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Outline 

§  Ab initio and microscopic nuclear reaction methods 
§  Exact few-body calculations 

§  GFMC  
§  FMD 

§  CCM 

§  No-core shell model 
§  Including the continuum with the resonating group method  

§  NCSM/RGM 
§  NCSMC 

§  Outlook 

r
v



Microscopic 
²   All nucleons are active 
²   Exact Pauli principle 

•  Few-nucleon techniques using realistic NN (+ NNN) interactions 
–  Faddeev (Witala et al.), AGS (Deltuva et al.), FY (Lazauskas et al.), HH (Viviani et al.),  
       LIT/EIHH (Bacca et al.), LIT/NCSM, RGM (Hoffman et al.), … 

•  Many-body techniques using realistic NN (+ NNN) interactions 
–  GFMC (Nollett et al.), NCSM/RGM, NCSMC (Quaglioni, PN),                                          

CCM with Gamow HF basis (Hagen et al.) … 
 
 
 

•  Microscopic cluster techniques using semi-realistic NN interactions 
–  RGM, GCM (Descouvemont et al.), FMD (Neff et al.), AMD, … 

Ab initio Nuclear Reaction approaches 

Ab initio 
²   All nucleons are active 
²   Exact Pauli principle 
²   Realistic inter-nucleon interactions 
²   Controllable approximations 



Chiral Effective Field Theory 
•  First principles for Nuclear Physics: 
      QCD  

–  Non-perturbative at low energies 
–  Lattice QCD in the future 

•  For now a good place to start: 
•  Inter-nucleon forces from chiral 

effective field theory 
–  Based on the symmetries of QCD 

•  Chiral symmetry of QCD (mu≈md≈0), 
spontaneously broken with pion as the 
Goldstone boson 

•  Degrees of freedom: nucleons + pions 
–  Systematic low-momentum expansion to 

a given order (Q/Λχ) 

–  Hierarchy 
–  Consistency 
–  Low energy constants (LEC) 

•  Fitted to data 
•  Can be calculated by lattice QCD 

Λχ~1 GeV :  
Chiral symmetry breaking scale 



Proton-3He elastic scattering  
with χEFT NN+NNN 

•  Hypherspherical-harmonics variational calculations 
–  M. Viviani, L. Girlanda, A. Kievski, L. E. Marcucci, and S. Rosati, arXiv:1004.1306 

•  Ay puzzle resolved with the chiral N3LO NN  
     plus local chiral N2LO NNN  

–  used with the NCSM and other methods 

Chiral NN+NNN Hamiltonian provides the best agreement with the cross 
section and analyzing power data and with the new TUNL PSA analysis 

A=3 binding energy constraint,  
cD=+1, cE=-0.029, Λ=500 MeV 



Ab initio calculations of N-3H, N-3He scattering 

PRL 98, 162502 (2007) 

 A. Lazauskas, PRC 79, 054007 (2009) 

p+3H  Ep=0.9 MeV 
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FIG. 2. (Color online) Differential cross section for elastic
n-3H scattering at 14.1, 18.0, and 22.1 MeV neutron energy. Results
obtained with INOY04 (solid curves) and CD Bonn (dashed-dotted
curves) potentials are compared with the experimental data from
Refs. [22,33,34].

Fig. 1 and Table I one can conclude that with a proper ε choice
as few as four different ε values are sufficient to obtain the
physical ε → +0 results with good accuracy.

For curiosity, inJ = 0 states we performed the calculations
keeping the same grids but with standard integration weights.
We found that they fail completely at ε values from Table I,
with the errors of the ε → +0 extrapolation being up to 10%
for phase shifts and up to 25% for inelasticity parameters.
However, at large ε > 4 MeV the two integration methods
agree well but the ε → +0 extrapolation has at least one order
of magnitude larger inaccuracies than those in Table I.

After establishing the reliability of our calculations we
proceed to the comparison with the experimental data. In
addition to the INOY04 potential we present results derived
from the CD Bonn potential [32] that underbinds the 3H
nucleus by 0.48 MeV. In Fig. 2 we show the differential cross
section for elastic neutron-3H scattering at 14.1, 18.0, and
22.1 MeV neutron energy. Except for the minimum around
115◦, the predictions are insensitive to the choice of the
potential. At En = 14.1 MeV the new data set by Frenje
et al. [22] is described very well. Other existing data at this
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FIG. 3. (Color online) Neutron analyzing power for elastic n-3H
scattering. INOY04 and CD Bonn predictions at En = 22.1 MeV are
compared with the data from Ref. [34]. INOY04 results at 14.1 and
18.0 MeV are also shown.

energy are consistent with Ref. [22] but have larger error bars;
we show only the data by Debertin et al. [33]. At 18.0 MeV
the data sets by Debertin et al. [33] and Seagrave et al. [34]
are inconsistent with each other around the minimum while
the theoretical predictions lie in the middle. The results at
En = 22.1 MeV are compared with the data taken at 21 and
23 MeV by Seagrave et al. [34]. The predictions lie between the
two data sets except for the minimum region. However, given
the agreement between Ref. [22,33] data and disagreement
between the Ref. [33,34] data, one may question the reliability
of the data by Seagrave et al. in the minimum region. Thus,
new measurements are needed to resolve this discrepancy.

