vanishes. (The addition of a
crossed right diagram is implied.)

3. Finally, there might be diagrams with one pion and
one photon loop. The only diagrams that generate
a magnetic structure at O(p5) are of the type (a) in
Fig. 1, with one additional photon loop attached.
However, it can be checked in the heavy-baryon
formulation that the sum of the two diagrams in
Fig. 2 is proportional to the anticommutator of the
two Pauli–Lubanski spin operators stemming from
the pion-nucleon couplings, and therefore it again
only yields a contribution to the electric form fac-
tor. The same mechanism can be checked for all
other possible diagrams.

Furthermore, also one-loop diagrams with isospin-
breaking vertices (other than the nucleon mass difference
insertion) can be ruled out of consideration:

4. Tadpole graphs with isospin breaking couplings fail
to generate infrared singularities proportional to
M−1

π .

5. The third-order pion-nucleon Lagrangian contains
isospin breaking pion-nucleon coupling constants.
However, these affect only the π0NN coupling,
hence they do not contribute in a type (a) diagram,
while the remaining diagrams in Fig. 1 are sublead-
ing in their contributions to the Pauli form factor
and therefore can only play a role at O(p6).

Finally, the only one-photon loops contributing to the
magnetic form factor are the ones depicted in Fig. 3.
They have no t-dependence up to the chiral order con-
sidered here, and it is easily calculated that their contri-
bution to F2(0) exactly cancels.

Therefore we have proven that the only infrared singu-
lar contributions to the charge symmetry breaking form
factor radii, and all contributions up to O(p4) for the
Dirac and up to O(p5) for Pauli form factor in addition

to the L(4)
πNγ∗ counterterms in Eq. (12), are given by nu-

cleon mass difference effects in the diagrams in Fig. 1.

C. Chiral representation of the form factors

In this section, we write down the chiral representa-
tions of the charge-symmetry breaking form factors, the
Dirac form factors to leading order, the Pauli form fac-
tors up to next-to-leading order. We decompose all form

PHYSICAL REVIEW C 74, 015204 (2006)
Isospin violation in the vector form factors of the nucleon
Bastian Kubis1,∗ and Randy Lewis2,†
1Helmholtz-Institut f¨ur Strahlen- und Kernphysik (Theorie), Universit¨at Bonn, Nussallee 14-16, D-53115 Bonn, 
Germany
2Department of Physics, University of Regina, Regina, Saskatchewan, Canada S4S 0A2
(Received 3 May 2006; published 14 July 2006)
A quantitative understanding of isospin violation is an increasingly important ingredient in the extraction of
the nucleon’s strange vector form factors from experimental data. We calculate the isospin-violating electric
and magnetic form factors in chiral perturbation theory to leading and next-to-leading order, and we extract the
low-energy constants from resonance saturation. Uncertainties are dominated largely by limitations in the current
knowledge of some vector meson couplings. The resulting bounds on isospin violation are sufficiently precise to
be of value to on-going experimental studies of the strange form factors.

Effects of graphs are not small  
because of log divergence



Kubis Lewis procedure-resonance 
saturation

• Pion graph cut off at rho mass

• Added rho-omega mixing graphs provide a 
finite counter term, which is larger than 
pion loop diagram
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hence they do not contribute in a type (a) diagram,
while the remaining diagrams in Fig. 1 are sublead-
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and therefore can only play a role at O(p6).
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magnetic form factor are the ones depicted in Fig. 3.
They have no t-dependence up to the chiral order con-
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Therefore we have proven that the only infrared singu-
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factor radii, and all contributions up to O(p4) for the
Dirac and up to O(p5) for Pauli form factor in addition

to the L(4)
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tions of the charge-symmetry breaking form factors, the
Dirac form factors to leading order, the Pauli form fac-
tors up to next-to-leading order. We decompose all form
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FIG. 4: The two diagrams involving ρ–ω mixing that con-
tribute to the isospin breaking form factors. The double lines
denote vector meson propagators, the cross represents the
mixing vertex.

section as follows:
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From these, one can easily derive the leading moments:

κu,d
mix =

(

gωκωFρ − gρκρFω

)Θρω

M3
V

,

(

ρu,d
1

)

mix
=

(

gωFρ − gρFω

)Θρω

M5
V

,

(

ρu,d
2

)

mix
=

(

gωκωFρ − gρκρFω

)2Θρω

M5
V

.

