

Nuclear Forces from Lattice Quantum Chromodynamics

Martin J. Savage University of Washington International Conference on Nuclear Theory in the Supercomputing Era - 2013 Iowa, May 2013

Me and James : **197.327**

Caltech 1985-86

James : Visiting Professor

Me : first year grad student

Computer : big old VAX

Result : I know **ħc** !

The Structure and Interactions of Matter from QCD

 $\Lambda_{\rm QCD}$

 α_e

Small number of input parameters responsible for all of strongly interacting matter

The Road from QCD

Fine-Tunings define our Universe

Parameter/Gauge Landscape

- Nuclear physics exhibits fine-tunings
 - Why ??
 - Range of parameters to produce sufficient carbon ?
- Need to calculate over a range of parameters to disentangle the chiral nuclear forces anyway!

Organizing Nuclear Forces

Effective Field Theory introduced by Weinberg in the early 1990's to systematize nuclear forces

- Low-energy EFT of QCD
- Chiral symmetries of QCD
- Quark mass dependence
- Interesting RG behavior
- Softer Interactions
 V_{lowk} , SRG
- Organization of multi-nucleon forces

	2N force	3N force	4N force
LO	X + -+	—	
NLO	X 🔤 🕅		
N ² LO	 ⊂ <	+++ +-¥ X	
N ³ LO		<u> 4 </u> ; -	 / / 6

Chiral Interactions in Nuclear Calculations

	25 force	3N force	4N force
1.0	ΧН	-	_
NLO	X 비서 비비	-	_
NLO	허村	нн НХ Ж	_
N'LO	현서년 성원X-	₩₩-	114-

No-Core Shell Model Calculations with Chiral Forces

Experiments constrain counterterms leading to predictions for other observables at a given order in the EFT expansion

Refining Nuclear Forces and Multi-Nucleon Interactions: Enhancing Predictive Capabilities

iii) Number of counterterms for required level of precision

iii) and/or direct calculation of desired quantity

Lattice QCD

Monte-Carlo Evaluation of QCD Path Integral

	Г		-	T		Ē	Г	t	T	1	1	_						Г		-	Ţ							_	T		1					-	Ţ		
s 7/	1		١	1	١	Г		¢7/	1			١	1	/		5	77			1	1	/		\$	7		a.	١		Λ.		5	7			1	1	1	
	I	10	6		Δ					n,	1	5		1		٦	1	N	"	С	1	1		٦	7	II	"	6	1	\mathbf{A}		١	I.	II	11	G	1	Δ	
		er.	(yu)	and and	./	1	Г	۳	Т		-	W.S	14.	1			•		-	eves.	2.0	1					-	NA.	1×	1			1		er	(VU	11	. \	1
Δ		1918.7		2	2			Т	Т	Т	Т				4								1	0									N	. 47	1918		-	2	4
	9			2		2		Т	Т	Т	Т		1	1	U		0.			-0	0)		1	-										9	3				1
	1							Т	Т	Т			1	5	€	1	۴	2	1					Y	e			5					ß	1	-				
	Е							F	T				£	,			0	16	No.	2	2		3.5	0	35	-					-								
	-	-		7	1			Т	1			1	5		0	2	~	6	Ţ		Æ	r			7									-	-				
1	i.	t,	2		1							8	2		1			20	2	0	1						٩.					1	1	i.	1	2		Δ	
			in t	ń.				l			1	2		D	d			3	~		0	C		}		U							1			des 8	ń		
A	1		. 1	1978		1				Å	5				7		S	70	101	R.	1		3	1	1	57	m	Б			1		N	1	10 * . with		1,474		1
	-	-		E	-	2			(0 0	0	0	s	1			3	5	20	0.			-1	đ	ð,			E						L.	-		E		-
							1					- 6	£,	£		è	Ť	Ь		¥	0,	аS	بر			24		5	5				k		2				
1	1					Γ		Y	1	5		2	5	9		σ_{2}		1		-		24	6			2	X	2	2			П		-					
			_	Ţ			10	1	1			5	1		0	2		1		C.		k	70	1	Y		6	Y	õ							-	Ţ		
s 1/	1		١		١			1	ŧ 6			ġ			à			6	R.			ß				Ø.		0	P			s	7			١	1	1	
	11	10	e		\mathcal{A}				1	3		ð			3,	R	20	0.			6	0		-		-		2	2				T	n	11	C			
		er	(yu)	11 	1		N			1	2	2		2	X	2		1	R	20	33	ĭ	1	2		٣		F	2				I		er	(VU	11. 	.//	1
Δ		(B)E?	<u> </u>	-	۳.							Ø.	3	2		G	A	3			20	2	-	2				E	2		13		N	. 10	1918	<u> </u>	-	-	A.
	9					P							2	V			d	60	Q	P		3						E			/			9					1
			-					١					2	_	0	N)	æ				1	SC.	4		1	D,		0					B	52	2				
	E					E	H	F							-				-		6	6	No.		1														
	-	-	1	1				Γ	T	٦.				3	3				2	1	2	S	π	B.	5				1					-	-		1		
1	i.	t,	2		1				T		1					0	0						23	00				1				1	1	i.	1	2		Δ	
			in t	ñ.	1			Г	Т	T	T	1						10	0i	DA.			1				2						1			int	ñ.		
N		-	. 1	1414	2	7					T									~		U				1								1			6,870		Y
	-	-				2		Т	Τ		T					1							-	-										5	-				-
																			-																-				
	1					Г	L	Г	1	Т	T	T						-								-								-					

Not Quite QCD !