In Fig. 3 we present the neutron analyzing power for
elastic n-3H scattering at En = 22.1 MeV. To study the energy
dependence we also show INOY04 predictions at En = 14.1
and 18.0 MeV. We observe that the sensitivity to the nuclear
force model and energy is considerably weaker compared
to the regime below the three-cluster threshold [9,10]. Most
remarkably, in contrast to low energies where the famous
p-3He Ay-puzzle exists [1,10,35], the peak of Ay around
120◦ is described very well but there is a discrepancy in the
minimum region. This is somehow similar to the three-nucleon
system where the nucleon-deuteron Ay puzzle existing at low
energies disappears as the energy increases [36].

In this Rapid Communication we do not calculate explicitly
the breakup amplitudes. However, the total n-3H cross section

TABLE II. n-3H elastic σe, breakup σb, and total σt cross
sections (in mb) at selected neutron energies (in MeV).

INOY04 CD Bonn Experiment

En σe σb σt σe σb σt σt Ref.

14.1 928 19 947 913 28 941 978 ± 70 [37]
18.0 697 41 738 689 48 737 750 ± 40 [37]
22.1 536 61 597 524 70 594 620 ± 24 [38]
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Neutron-3H scattering above the four-nucleon breakup threshold

A. Deltuva and A. C. Fonseca
Centro de Fı́sica Nuclear da Universidade de Lisboa, P-1649-003 Lisboa, Portugal

(Received 20 June 2012; published 27 July 2012)

Background: Theoretical calculations of the four-body scattering above the four-body breakup threshold are
technically very difficult owing to complicated singularities in the momentum space or boundary conditions in
the coordinate space.
Purpose: We aim at calculating the neutron-3H scattering observables above the four-nucleon breakup threshold.
Methods: We employ Alt, Grassberger, and Sandhas (AGS) integral equations for the four-nucleon transition
operators and solve them in the momentum-space framework using the complex-energy method. We significantly
improve its accuracy and practical applicability by introducing the numerical integration method with the special
weights.
Results: Using realistic nuclear interaction models we obtain fully converged results for the neutron-3H scattering.
Elastic differential cross section and neutron analyzing power as well as the total cross section are calculated at
14.1, 18.0, and 22.1 MeV neutron energy.
Conclusions: Realistic four-nucleon scattering calculations above the four-nucleon breakup threshold are
feasible. There is quite good agreement between the theoretical predictions and experimental data for the
neutron-3H scattering in the considered energy regime.

DOI: 10.1103/PhysRevC.86.011001 PACS number(s): 21.45.−v, 21.30.−x, 24.70.+s, 25.10.+s

The four-nucleon reactions is an ideal but also highly
challenging field to test few-nucleon interaction models.
The problem of elastic nucleon-trinucleon scattering below
the inelastic threshold has already been solved with high
accuracy using several ab initio methods with realistic nu-
clear potentials. These methods include the hyperspherical
harmonics (HH) expansion [1–3], the Faddeev-Yakubovsky
(FY) equations [4] for the wave-function components in the
coordinate space [5,6], and the Alt, Grassberger, and Sandhas
(AGS) equations [7,8] for the transition operators in the
momentum space [9–11]. A recent benchmark [12] reported
a good agreement between the HH, FY, and AGS techniques
for the neutron-3H (n-3H) and proton-3He (p-3He) scattering.
Furthermore, deuteron-deuteron (d-d) collisions, including the
transfer reactions to p-3H and n-3He final states, have been
calculated using the resonating-group method (RGM) [13] and
the AGS framework [14,15]. However, also these calculations
were limited to energies below the three-cluster breakup
threshold. At higher energies, especially above the four-body
breakup threshold, the asymptotic boundary conditions in
the coordinate space become nontrivial owing to open two-,
three-, and four-cluster channels. In the momentum-space
framework one is faced with a very complicated structure of
singularities in the kernel of integral equations. Formally, these
difficulties can be avoided by rotation to complex coordinates
[16] or continuation to complex energy [17,18] that lead to
bound-state-like boundary conditions and nonsingular kernels.
However, technical complications may arise in practical
calculations. Indeed, the applications to the four-nucleon
scattering so far have been very limited [19,20] and none
of them uses realistic interactions. The no-core shell model
RGM [21], although using realistic potentials, includes in
the model space only the ground state of the three-nucleon
system, which is insufficient. In Ref. [22] this shortcoming
was partially corrected by adjusting the predictions to the
experimental data.

The aim of the present Rapid Communication is to
overcome the above limitations by performing realistic well-
converged four-nucleon scattering calculations above the
four-body breakup threshold. We use the complex energy
method [17] but introduce important technical improvements.
Although in the AGS framework employed by us the Coulomb
force can be included via the screening and renormalization
method [23,24], the present numerical results are restricted to
the Coulomb-free n-3H case.

We treat the nucleons as identical particles in the isospin
formalism and therefore use the AGS equations for the
symmetrized four-particle transition operators Uβα as derived
in Ref. [9]; that is,

U11 = −(G0 t G0)−1P34 − P34U1G0 t G0 U11

+U2G0 t G0 U21, (1a)

U21 = (G0 t G0)−1(1 − P34) + (1 − P34)U1G0 t G0 U11,

(1b)

U12 = (G0 t G0)−1 − P34U1G0 t G0 U12 + U2G0 t G0 U22,

(1c)

U22 = (1 − P34)U1G0 t G0 U12. (1d)

Here, α = 1 corresponds to the 3 + 1 partition (12,3)4,
whereas α = 2 corresponds to the 2 + 2 partition (12)(34);
there are no other distinct two-cluster partitions in the system
of four identical particles.

