"SHOCKING BEALITY"

James is 70!

Really? I do not believe it!

Everyone, older and younger, whom I talked to in last a few months about this conference in honor of James' 70th birthday, cannot believe that James is 70 now

"SHOCKING BEALITY"

James is 70!

Really? I do not believe it! Everyone, older and younger, whom I talked to in last a few months about this conference in honor of James' 70th birthday, cannot believe that James is 70 now

Well,

Calendar rolls, James is 70!

LET'S CELEBBATE!

LET'S CELEBRATE

HAPPY BIRTHDAY, JAMES!

The Nucleus: A Laboratory for QCD

Jianwei Qiu Brookhaven National Laboratory

Much of the physics presented here and more can be found in EIC White Paper (arXiv:1212:1701)

International Conference on Nuclear Theory in the Supercomputing Era – 2013 Iowa State University, Ames, Iowa, May 13 – 17, 2013

The Nucleus

□ The core of all visible matter:

□ Discovered over 100 years ago (1911):

- ♦ Rutherford's experiment
- ♦ Momentum transfer square: $(p-p')^2 < 0$, large!
- Hadron-atom Deep Inelastic Scattering (DIS)

The Nucleus

□ The core of all visible matter:

□ Nucleus is a "molecule" of nucleons:

The Nucleus

□ The core of all visible matter:

□ Nucleon is not elementary – SLAC's "Rutherford" exp't (1968):

Quantum Chromodynamics (QCD)

The Question

How would/does a nucleus look (the landscape) if we only "saw" its quarks and gluons? EMC's discovery – another "Rutherford" exp't (1983):

Nuclear landscape =|= Superposition of nucleon landscape!

The Question

How would/does a nucleus look (the landscape) if we only "saw" its quarks and gluons?

□ JLab data:

The Question

How would/does a nucleus look (the landscape) if we only "saw" its quarks and gluons?

□ Need a "machine" to cat-scan the nucleus (and nucleon)!

1/10 fm spatial resolution ("see" quarks and gluons)

- ♦ Spatial distribution?
 GPDs, diffractive, ...
- ♦ Confined motion?
 - TMDs, semi-inclusive, ...

 $\delta r_{\perp} \sim 1/Q$

xp_

♦ Color coherence?

Attenuation, ...

A Nuclear forces?

More QCD Question

How do hadrons emerge from quarks and gluons?

□ Formation of nuclear matter:

More QCD Question

How do hadrons emerge from quarks and gluons?

□ Need a "vertex detector" at a femtometer scale:

♦ Propagation of a "created" color

- $\diamond\,$ Flavor and momentum of the "created" color particle
- $\diamond\,$ Control of "Detector" properties and size

More Challenge to QCD

How does the unitarity bound of the hadronic cross section survive if soft gluons in a proton or nucleus continue to grow in numbers?

□ HERA's discovery: proliferation of soft gluons:

 Gluons interact among themselves when occupation number near 1

- Instead of reaching Bose-Einstein condensate, gluon density saturates
 - a dynamical balance of non-linear
 QCD interaction

More Challenge to QCD

How does the unitarity bound of the hadronic cross section survive if soft gluons in a proton or nucleus continue to grow in numbers?

□ HERA's discovery: proliferation of soft gluons:

Dynamical scale: Q_s

Can we find this regime for sure and study/understand its properties?

Electron-Ion Collider

□ An ultimate machine(s) to answer the challenges:

- An electron beam to bring to bear the unmatched precision of the EM interaction as a probe
- A collider to provide kinematic reach well into the gluon-dominated regime, and the phase space exploring hadron formation
- Polarized nucleon beams to determine the correlations of quark and gluon structure with the nucleon spin
- Heavy ion beams to offer femtometer "vertex detectors" for studying color propagation in nuclear matter, and to provide precocious access to the regime of saturated gluonic matter

In a way that other types of machines cannot match!

□ A machine at the frontier of polarized luminosity, combined with versatile kinematics and beam species

International Context

Electron-Ion Colliders in the world:

	HERA@DESY	LHeC@CERN	eRHIC@BNL	MEIC@JLab	HIAF@CAS	ENC@GSI	
E _{CM} (GeV)	320	800-1300	45-175	12-140	12 → 65	14	
proton x _{min}	1 x 10 ⁻⁵	5 x 10 ⁻⁷	3 x 10⁻⁵	5 x 10⁻⁵	7 x10 ⁻³ →3x10 ⁻⁴	5 x 10 ⁻³	
ion	р	p to Pb	p to U	p to Pb	p to U	p to ~ ⁴⁰ Ca	
polarization	-	-	p, ³ He	p, d, ³ He (⁶ Li)	p, d, ³ He	p,d	
L [cm ⁻² s ⁻¹]	2 x 10 ³¹	10 ³³	10 ³³⁻³⁴	10 ³³⁻³⁴	10 ³²⁻³³ → 10 ³⁵	10 ³²	
IP	2	1	2+	2+	1	1	
Year	1992-2007	2022 (?)	2022	Post-12 GeV	2019 → 2030	upgrade to FAIR	
			γ				
			Possible future				