(29)

For the phenomenological discussion, we will be even
more interested in the leading moments of the Sachs form
factors, which are given in terms of the above as

ρu,d
E = ρu,d

1 +
κu,d

4m2
N

,

ρu,d
M = ρu,d

1 + ρu,d
2 .

(30)

In light of the above results, we want to comment on
the claim made earlier that the saturation of coupling
constants by vector meson contributions might work bet-
ter here than for the isospin conserving form factors
considered in Ref. [44]. The reason is that the addi-
tional propagator in the mixing case leads to a higher
power of vector meson masses in the denominators of
the leading moments, Eq. (29). A heavier pair of isovec-
tor and isoscalar vector resonances sufficiently close to
each other in mass to mix, e.g. the ρ(1450) and the
ω(1420) [54], would yield contributions of the same form
as Eq. (29), but suppressed by a higher power of mass
ratios MV ′/MV ≈ 2 than their unmixed contributions to
the conventional form factors.

Finally, we want to comment on the possibility of
isospin violation other than through mixing. In particu-
lar, it is possible to construct a mechanism for “direct”

isospin breaking in the vector-meson–nucleon couplings
in analogy to Eq. (12),

Lu,d
V N ∝ Ψ̄ σµν

{

eρ〈Ṽµν χ̃+〉 + eω〈Vµν〉χ̃+

}

Ψ ,

which results in the ρ coupling as an isoscalar and the
ω coupling as an isovector to the nucleons. (Analogous
terms with the charge instead of the quark mass matrix
are easily written down.) We disregard this possibility
for the reason that the vector-meson–nucleon coupling
strengths are extracted from dispersive analyses on the
assumption of isospin symmetry (with the exception of
ρ–ω mixing in the isovector spectral function), i.e. the
ω couplings, for instance, are identified as certain pole
strengths in the isoscalar channel. In this way, an isospin
breaking ρ-nucleon coupling would just be taken as part
of the ω resonance, and vice versa.

C. Numerical results

The couplings of the vector mesons to nucleons are
a rather delicate issue and we prefer to rely as directly
as possible on data rather than on models. To this
end, we concentrate on values extracted from disper-
sive analyses of electromagnetic form factors of the nu-
cleon, and disregard values extracted from meson ex-
change models of nucleon-nucleon scattering or pion-
photo-/electroproduction (see e.g. Refs. [55, 56, 57, 58]).
As it is well known that pure vector meson dominance
does not yield an adequate description of the isovector
spectral function, where the two-pion continuum leads
to a significant enhancement on the left shoulder of the
ρ peak [59], more recent analyses [46, 47, 60, 61] make
use of the full pion form factor plus ππ → NN̄ partial
waves. In order to approximately disentangle the spec-
tral function from Ref. [61] into a non-resonant two-pion
continuum plus a ρ contribution, we follow the method
of Ref. [62] and add a Breit–Wigner parameterization
of the ρ resonance to either the chiral one-loop or the
two-loop [62] representation of the two-pion cut contri-
butions. This decomposition is model dependent, but
probably adequate for a model estimate of low-energy
constants. The different values in Table I give a rather
consistent picture of the ρ-nucleon coupling constants on
an accuracy level of 20–30%. See Appendix B for the
relations between various coupling definitions.

The ω coupling constants are calculated from pure
zero-width resonance pole residues as found in dispersive
analyses. The most noteworthy point about the numbers
in Table II is the sign change in κω in Refs. [47, 63] as
compared to Ref. [46] and other earlier analyses. While
the vector coupling gω seems to be determined consis-
tently (although rather larger than what is inferred from
NN -scattering [55, 56]), the tensor coupling gωκω is not
at all, with not even the sign fixed. This uncertainty in
κω turns out to be by far the dominant uncertainty in
this analysis.