The equation

G0 = (Z − H0)−1 (2)

represents the free resolvent with the complex energy param-
eter Z = E + iε and the free Hamiltonian H0,

t = v + vG0t (3)

011001-10556-2813/2012/86(1)/011001(5) ©2012 American Physical Society

AGS equations 

FY equations 



Quantum Monte Carlo Calculations of 
Neutron-4He Scattering  

•  GFMC method generalized for scattering 
–  Similar to GFMC for bound states 

•  Essential difference: boundary conditions 

•  Realistic NN plus NNN interactions 
–  Importance of the three-body force for P-waves 

Method 
•  Pick a log derivative χ at the boundary (R >7 fm) 
•  Starting w.f.: VMC with scattering boundary χ	

•  Special method for propagation to preserve χ	

•  Finds E(R, χ) 
•  Repeat for many χ until δ(E) is mapped out 

K. Nollett et al., 
PRL99, 022502 (2007)  



GFMC evaluation of spectroscopic overlaps 
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GFMC EVALUATION OF SPECTROSCOPIC OVERLAPS

Overlap: R(α, γ, ν; r) =
√

A
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Brida, Pieper, & Wiringa, PRC 84, 024319 (2011)



ANCs by integral relations with VMC wave functions 

9 

ANCS BY INTEGRAL RELATION WITH VMC WAVE FUNCTIONS

to

2.13

(full range to 2.0)

Clj(α, γ, ν) =
2µ

k!2w
A

Z M−η,l+ 1
2
(2krcc)

rcc

Ψ†
A−1(γ)χ†(ν)Y †

lm(r̂cc)(Urel − VC)ΨA(α) dR

M−η,l+ 1
2
(2kr) is the “other” Whittaker function

irregular at r → ∞, and
Urel =

P

i<A viA +
P

i<j<A VijA .
At large separation of the last nucleon,
Urel → VC , so (Urel − VC) → 0.

Results for one-nucleon removal 3 ≤ A ≤ 9

• Small error bars are VMC statistics

• Large ones are “experimental”

• With a few exceptions, these are the first ab
initio ANCs in A > 4

Nollett and Wiringa, PRC 83, 041001(R) (2011)



Microscopic Fermionic Molecular Dynamics  
calculation of 3He(α,γ)7Be capture 
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Microscopic Calculation of the 3Heð!;"Þ7Be and 3Hð!;"Þ7Li Capture Cross
Sections Using Realistic Interactions

Thomas Neff*

GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
(Received 12 November 2010; published 25 January 2011)

The radiative capture cross sections for the 3Heð!;"Þ7Be and 3Hð!;"Þ7Li reactions are calculated in

the fully microscopic fermionic molecular dynamics approach using a realistic effective interaction that

reproduces the nucleon-nucleon scattering data. At large distances bound and scattering states are

described by antisymmetrized products of 4He and 3He=3H ground states. At short distances the many-

body Hilbert space is extended with additional many-body wave functions needed to represent polarized

clusters and shell-model-like configurations. Properties of the bound states are described well, as are the

scattering phase shifts. The calculated S factor for the 3Heð!;"Þ7Be reaction agrees very well with recent

experimental data in both absolute normalization and energy dependence. In the case of the 3Hð!;"Þ7Li
reaction the calculated S factor is larger than available experimental data by about 15%.

DOI: 10.1103/PhysRevLett.106.042502 PACS numbers: 25.55.#e, 21.60.De, 26.20.Cd, 27.20.+n

The 3Heð!;"Þ7Be reaction is one of the key reactions in
the solar proton-proton chains [1,2]. It competes with the
3Heð3He; 2pÞ4He reaction and therefore determines the
production of 7Be and 8B neutrinos in the ppII and ppIII
branches. For a long time the experimental situation re-
garding the capture cross section was not clear due to
conflicting experimental results [1]. In recent years the
capture cross section has been remeasured at the
Weizmann Institute [3], by the LUNA Collaboration
[4,5], by the Seattle group [6], and by the ERNA
Collaboration [7] now providing consistent high precision
data. Nevertheless, it is still not possible to reach the low
energies relevant in solar burning, and the data have to be
extrapolated with the help of models. A careful analysis of
the new data sets and a discussion of the extrapolation and
its uncertainties is given in Ref. [2].

The first attempts to model the capture cross sections
were done by using an external capture model [8,9] where
only the asymptotic form of the bound and scattering state
wave functions enters, neglecting the behavior of the wave
function at short distances. In potential models like, e.g.,
Ref. [10] the wave functions are described by two pointlike
clusters interacting via an effective nucleus-nucleus poten-
tial, which is adjusted to give reasonable properties for the
bound states and the scattering phase shifts. In the frame-
work of the microscopic cluster model, e.g., Refs. [11–14],
the system is described by antisymmetrized wave functions
of two clusters. One has to solve for the relative motion of
the clusters by using resonating group or generator coor-
dinate methods. In these microscopic models phenomeno-
logical nucleon-nucleon interactions are used. Like in the
potential models, these interactions are tuned to reproduce
certain properties of bound and scattering states within the
restricted cluster model space. There have been attempts
[13,15] to go beyond the single-channel approximation by
including the 6Liþ p channel, but such enlarged model