Lattice Spacing : Lattice Volume : $a \ll 1/\Lambda \chi$

 $m_{\pi}L >> 2\pi$

(Nearly Continuum)

(Nearly Infinite Volume)

Systematically Extrapolate to QCD Effective Field Theory gives form of extrapolation a = 0 and $L = \infty^{\circ}$

Gauge Field Configurations The Vacuum is Complex

Topological Charge Density (Massimo DiPierro)

 $\Delta t \sim 6 \times 10^{-24} \ s$

"Pixelation" ~ (0.12 x 10⁻¹⁵ m)³

Quark Propagator on One Gauge Configuration

Pion, Nucleon from same propagators

Quark Propagators Quarks and Gluons are Confined (T=0)

Cancellation of

Probability Amplitudes

US Lattice Quantum Chromodynamics

Misson-critical, custom logic (hatched) for high-performance memory access and fast, low-latency off-node communications is combined with standards-based, highly integrated commercial library components.

á bacada

capacity

Cold Nuclear Physics

Masses of the Particles

• $< X^n >$

Structure of the Nucleon

g_A and other q²=0 matrix elements

charge and magnetic radii, etc

associated form factors

First calculations at physical pion mass during 2012

Precision is needed (complete uncertainty quantification)

Spectrum of the Hadrons

- Spectrum of mesons and baryons
 - exotics, molecules
 - coupled channels, etc
 - provided motivation for 12 GeV upgrade

Lattice QCD will predict the exotic spectrum before or during the GlueX experiment (with sufficient compute resources)

Fundamental Interactions

Non Resonant Phase Shifts I=2 pion-pion

Resonant Phase Shifts I=1 pion-pion

ρ- resonance successfully determined

NN Interactions

Deuteron appears to be unnatural but not finely-tuned ?? Generic feature of YM with n_f=3

Nuclei

Deuteron

Helium

Roadblocks of the Past

Contractions - 2012 no longer an issue for light nuclei

e.g. He-4 : 0.8 core-seconds per time-slice Orginos+Detmold algorithm

Signal to noise

Large numbers of measurements

Hyperon Nucleon Interactions

Meissner+Haidenbauer - Experiment + YN-EFT (LO) 60 2050 10 (degrees) 00 00 0 -10 -20 Ś Ø 20 -30 NSC97f Juelich '04 NSC97f -40 EFT 10 Juelich '04 -50 -60<u>∟</u> 0 100 200 300 400 500 100 200 300 400 500 p_{LAB} (MeV) ${\rm p}_{\rm LAB}~({\rm MeV})$

> Cancellation between channels in dense matter energy-shift of hyperon

Hyperon Nucleon Interactions

NPLQCD - Lattice QCD + YN-EFT (LO)

Cancellation between channels in dense matter energy-shift of hyperon

Future Cold Nuclear Physics Program : Physical Pion Mass usoco

Tuesday, May 14, 2013

Contributions to nucleon spin

USQCD Proposed Production 2014-2019

5	Ð	e	DH
 $\mathbf{\nabla}$	Co.	$\mathbf{\nabla}$	

$N_{c}^{3} \times N_{t}$	Action		m_{π}	$m_{\pi}L$	$m_{\pi}T$	Traj.	Configs.	Str-A	Str-B	HSp	HI
		fm	MeV				(TF-yrs)		(TF-yrs)	1	
$64^3 \times 128$	W	0.076	250	6.1	12.3	$5 imes 10^3$	8				
$64^3 \times 128$	W	0.09	200	5.8	11.7	5×10^3	9			167	27
$32^3 imes 512$	AW	0.12	200	3.8	17.6	1×10^4	44			41	
$48^3 \times 512$	AW	0.12	200	5.8	17.6	1×10^4	197			142	
$48^3 \times 192$	W	0.09	140	3.0	12.3	$5 imes 10^3$	7	40			
$64^3 \times 192$	W	0.09	140	4.1	12.3	$5 imes 10^3$	21	40			
$96^3 \times 64$	W	0.09	140	6.1	4.1	$5 imes 10^3$	24	13			
$96^3 \times 96$	W	0.09	140	6.1	6.1	$5 imes 10^3$	40	20			
$96^{3} \times 192$	W	0.076	140	6.1	12.3	5×10^3	96	40	350^{*}	334	288
$128^3 \times 192$	W	0.076	140	6.9	10.4	$5 imes 10^3$	323	67		792	970
$48^3 \times 96$	DWF	0.110	140	3.9	7.8	$5 imes 10^3$		28	360^{\dagger}		
$64^3 \times 128$	DWF	0.086	140	3.9	7.8	$5 imes 10^3$		64	844^{\dagger}		

Assume current funding levels throughout period - NP 50% partner

Beyond Computational : Formal Issues

- What Lattice QCD calculations are required to predict multi-body nuclear reactions ?
 - Coupled channels extension of Luscher underway

Nuclear Reactions from Lattice QCD Briceno, Davoudi, Luu http://www.int.washington.edu/PROGRAMS/13-53w/

- How to optimally match to nuclear many-body technology ?
 - do we simply pass along energy eigenvalues ?

Collaboration is Crucial

LQCD Codes on the Latest Hardware

Closing Remarks

Lattice QCD, combined with chiral EFT and nuclear many-body techniques, will provide first principles predictive capabilities for Nuclear Physics

Enable calculations with **quantifiable uncertainties** of the nuclear forces and of processes occurring in nuclei and astrophysical environments where experiments are not possible.

Matching to nuclear many-body machinery is beginning

Happy Birthday James

THE END