+



Kubis Lewis results-
gray band is uncertainty

• Results for GE similar to mine, GM much larger

• NLO is 100 % correction-calculation NOT converged

• Large spread is caused by uncertainty in strong 
tensor coupling of omega to nucleon
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FIG. 5: The form factor Gu,d
M (t). The dashed line is the LO

chiral prediction, the full line includes the NLO order correc-
tions, both with κu,d

CT (Mρ) = 0. The grey band is the chiral
NLO representation with κu,d

CT (Mρ) = −0.020 . . . + 0.020.

to

κu,d = κu,d
χ (Mρ) + κu,d

CT (Mρ) (34)

and set κu,d
CT (Mρ) = κu,d

mix. Numerically, we find from
Eq. (16) for the chiral part

κu,d
χ (Mρ) = 0.025 . (35)

If we vary the saturation scale, λ, in the range
0.5 . . . 1.0 GeV, we find κu,d

χ = 0.020 . . .0.028, which may
serve as an indicator of the uncertainty of the resonance
saturation method as such. These values are all of the
same order of magnitude as κu,d

mix in Eq. (31). Even within

the large error range for κu,d
mix, however, we predict κu,d

to be positive,

κu,d = 0.005 . . .0.045 . (36)

The most recent values for the coupling constants, with
a negative κu,d

mix, lead to a substantial cancellation be-
tween loop effects and counterterm contributions, and
altogether to a very small total κu,d.

For the magnetic radius term, the two leading chiral
contributions are unambiguously given in terms of loop
effects. Evaluating Eq. (21) numerically, we find the chi-
ral prediction at NLO to result in

(

ρu,d
M

)

χ
=

(

0.05 − 0.04
)

GeV−2 = 0.01 GeV−2 . (37)

Fig. 5 shows the purely chiral NLO representation of
Gu,d

M (t) in the range 0 ≤ −t ≤ 0.3 GeV2, together
with the range of counterterm values as estimated from
Eq. (31), shown as a grey band. For comparison, the LO
and NLO representations are also shown for κu,d

CT (Mρ) =

0. Although the uncertainty is sizeable, Gu,d
M (t) is pre-

dicted to be positive and smaller than 0.05 in this range.
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FIG. 6: The form factor Gu,d
M (t), notation as in Fig. 5. The

grey band now includes the full t-dependence of the mixing
amplitude. For details, see main text.

Due to the substantial cancellation between chiral LO
and NLO contributions to the magnetic radius, the t-
dependence is very weak. Also, the curvature induced by
chiral loop effects is minimal.

Even if the large cancellation between the LO and
NLO terms for the magnetic radius is considered acci-
dental, the (formally next-to-next-to-leading) vector me-
son contribution in Eq. (33) is seen to be at least of the
same order of magnitude, potentially larger than both.
The vector meson mixing contributions lead to a sign
change in the radius as compared to the chiral prediction.
Together with a positive magnetic moment, this means
the form factors increase in absolute magnitude for non-
vanishing virtuality in electron scattering experiments,
t < 0. This is shown in Fig. 6, where, in comparison to
Fig. 5, we have replaced the low-energy constant contri-
bution κu,d

CT (Mρ) = κu,d
mix by the full t-dependence of the

mixing amplitude, Eq. (28). As the complete mixing am-
plitude contains no more parameters than the constant
at t = 0, the uncertainty band can even get narrower: the
upper boundary of the band (given by the vector meson
parameters from Ref. [46]) changes very little and stays
below 0.05, while the lower boundary (given essentially
by the parameters from Ref. [63]) rises with −t.

We want to emphasize that this combined chiral plus
vector meson mixing representation as shown in Fig. 6
goes beyond strict effective field theory. We believe
however that the additional t-dependence of the mix-
ing contributions provides a good estimate of the most
important higher-order terms that go beyond our chiral
calculation, for the following reasons: the strongest t-
dependence from pion loops has to correspond to cuts in
the low-energy region, and among these, two-pion cuts
are certainly the most prominent (see e.g. Ref. [59] on
three-pion cut contributions to nucleon form factors); but
we have already calculated the two-pion cuts up to NLO,
and we do not expect higher-order corrections to these to
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FIG. 7: Contributions to the form factor Gu,d
E (t). The full

line is the LO chiral prediction, the dashed line contains par-
tial NLO order corrections as discussed in the main text. The
grey band is the vector meson mixing contribution.

be unreasonably large (witness Ref. [62] for two-loop cor-
rections to the two-pion continuum). We therefore find it
reasonable to expect low-energy constants (correspond-
ing to resonance physics) to dominate the missing pieces
beyond the NLO chiral representation. We have argued
earlier that we expect resonance contributions beyond
ρ–ω mixing to be minor corrections, and consider their
possible impact well-covered by the uncertainty bands in
Figs. 5, 6. Note finally that such a combined approach
was shown to work rather well for the isospin conserving
form factors in Refs. [44, 64].