spaces require again modifications of the phenomenologi-
cal interaction.
Predictive power is expected from ab initio methods

which use realistic interactions that reproduce the
nucleon-nucleon scattering data and the deuteron proper-
ties. Solving the many-body problem with realistic inter-
actions is hard, as very large model spaces are required and
up to now consistent ab initio reaction calculations have
been possible only for single nucleon projectiles [16,17].
The 3Heð!;"Þ7Be reaction was studied in hybrid ap-
proaches, where asymptotic normalization coefficients cal-
culated from 7Be bound state wave functions using
variational Monte Carlo [18] and the no-core shell model
[19] were combined with conventional potential models.
None of these calculations is successful in describing both
the normalization and the energy dependence of the cap-
ture cross section data.
In this Letter, we present the first ab initio type calcu-

lation of the 3Heð!;"Þ7Be and 3Hð!;"Þ7Li capture cross
sections. We describe consistently bound and scattering
states starting from a realistic effective interaction derived
in the unitary correlation operator method. The fermionic
molecular dynamics approach is used to create many-body
wave functions that capture the relevant physics in the
interaction region. Frozen cluster configurations with 4He
and 3He=3H ground states are used at large distances.
The effective interaction is derived from the realistic

Argonne V18 interaction [20] that reproduces the deuteron
properties and the nucleon-nucleon scattering phase shifts.
The interaction is transformed into a phase-shift equivalent
low-momentum interaction by using the unitary correla-
tion operator method (UCOM) [21,22] where short-range
central and tensor correlations are incorporated explicitly.
In this work we use UCOM correlation functions that are
derived from a Hamiltonian evolved with the similarity
renormalization group (SRG) as described in Ref. [22]

PRL 106, 042502 (2011) P HY S I CA L R EV I EW LE T T E R S
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and quadrupole moments test the tail of the wave functions
and agree reasonably well with experiment.

In Fig. 2, we show the phase shifts for scattering in the
S- and D-wave channels. As for the bound states, the
addition of polarized configurations to the model space
significantly changes the results and leads to a good agree-
ment with the available data [32,33].

The capture cross section for the 3Heð!;"Þ7Be reaction
is calculated by using the many-body scattering and bound
eigenstates of the Hamiltonian. In the energy range up to
2.5 MeV, it has been shown [18] that only dipole transitions
from the S- and D-wave scattering states have to be con-
sidered. The obtained S factor is shown in Fig. 3 together
with the experimental data. Our results are in good agree-
ment with the recent measurements regarding both the
absolute normalization and the energy dependence. The
extrapolated zero-energy S factor is S34ð0Þ ¼ 0:593 keVb.

As our model successfully describes the 3Heð!;"Þ7Be
reaction, it should also do well for the isospin mirror
reaction 3Hð!;"Þ7Li. As shown in Fig. 4, we observe a
good agreement for the energy dependence of the S factor
but find that the absolute normalization is about 15% larger
than the data by Brune, Kavanagh, and Rolfs [34].
In summary, our calculations are able to describe con-

sistently the bound state properties and the scattering phase
shifts as well as the normalization and energy dependence
of the 3Heð!;"Þ7Be capture cross section. Our results
deviate from the correlation between the ground state
quadrupole moment and zero-energy S factor found in
cluster models using phenomenological interactions
[14,15]. Our approach differs in two main aspects from
those earlier studies. First, we use a well defined effective
interaction that describes the nucleon-nucleon scattering
data. In contrast to phenomenological effective interac-
tions, the UCOM interaction has a pronounced momentum
dependence and a longer range due to the explicitly in-
cluded pion exchange, a feature that turns out to be im-
portant for the low energy scattering solutions. Second, our
model space is larger than in the cluster model. Additional
FMD basis states in the interaction region describe polar-
ized clusters and shell-model-like configurations.
Although they are only a small admixture in the full
wave functions, they are essential to describe the bound
state properties as well as the scattering phase shifts.
The results can also be studied in terms of overlap

functions that are obtained by mapping the microscopic
many-body wave functions onto the relative wave function
of two pointlike nuclei in the resonating group formalism.
In Fig. 5, we show the overlap functions for the 1=2þ

scattering state at Ecm ¼ 50 keV and the 3=2% bound state.
The nodes in the overlap functions reflect the antisymmet-
rization between the clusters. We also show the dipole
strength calculated with these overlap functions. It repro-
duces the dipole matrix element calculated with the micro-
scopic wave functions within 2%. Comparing with the
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FIG. 3 (color online). The astrophysical S factor for the
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The most realistic calculation  
of 3He(α,γ)7Be capture so far 



Photo-disintegration reactions 

Coupled-Cluster Theory: Bacca et al., arXiv:1303.7446 

Photo-disintegration reactions can break the nucleus into many different clusters: 
two-body clusters, three-body clusters, ...,  A-nucleons           terribly complicated many-body continuum state 
 

Ab initio approach:  Lorentz Integral Transform  Method            reduces the continuum problem to the solution 
                                                                                                    of a bound-state equation which can be solved 
                                                                                                     with any good bound-state technique 

NN(N3LO) 
 

Hyperspherical Harmonics: Gazit, et al. PRL 96 112301 (2006)  

NCSM: Quaglioni and Navratil  PLB 652  (2007) 



Elastic scattering of  a nucleon on a target 
nucleus can be computed from the one-

nucleon overlap function. Beyond the range of the potential  
they are given by: 

Elastic proton/neutron scattering on 40Ca
G. Hagen and N. Michel Phys. Rev. C 86, 021602(R)  (2012).  