EIC@US [arXiv:1212:1701]:

High energy polarized proton beam

Sits near the "sweet spot" for the transition into the saturation regime

The US EIC proposals

□ Two possible options:

ELIC (Jlab)

eRHIC (BNL)

First (might be the only) polarized electron-proton collider in the world
 First electron-nucleus (various species) collider in the world

Staged realization: Using existing facility Stage I: √s ~ 60-100 GeV Stage II: √s > 100 GeV

US EIC: Kinematics and properties

 For e-N collisions at the EIC:
 ✓ Polarized beams: e, p, d/³He
 ✓ Luminosity L_{ep} ~ 10³³⁻³⁴ cm⁻²sec⁻¹ 100-1000 times HERA
 ✓ Variable center of mass energy

For e-A collisions at the EIC:

- ✓ Wide range in nuclei
- ✓ Luminosity per nucleon same as e-p
- \checkmark Variable center of mass energy

What and why EIC can do and do better?

□ High energy collider:

Sharper probe and better "snapshot" in probing the confined motion of quarks and gluons – 3D momentum distributions

□ High luminosity:

Diffractive scattering - CAT scan the proton/nucleus – 1+2D spatial imaging

□ Polarization:

 $\frac{\sigma(s) - \sigma(-s)}{\sigma(s) + \sigma(-s)}$

Suppress probability – enhance quantum interference

□ Major theoretical advances in last decade!

- QCD factorization connects partons to observed hadrons/leptons
- QCD factorization for two scales (1 hard + 1 soft) cross sections, necessary for extracting TMDs, and GPDs
- QCD factorization for many new spin dependent observables

What and why EIC can do and do better?

□ High energy collider:

Sharper probe and better "snapshot" in probing the confined motion of quarks and gluons – 3D momentum distributions

□ High luminosity:

Diffractive scattering - CAT scan the proton/nucleus – 1+2D spatial imaging

□ Polarization:

 $\frac{\sigma(s) - \sigma(-s)}{\sigma(s) + \sigma(-s)}$

Suppress probability – enhance quantum interference

□ Nucleus, a QCD Laboratory:

- ♦ More soft gluons Lab for exploring non-linear gluon dynamics
- ♦ Condensed color matter Lab for QCD tomography
- Nuclear landscape color confinement and quantum fluctuation
- ♦ "Vertex detector" for color propagation and neutralization

THE "VERTEX" DETECTOR

Color neutralization – energy loss

Color neutralization – energy loss

Color fluctuation – azimuthal asymmetry

Any distribution seen in Carbon should be washed out in heavier nuclei

Surprise:

Azimuthal asymmetry in transverse momentum broadening

Density fluctuation and v_n!

DISCOVER THE NATURE OF SOFT GLUONS

Color coherence

 \Box Could the nucleus act like a "bigger" nucleon at small x_{B} ?

Range of color correlation inside a nucleus – "nature of nuclear force"?

Reaching saturation with eA

With a gold ion beam: EIC@US can reach the saturation regime at the stage-I

Saturation/CGC: What to measure?

 \Box Inclusive events – structure functions, F_2 and F_L :

- \diamond High energy smaller x, and larger range of Q²
- ♦ Search for deviation from DGLAP and BFKL

Diffractive cross section:

 $\sigma_{\rm diff} \propto [g(x,Q^2)]^2$

At HERA: ep observed 10-15% / total

If CGC/Saturation – multiple coherent gluons Diffraction eA expect ~25-30%/total

Nucleus with 8 MeV/N binding can stay intact at 1 in 4 times when hit by a "TeV" beam!

□ Diffractive vector meson production:

The best signature for gluon saturation

already at EIC stage-1

Spatial imaging of the glue in a nucleus

Diffractive vector meson (Φ , J/ ψ , ..) production:

 $\frac{d\sigma}{dx_B dQ^2 dt}$

Fourier transform of the t-dependence

as a function of t

$\Box \Phi$ -production – clean probe for spatial distributions:

Range of color correlation inside a nucleus?

□ Ratio of DIS F₂ structure functions:

A clean stage-I measurement at EIC@US (systematic error only)

BEYOND THE STANDARD MODEL?

Electroweak physics at EIC

Running of weak interaction – high luminosity:

 \diamond Fills in the region that has never been measured

♦ have a real impact on testing the running of weak interaction

Summary

□ QCD is very successful in the asymptotic regime (< 1/10 fm):

But, we have learned very little about hadron structure and formation □ EIC – an ideal machine to explore hadron/nuclei structure:

We have learned a lot, but, much much more need to be learnt!

 EIC – an ideal machine to study the glue, binding us all, and discover the saturated gluonic matter
 – must be existed, but, where for sure?

Thanks!

LET'S CELEBRATE

HAPPY BIRTHDAY, JAMES!

European proposal: LHeC