We now turn to the electric form factor Gu,d
E (t). It

can only be predicted unambiguously to leading order
in ChPT, where one has Gu,d

E (t) = Fu,d
1 (t). This is

shown as the dashed line in Fig. 7. A partial higher-
order correction is given by the chiral contributions to
t/4m2

N × Fu,d
2 (t), see Eq. (2), which is added to the

leading-order expression for the full line in Fig. 7 and
can be seen there to be also numerically subleading.

The leading chiral prediction for the electric radius
term is, from Eq. (19) and Appendix A1,

(

ρu,d
E

)

χ
=

5π C

6MπmN
+ O

(

M0
π∆m

)

. (38)

Numerically, this amounts to
(

ρu,d
E

)

χ
= 0.03 GeV−2 , (39)

which demonstrates that the vector meson contribution,
see Eq. (32), is numerically dominant, albeit formally
subleading. It again leads to a sign change compared to
the leading chiral prediction. This can also be seen from
Fig. 7, where the full ρ–ω mixing amplitude is depicted
as a grey band, corresponding to the range of vector me-
son coupling constants yielding the electric radius range
in Eq. (32). Compared to Gu,d

M (t), the band is better
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FIG. 8: The complete form factor Gu,d
E (t). The band com-

bines uncertainties in the vector meson mixing amplitude as
well as from higher-order chiral corrections. For details see
main text.

constrained as the particularly controversial coupling κω

plays no major role in the electric form factor. Chiral
and vector meson contributions are combined in Fig. 8,
where we have taken the partial NLO chiral contribu-
tions described above as an uncertainty for higher-order
loop corrections. Errors from both sources were added
linearly. We consider this band a conservative estimate.
Due to the bigger mixing amplitude, the total form fac-
tor is positive, but remains small (< 0.01) and therefore
well-constrained in the whole momentum transfer range
considered.

In order to put these numbers into perspective con-
cerning the strangeness form factor measurements, we
want to compare them to some experimental results on
the latter. Ref. [65] is a recent attempt to combine all
available world data on parity violating electron scatter-
ing and perform a best fit for the leading strangeness
moments. The fit including only leading-order moments
(e.g. no strange magnetic radius) yields

κs = 0.12 ± 0.55 ± 0.07 ,

ρs
E =

(

−0.06 ± 0.41 ∓ 0.00
)

GeV−2 ,
(40)

while a fit allowing for next-to-leading-order moments
results in ρs

M = (0.7 ± 6.8)GeV−2, i.e. the data are not
sufficiently accurate yet to pin down the magnetic radius
to reasonable accuracy. So while the central values of
Eq. (40) are already of comparable magnitude to κu,d,
ρu,d

E , the isospin violating moments are still, by a factor
of 6–10, smaller than the combined uncertainties on the
strangeness moments.

In Table III, we also compare to a few selected indi-
vidual experimental numbers on strangeness form fac-
tors [1, 3, 5]. We contrast those results with bands for
the isospin violating form factors in the same kinematics,
i.e. for the same combination of electric and magnetic,
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for nucleon i. Class I interactions are isoscalars under rotations in isospin space and dominate the
nuclear force.

Class (II): Forces which maintain charge symmetry but break charge independence. Such a force is
proportional to T3(i)r3( j), which can be characterized as an isotensor

= c[r3(i)r3(j) — ~T(i) i’(j)] , (2.28)

where c is a space and spin operator.