Using coupled-cluster theory to compute 
overlap functions we obtained cross sections 
at low-energy for elastic proton  scattering 
on 40Ca in fair agreement with experiment.  



The ab initio no-core shell model (NCSM)   

•  The NCSM is a technique for the solution of the A-nucleon bound-state problem 

•  Realistic nuclear Hamiltonian 

–  High-precision nucleon-nucleon potentials 

–  Three-nucleon interactions  

•  Finite harmonic oscillator (HO) basis  

–  A-nucleon HO basis states 

–  complete NmaxhΩ model space 

•  Effective interaction tailored to model-space truncation for NN(+NNN) potentials 

–  Okubo-Lee-Suzuki unitary transformation  

•  Or a sequence of unitary transformations in momentum space: 
–  Similarity-Renormalization-Group (SRG) evolved NN(+NNN) potential 

Convergence to exact solution with increasing Nmax 
for bound states. No coupling to continuum.  

A 
ΨA = cNiΦNi

A

i
∑

N=0

Nmax

∑

1max += NN



 4He from chiral EFT interactions:  
g.s. energy convergence 

•  Chiral N3LO NN plus N2LO NNN 
potential 

–  Bare interaction (black line) 
•  Strong short-range 

correlations 
§  Large basis needed 

–  SRG evolved effective 
interaction (red line) 

•  Unitary transformation 

•  Two- plus three-body 
components, four-body 
omitted 

•  Softens the interaction 
§  Smaller basis sufficient 
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A=3 binding energy and half life constraint 
cD=-0.2, cE=-0.205, Λ=500 MeV 



NCSM calculations of 6He and 7He g.s. energies 
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7He

SRG-N3LO NN
Λ=2.02 fm-1

hΩ=16 MeV

3/2-

0+6He

ü  Nmax convergence OK 
ü  Extrapolation feasible 

•  6He: Egs=-29.25(15) MeV (Expt. -29.269 MeV)  
•  7He: Egs=-28.27(25) MeV (Expt. -28.84(30) MeV) 

•  7He unbound (+0.430(3) MeV), width 0.182(5) MeV 
•  NCSM: no information about the width 

 

7He 

unbound 

2

Eg.s. [MeV] 4He 6He 7He

NCSM Nmax=12 -28.05 -28.63 -27.33

NCSM extrap. -28.22(1) -29.25(15) -28.27(25)

Expt. -28.30 -29.27 -28.84

TABLE I: Ground-state energies of 4,6,7He in MeV. An expo-
nential fit was employed for the extrapolations.

We begin by presenting NCSM calculations for 6He
and 7He that will serve as input for the subsequent
NCSM/RGM and NCSMC investigations of 7He. In
this work, we use the similarity-rnormalization-group
(SRG) evolved [30–33] chiral N3LO NN potential of
Refs. [34, 35]. For the time being, we omit both induced
and chiral initial three-nucleon forces, and our results de-
pend on the low-momentum SRG parameter Λ. However,
for Λ = 2.02 fm−1, we obtain realistic binding energies
for the lightest nuclei, e.g., 4He and, especially important
for the present investigation, 6He (see Table I). Conse-
quently, this choice of NN potential allows us to perform
qualitatively and quantitatively meaningful calculations
for 7He that can be compared to experiment. Except
where differently stated, all results shown in this work
have been obtained with an harmonic oscillator (HO)
Nmax=12 basis size and frequency !Ω=16 MeV.

The variational NCSM calculations converge rapidly
and can be easily extrapolated. At Nmax=12 (our 6,7He
limit for technical reasons), the dependence of the 6He
g.s. energy on the HO frequency is flat in the range
of !Ω ∼ 16−19 MeV. In general, when working within
an HO basis, lower frequencies are better suited for the
description of unbound systems. Therefore, we choose
!Ω=16 MeV for our subsequent calculations. Extrap-
olated g.s. energies with their error estimates and the
Nmax=12 results are given in Table I. Calculated 6He ex-
citation energies for basis sizes up to Nmax=12 are shown
in Fig. 1. The 6He is weakly bound with all excited states
unbound. Except for the lowest 2+ state, all 6He excited
states are either broad resonances or states in the con-
tinuum. We observe a good stability of the 2+1 state
with respect to the basis size of our NCSM calculations.
The higher excited states, however, drop in energy with
increasing Nmax with the most dramatic example being
the multi-!Ω 0+3 state. This spells a potential difficulty
for a NCSM/RGM calculations of 7He within a n+6He
cluster basis as, with increasing density of 6He states at
low energies, a truncation to just a few lowest eigenstates
becomes questionable.

For the 7He, the NCSM predicts the g.s. unbound in
agreement with experiment. However, the resonance en-
ergy with respect to the 6He+n threshold appears over-
estimated. Obviously, it is not clear that the ad hoc
exponential extrapolation is valid for unbound states. In
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FIG. 1: (color online). Dependence of 6He excitation energies
on the size of the basis Nmax.

addition, no information on the width of the resonance
can be obtained from the NCSM calculation. We can,
however, study the structure of the 7He NCSM eigen-
states by calculating their overlaps with 6He+n cluster
states, which are related to ḡλν (see Eq. (2)), and the
corresponding spectroscopic factors summarized in Ta-
ble II. Overall, we find a very good agreement with the
VMC/GFMC results as well as with the latest experi-
mental value for the g.s. [2]. Interesting features to no-
tice is the about equal spread of 1/2− between the 0+ and
2+2 states. We stress that in our present calculations, the
overlap functions and spectroscopic factors are not the
final products to be compared to experiment but, on the
contrary, inputs to more sophisticated NCSMC calcula-
tions.

7He Jπ 6He−n(lj) NCSM CK VMC GFMC Exp.

3/2−1 0+−p 3
2

0.56 0.59 0.53 0.565 0.512(18) [2]

0.64(9) [36]

0.37(7) [11]

3/2−1 2+1 −p 1
2

0.001 0.06 0.006

3/2−1 2+1 −p 3
2

1.97 1.15 2.02

3/2−1 2+2 −p 1
2

0.12 0.09

3/2−1 2+2 −p 3
2

0.42 0.30

1/2− 0+−p 1
2

0.94 0.69 0.91

1/2− 2+1 −p 3
2

0.34 0.60 0.26

1/2− 2+2 −p 3
2

0.93

TABLE II: NCSM spectroscopic factors compared to Cohen-
Kurath (CK) [37] and VMC/GFMC [16, 38, 39] calculations
and experiment. The CK values should be still multiplied by
A/(A−1) to correct for the center of mass motion.
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+ Âµ
µ

∑ φ
1µ



ξ
1µ{ }( )φ2µ



ξ
2µ{ }( )φ3µ



ξ
3µ{ }( )Gµ (


rµ1,

rµ2 )

+ 



•  φ : antisymmetric cluster wave functions  
–  {ξ}: Translationally invariant internal coordinates 

   (Jacobi relative coordinates) 

–  These are known, they are an input 
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•  Αν, Αµ : intercluster antisymmetrizers  
–  Antisymmetrize the wave function for exchanges of nucleons between clusters 

–  Example: 
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•  c, g and G: discrete and continuous 
linear variational amplitudes 

–  Unknowns to be determined 
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•  Discrete and continuous set of basis functions 
–  Non-orthogonal 

–  Over-complete  

a
1κ = A( )

φ
1κ

a
1v( )

a
2v( )

a
1ν + a2ν = A


r

φ
1ν

φ
2ν

a
3µ( )

a
2µ( )

R
2


R
1

a
1µ( )

φ
1µ

φ
2µ

φ
3µ

a
1µ + a2µ + a3µ = A



•  In practice: function space limited by using 
relatively simple forms of Ψ chosen according to 
physical intuition and energetical arguments 

–  Most common: expansion over binary-cluster basis    
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The ab initio NCSM/RGM in a snapshot 

•  Ansatz: 

Hamiltonian kernel Norm kernel 

§  Many-body Schrödinger equation: 

ê 

eigenstates of  
H(A-a) and H(a)  
in the ab initio  
NCSM basis 

realistic nuclear Hamiltonian 

23 
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   Separation into “internal” and “external” regions at the channel radius a 

 

 

–  This is achieved through the Bloch operator: 

–  System of Bloch-Schrödinger equations: 

–  Internal region: expansion on square-integrable Lagrange mesh basis 

–  External region: asymptotic form for large r 
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n-4He scattering: NN vs. NN+NNN interactions 

chiral NN+NNN(500)  
chiral NN+NNN-induced                           
SRG λ=2 fm-1                           
HO Nmax=13, hΩ=20 MeV 

The largest splitting 
between the P-waves 
obtained with the chiral 
NN+NNN interaction 
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Ab initio calculation of the 3H(d,n)4He fusion 
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d+3H and n+4He elastic scattering: phase shifts 

•  d+3H elastic phase shifts: 
–  Resonance in the 4S3/2 channel 
–  Repulsive behavior in the 2S1/2 

channel è Pauli principle 

•  n+4He elastic phase shifts: 
–  d+3H channels produces slight 

increase of the P phase shifts 
–  Appearance of resonance in the 

3/2+ D-wave, just above d-3H 
threshold 
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The d-3H fusion takes place through a transition of  d+3H is S-wave to n+4He in D-wave:  
Importance of  the tensor force 

d* deuteron pseudo state in 3S1-3D1 channel: 
deuteron polarization, virtual breakup 



•  NCSM/RGM with SRG-N3LO NN potentials 

3H(d,n)4He & 3He(d,p)4He fusion 
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Potential to address unresolved fusion research related questions: 
3H(d,n)4He fusion with polarized deuterium and/or tritium, 

3H(d,nγ)4He bremsstrahlung, 
Electron screening at very low energies … 

P.N., S. Quaglioni, 
PRL 108, 042503 (2012) 
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NCSM/RGM ab initio calculation  
of d-4He scattering 
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Scattering provides a strict test of NN and NNN forces 
Important to include 6-nucleon correlations  

 – deuteron (virtual) breakup …  

PHYS. REV. C 83, 044609 (2011) 

6Li 



NCSM/RGM calculations of 3He+α scattering:  
(still preliminary) 

(A-3) 
(3) 

Calculations for a=3 projectile under way:  
Soft SRG interactions (Λ=1.5 fm-1, Λ=1.86 fm-1) 

Virtual breakup of 3He included by pseudostates (in 1/2+, 5/2+ channels so far) 
Large-scale computation, up to 98,304 cores used on jaguar-xk6 

INCITE Award – James PI 



Solar p-p chain 

p-p chain 

7 

Solar neutrinos 

   Eν < 15 MeV 
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§  NCSM/RGM calculation  
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§  Soft NN potential (chiral SRG-N3LO with Λ = 1.86 fm-1) 
 

7Be(p,γ)8B radiative capture 
7Be 

p 

8B 2+ g.s. bound by  
136 keV  

(expt. 137 keV) 

S(0) ~ 19.4(0.7) eV b 

Data evaluation: 
S(0)=20.8(2.1) eV b 

 

P.N., R. Roth, S. Quaglioni, 
Physics Letters B 704 (2011) 379 



How about 7He as n+6He?  