Class (III): Forces which break charge symmetry (and therefore necessarily charge independence),
and are symmetric under the interchange 1 ~ 2 in isospin space,

= d[r3(i) + r3(j)]. (2.29)

A class III force differentiates between nn and pp systems, but vanishes in the np system.
Class (IV): Forces that break charge symmetry and, charge independence and are antisymmetric

under the interchange r(i) ~ r( j). These forces are proportional to

V~,=[r~(1)—T3(2)][U(1) u(2)]•Le or [‘r3(1)x r3(2)][o’(l) x u(2)]Lf, (2.30)

where d, e and f are scalar operators. Magnetic photon exchanges contribute to c and e and pion
exchanges contribute to f. p—w mixing contributes to d, e, and f. See section 3.1.7. Note that V~
connects states of isospin 0 and 1. For the two-body system these are the

3L
1 and ‘L1 states. Class IV

forces have no effect on an nn or pp system.
A few examples may be helpful. The Coulomb force between two nucleons contains class I, II and

III parts, but no dass IV term. The class III part of the Coulomb potential is given by

V~”= (e
2Ir)[r

3(i) + T3(j)] , (2.31)

where r = r1 — r1. The magnetic force between two nucleons contains a class IV term. The class IV part

of the one-photon-exchange potential is

V~’= —e~~ [r3(1)— r3(2)](u, — ~2) L ~ ~- ~ (2.32)

in the non-relativistic limit, where k0 is the anomalous magnetic moment of the neutron. We shall see
that class III forces give important contributions to binding energy differences betweenmirror nuclei.
The presence ofnonelectromagnetic class IV forces has been detected recently in n—p elastic scattering,
see section 3.

(a) (b)

T --~-- V PS --~--- PS
p° w -ITO 7~)

Fig. 2.2. Exchange of meson mixtures, (a) p°—w, (b) i~°—q.The labels T, V, and PS refer to the form of the vertex function. The shaded boxes
represent the meson mixing interactions.

Rho-omega mixing in NN scattering
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These values are increased by roughly 1.3 if one uses strong interaction coupling constants and form
factors that are constrained by potential model fits to NN data, [5.161.

Consider now the nn and pp 1S
0 states. Coon et a!. [4.33,4.34] have derived a convenient and

accurate form for the p—w exchange contribution to the difference between the nn and pp potentials:

= ~ ~e~I~°)e_m~~T[1+ /3(—~---— i) .!~]. (4.28)
4ir

2m~ m~r M

The form (4.28) makes it clear that this potential: is not sensitive to the p mass; has a radial dependence
which is mainly an exponential; and isolates the relativistic corrections of order 1/M2. The constant /3 in
eq. (4.28) is

/3 = ~[k,k~+ + ky)], (4.29)

where k~and k~are the isoscalar and isovector tensor coupling constants. Using the published coupling
constants [4.22]yields /3 = 1.22.
The exponential feature of eq. (4.28) is essential. The potential is actually of long range. The form of

eq. (4.28) is compared with that of a if-exchange term (M~= 550MeV) in fig. 4.4. Both potentials are
weighted by the square of the S-state Paris deuteron wave function. This to simulate the influence of
nucleon—nucleon correlations.

The p—w exchange contribution to the “class IV” spin—orbit potential observed in the IUCF
experiment involves a derivative of the term of eq. (4.28) with respect to r. This reduces the range.
However, the spin—orbit contribution is evaluated between dominant P-wave states, each incorporating
a factor of r. Hence the p°—wclass IV interaction is also of medium range.
Coon and Barrett compute ~ and app with the Reid soft core (RSC) [4.37]or de Tourreil—Rouben—

Sprung (dTRS) [4.38]potentials supplying the charge-independent strong interaction. The results (with
/3=1.22) are

— Ia~~I=0.9fm (RSC),

1.35 fm (dTRS). (4.30)

These values are consistent with the data discussed in section 3.

0 0.25 0.50 0.75 100 1.25 1.50 1.75 aoo
r Urn)

Fig. 4.4. Radial dependence of potential times square of deuteron s-state wave function. Solid: p—w mixing. Dashed: a-meson exchange. Forms of
eq. (4.29) and (p—u) and Yukawa (a) are multiplied by the square of the Paris s-state deuteron wave function.