34 
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•  All 6He excited states above 2+
1 broad resonances or states in continuum 

•  Convergence of the NCSM/RGM n+6He calculation slow with number of 6He states 
•  Negative parity states also relevant  
•  Technically not feasible to include more than ~ 5 states 



ΨA
JπT = cNi ANiJ

πT
Ni
∑

NCSM/RGM r

NCSMC r+

H� = EN�

(N� 1
2HN� 1

2 )�̄ = E�̄

✓
HNCSM h̄

h̄ N� 1
2HN� 1

2

◆✓
c
�̄

◆
= E

✓
1 ḡ
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New developments: NCSM with continuum 
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ḡ 1

◆✓
c
�̄

◆

|⇥J⇡T
A � =

X

�

Z
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4

Jπ experiment NCSMC NCSM/RGM NCSM

ER Γ Ref. ER Γ ER Γ ER

3/2− 0.430(3) 0.182(5) [2] 0.71 0.30 1.39 0.46 1.30

5/2− 3.35(10) 1.99(17) [40] 3.13 1.07 4.00 1.75 4.56

1/2− 3.03(10) 2 [11] 2.39 2.89 2.66 3.02 3.26

3.53 10 [15]

1.0(1) 0.75(8) [5]

TABLE III: Experimental and theoretical resonance centroids
and widths in MeV for the 3/2− g.s. , 5/2− and 1/2− excited
states of 7He. See the text for more details.

shifts is maximal [41]. The resonance widths are then
computed from the phase shifts according to (see, e.g.,
Ref. [42])

Γ =
2

dδ(Ekin)/dEkin

∣

∣

∣

∣

Ekin=ER

. (4)

An alternative, less general, choice for the resonance en-
ergy ER could be the kinetic energy corresponding to a
phase shift of π/2 (thin dashed lines in Fig. 3). While
Eq. (4) is safely applicable to sharp resonances, broad
resonances would require an analysis of the scattering
matrix in the complex plane. As we are more interested
in a qualitative discussion of the results, we use here the
above extraction procedure for broad resonances as well.
The two alternative ways of choosing ER lead to basi-
cally identical results for the calculated 3/2−1 resonances,
however the same is not true for the broader 5/2− and
the very broad 1/2− resonances. The π/2 condition, par-
ticularly questionable for broad resonances, would result
in ER ∼ 3.7 MeV and Γ ∼ 2.4 MeV for the 5/2− and
ER ∼ 4 MeV (see Fig. 3) and Γ ∼ 13 MeV for the 1/2−

resonance, respectively.
The resonance position and width of our NCSMC 3/2−

g.s. slightly overestimate the measurements, whereas the
prediction for the 5/2− is lower compared to experi-
ment [3, 40], although our determination of the width
should be taken with some caution in this case. As for
the 1/2− resonance, the experimental situation is not
clear as discussed in the introduction and documented
in Table III. While the centroid energies of Refs. [11, 12]
and [15] are comparable, the widths are very different.
With our determination of ER and Γ, the NCSMC re-
sults are in fair agreement with the neutron pick-up and
proton-removal reactions experiments [11, 12] and defi-
nitely do not support the hypothesis of a low lying (ER∼1
MeV) narrow (Γ ≤ 1 MeV) 1/2− resonance [4–8]. In ad-
dition, our NCSMC calculations predict two broad 6P3/2

resonances (from the coupling to the two respective 6He
2+ states) at about 3.7 MeV and 6.5 MeV with widths of
2.8 and 4.3 MeV, respectively. The corresponding eigen-
phase shifts do not reach π/2, see Fig. 3. In experiment,

there is a resonance of undetermined spin and parity at
6.2(3) MeV with a width of 4(1) MeV [40]. Finally, it
should be noted that our calculated NCSMC ground state
resonance energy, 0.71 MeV, is lower but still compatible
with the extrapolated NCSM value of 0.98(29) MeV (see
Tables I and III).

In conclusion, we introduced a new unified approach to
nuclear bound and continuum states based on the cou-
pling of the no-core shell model with the no-core shell
model/resonating group method. We demonstrated the
potential of the NCSMC in calculations of 7He reso-
nances. Our calculations do not support the hypothesis
of a low lying 1/2− resonance in 7He.
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d⇥r��(⇥r)Â�J⇡T (A�a,a)

�⇥r

The idea behind the NCSMC

�̄ = N+ 1
2�

|⇥J⇡T
A � =

X

�

c�|A�J⇤T �+
X

⇥

Z
d⇤r

 
X

⇥0

Z
d⇤r 0N� 1

2
⇥⇥0 (⇤r,⇤r 0)⇥̄⇥0(⇤r 0)

!
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Conclusions and Outlook 

•  Significant progress in ab initio approaches for p-shell nuclei an beyond 

•  GFMC 

•  We developed a new unified approach to nuclear bound and unbound states 
–  Merging of the NCSM and the NCSM/RGM = NCSMC  

•  CCM with Berggren basis 
 

•  Outlook: 
–  Inclusion of three-nucleon interactions in reaction calculations for A>5 systems 
–  Extension to composite projectiles (deuteron, 3H, 3He, 4He) 
–  Extension to three-body clusters (6He ~ 4He+n+n) 
–  Composite-projectile reactions on targets heavier than 4He  

•  Ab initio and microscopic calculations of nuclear reactions is a dynamic field 
with significant advances  

•  Several exact methods applicable to few-nucleon systems (A=3,4) 
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Properties of 12C in the Ab Initio Nuclear Shell Model
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We obtain properties of 12C in the ab initio no-core nuclear shell model. The effective Hamilto-
nians are derived microscopically from the realistic CD Bonn and the Argonne V80 nucleon-nucleon
!NN" potentials as a function of the finite harmonic oscillator basis space. Binding energies, excita-
tion spectra, and electromagnetic properties are presented for model spaces up to 5h̄V. The favorable
comparison with available data is a consequence of the underlying NN interaction rather than a phe-
nomenological fit.

PACS numbers: 21.60.Cs, 21.30.Fe, 27.20.+n

While various methods have been developed to solve the
three- and four-nucleon systems with realistic interactions
[1–4], few approaches are suitable for heavier nuclei at this
time. Apart from the coupled cluster method [5] applied
to closed-shell and near-closed-shell nuclei, the Green’s
function Monte Carlo method is the only approach for
which exact solutions of systems with A # 8, interacting
by realistic potentials, have been obtained [4].
For more complex nuclei, treated as systems of nucle-

ons interacting by realistic NN interactions, we apply the
no-core shell model (SM) approach [6–9]. To date, this
ab initio method has been successfully applied to solve
the three-nucleon as well as the four-nucleon bound-state
problem [8,9]. Here, we address a vastly more complex
system, 12C, and present first results for an illustrative set
of observables with two realistic NN interactions.
There are several pressing reasons to investigate 12C in

a way that preserves as much predictive power as pos-
sible. The 12C nucleus plays an important role [10] in
neutrino studies using liquid scintillator detectors. Also,
there has been considerable interest recently in parity-
violating electron scattering from !Jp , T " ! !01, 0" tar-
gets, like 12C, to measure the strangeness content of the
nucleon [11,12]. For these and many other reasons, there
have been multi-h̄V SM studies of 12C in the past [13–15].
However, unlike our approach, phenomenological effective
interactions were used.
We start from the two-body Hamiltonian for the

A-nucleon system, which depends on the intrinsic coordi-
nates alone, HA ! Trel 1 V , where Trel is the relative
kinetic energy operator and V is the sum of two-body
nuclear and Coulomb interactions, V ! VN 1 VC.
There is no phenomenological one-body term. We
neglect many-body interactions at present. To facilitate
our work, we add an A-nucleon harmonic oscillator
(HO) Hamiltonian acting solely on the center-of-mass
(CM), HCM ! TCM 1 UCM, where UCM ! 1

2AmV2 "R2,
"R ! 1

A

PA
i!1 "ri , and m is the nucleon mass. The effect

of this HO CM Hamiltonian will be subtracted in the
final many-body calculation. The Hamiltonian, with a
pseudodependence on V, can be cast into the form

HV
A !

AX
i!1

hi 1
AX

i,j!1
Vij !

AX
i!1

∑
"p2

i

2m
1

1
2

mV2 "r2
i

∏

1
AX

i,j!1

∑
Vij 2

mV2

2A
!"ri 2 "rj"2

∏
. (1)

Since we solve the many-body problem in a finite HO
model space, the realistic nuclear interaction in (1) will
yield pathological results unless we derive a model-space
dependent effective Hamiltonian. For this purpose, we
adopt approaches presented by Suzuki and Lee [16], Da
Providencia and Shakin [17], and Suzuki and Okamoto
[18], which yield an Hermitian effective Hamiltonian.
According to Da Providencia and Shakin [17], a

unitary transformation of the Hamiltonian HV
A , which

is able to accommodate the short-range two-body cor-
relations, can be introduced by choosing a two-body, in
our case translationally invariant, anti-Hermitian opera-
tor S !

PA
i,j!1 Sij , such that H ! e2SHV

A eS . The
transformed Hamiltonian can be expanded in terms of up
to A-body clusters H ! H !1" 1 H !2" 1 H !3" 1 . . . ,
where the one-body and two-body pieces are given as
H !1" !

PA
i!1 hi , H !2" !

PA
i,j!1 Ṽij , with

Ṽ12 ! e2S12 !h1 1 h2 1 V12"eS12 2 !h1 1 h2" . (2)

The full space is divided into a model or P space and a Q
space, using the projectors P and Q with P 1 Q ! 1. It
is then possible to determine the transformation operator
S12 from the decoupling condition

Q2e2S12!h1 1 h2 1 V12"eS12P2 ! 0 . (3)

The two-nucleon-state projectors (P2, Q2) follow from the
definitions of the A-nucleon projectors P, Q. This ap-
proach has a solution [18], S12 ! arctanh!v 2 vy", with
the operator v satisfying v ! Q2vP2. This is the same
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