Medium range potential

1S0



Rho-omega mixing in NN scattering
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KL coupling constants in rho-
omega exchange
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New limits based on CSB 
in NN scattering +
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FIG. 5: The form factor Gu,d
M (t). The dashed line is the LO

chiral prediction, the full line includes the NLO order correc-
tions, both with κu,d

CT (Mρ) = 0. The grey band is the chiral
NLO representation with κu,d

CT (Mρ) = −0.020 . . . + 0.020.

to

κu,d = κu,d
χ (Mρ) + κu,d

CT (Mρ) (34)

and set κu,d
CT (Mρ) = κu,d

mix. Numerically, we find from
Eq. (16) for the chiral part

κu,d
χ (Mρ) = 0.025 . (35)

If we vary the saturation scale, λ, in the range
0.5 . . . 1.0 GeV, we find κu,d

χ = 0.020 . . .0.028, which may
serve as an indicator of the uncertainty of the resonance
saturation method as such. These values are all of the
same order of magnitude as κu,d

mix in Eq. (31). Even within
the large error range for κu,d

mix, however, we predict κu,d

to be positive,

κu,d = 0.005 . . .0.045 . (36)

The most recent values for the coupling constants, with
a negative κu,d

mix, lead to a substantial cancellation be-
tween loop effects and counterterm contributions, and
altogether to a very small total κu,d.

For the magnetic radius term, the two leading chiral
contributions are unambiguously given in terms of loop
effects. Evaluating Eq. (21) numerically, we find the chi-
ral prediction at NLO to result in

(

ρu,d
M

)

χ
=

(

0.05 − 0.04
)

GeV−2 = 0.01 GeV−2 . (37)

Fig. 5 shows the purely chiral NLO representation of
Gu,d

M (t) in the range 0 ≤ −t ≤ 0.3 GeV2, together
with the range of counterterm values as estimated from
Eq. (31), shown as a grey band. For comparison, the LO
and NLO representations are also shown for κu,d

CT (Mρ) =
0. Although the uncertainty is sizeable, Gu,d

M (t) is pre-
dicted to be positive and smaller than 0.05 in this range.
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FIG. 6: The form factor Gu,d
M (t), notation as in Fig. 5. The

grey band now includes the full t-dependence of the mixing
amplitude. For details, see main text.

Due to the substantial cancellation between chiral LO
and NLO contributions to the magnetic radius, the t-
dependence is very weak. Also, the curvature induced by
chiral loop effects is minimal.

Even if the large cancellation between the LO and
NLO terms for the magnetic radius is considered acci-
dental, the (formally next-to-next-to-leading) vector me-
son contribution in Eq. (33) is seen to be at least of the
same order of magnitude, potentially larger than both.
The vector meson mixing contributions lead to a sign
change in the radius as compared to the chiral prediction.
Together with a positive magnetic moment, this means
the form factors increase in absolute magnitude for non-
vanishing virtuality in electron scattering experiments,
t < 0. This is shown in Fig. 6, where, in comparison to
Fig. 5, we have replaced the low-energy constant contri-
bution κu,d

CT (Mρ) = κu,d
mix by the full t-dependence of the

mixing amplitude, Eq. (28). As the complete mixing am-
plitude contains no more parameters than the constant
at t = 0, the uncertainty band can even get narrower: the
upper boundary of the band (given by the vector meson
parameters from Ref. [46]) changes very little and stays
below 0.05, while the lower boundary (given essentially
by the parameters from Ref. [63]) rises with −t.

We want to emphasize that this combined chiral plus
vector meson mixing representation as shown in Fig. 6
goes beyond strict effective field theory. We believe
however that the additional t-dependence of the mix-
ing contributions provides a good estimate of the most
important higher-order terms that go beyond our chiral
calculation, for the following reasons: the strongest t-
dependence from pion loops has to correspond to cuts in
the low-energy region, and among these, two-pion cuts
are certainly the most prominent (see e.g. Ref. [59] on
three-pion cut contributions to nucleon form factors); but
we have already calculated the two-pion cuts up to NLO,
and we do not expect higher-order corrections to these to

Preliminary, cautious

Use of relativistic chiral perturbation 
theory leads to convergent results



Still to be done

Model should provide CS form factors  that describe 
data very well

Use wave functions of those models as basis for CSB 
calculation

Relativistic quark model -Cloet Miller 2012

Bias- quark model vs chiral perturbation theory- if 
unconstrained counter term needed to evaluate cpt, 
then model is as good as theory

can go beyond model and establish rigorous result?



Summary
• Small <0.002 CSB effects, 1998

• Kubis Lewis (not converged) range  CSB ~ 0.04  
(2006)  magnetic 

• CSB in NN scattering constrains strong coupling 
constants in KL resonance saturation

• Actual size of CSB effect probably pretty small 
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FIG. 5: The form factor Gu,d
M (t). The dashed line is the LO

chiral prediction, the full line includes the NLO order correc-
tions, both with κu,d

CT (Mρ) = 0. The grey band is the chiral
NLO representation with κu,d

CT (Mρ) = −0.020 . . . + 0.020.

to

κu,d = κu,d
χ (Mρ) + κu,d

CT (Mρ) (34)

and set κu,d
CT (Mρ) = κu,d

mix. Numerically, we find from
Eq. (16) for the chiral part

κu,d
χ (Mρ) = 0.025 . (35)

If we vary the saturation scale, λ, in the range
0.5 . . . 1.0 GeV, we find κu,d

χ = 0.020 . . .0.028, which may
serve as an indicator of the uncertainty of the resonance
saturation method as such. These values are all of the
same order of magnitude as κu,d

mix in Eq. (31). Even within
the large error range for κu,d

mix, however, we predict κu,d

to be positive,

κu,d = 0.005 . . .0.045 . (36)

The most recent values for the coupling constants, with
a negative κu,d

mix, lead to a substantial cancellation be-
tween loop effects and counterterm contributions, and
altogether to a very small total κu,d.

For the magnetic radius term, the two leading chiral
contributions are unambiguously given in terms of loop
effects. Evaluating Eq. (21) numerically, we find the chi-
ral prediction at NLO to result in

(

ρu,d
M

)

χ
=

(

0.05 − 0.04
)

GeV−2 = 0.01 GeV−2 . (37)

Fig. 5 shows the purely chiral NLO representation of
Gu,d

M (t) in the range 0 ≤ −t ≤ 0.3 GeV2, together
with the range of counterterm values as estimated from
Eq. (31), shown as a grey band. For comparison, the LO
and NLO representations are also shown for κu,d

CT (Mρ) =
0. Although the uncertainty is sizeable, Gu,d

M (t) is pre-
dicted to be positive and smaller than 0.05 in this range.
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FIG. 6: The form factor Gu,d
M (t), notation as in Fig. 5. The

grey band now includes the full t-dependence of the mixing
amplitude. For details, see main text.

Due to the substantial cancellation between chiral LO
and NLO contributions to the magnetic radius, the t-
dependence is very weak. Also, the curvature induced by
chiral loop effects is minimal.

Even if the large cancellation between the LO and
NLO terms for the magnetic radius is considered acci-
dental, the (formally next-to-next-to-leading) vector me-
son contribution in Eq. (33) is seen to be at least of the
same order of magnitude, potentially larger than both.
The vector meson mixing contributions lead to a sign
change in the radius as compared to the chiral prediction.
Together with a positive magnetic moment, this means
the form factors increase in absolute magnitude for non-
vanishing virtuality in electron scattering experiments,
t < 0. This is shown in Fig. 6, where, in comparison to
Fig. 5, we have replaced the low-energy constant contri-
bution κu,d

CT (Mρ) = κu,d
mix by the full t-dependence of the

mixing amplitude, Eq. (28). As the complete mixing am-
plitude contains no more parameters than the constant
at t = 0, the uncertainty band can even get narrower: the
upper boundary of the band (given by the vector meson
parameters from Ref. [46]) changes very little and stays
below 0.05, while the lower boundary (given essentially
by the parameters from Ref. [63]) rises with −t.

We want to emphasize that this combined chiral plus
vector meson mixing representation as shown in Fig. 6
goes beyond strict effective field theory. We believe
however that the additional t-dependence of the mix-
ing contributions provides a good estimate of the most
important higher-order terms that go beyond our chiral
calculation, for the following reasons: the strongest t-
dependence from pion loops has to correspond to cuts in
the low-energy region, and among these, two-pion cuts
are certainly the most prominent (see e.g. Ref. [59] on
three-pion cut contributions to nucleon form factors); but
we have already calculated the two-pion cuts up to NLO,
and we do not expect higher-order corrections to these to

preliminary


