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!  Light Front Bound State Equation 

 
!  Fock Sector Decomposition of State Vector 

 
 

!  In general: Large, sparse matrix diagonalization problem 

!  Apply suitably adapted methods from ab initio nuclear 
structure 

!  Test Case: Positronium 

INTRODUCTION 
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P2 ! =M 2 ! H ! P2



!  Transverse Harmonic Oscillator Basis  
!  Eigenfunctions of 2D potential 
  
!  Every value of “oscillator energy” Ω determines a complete basis 

!  Energy scale 
!  Restrict number of oscillator quanta 
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BASIS LIGHT FRONT QUANTIZATION 

V = 1
2M!2r2

b ! M"
2ni + mi +1( ) ! Nmax

i
"

J. P. VARY et al. PHYSICAL REVIEW C 81, 035205 (2010)
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FIG. 3. (Color online) Modes for n = 1 of the 2D harmonic oscillator selected for the transverse basis functions. The orbital quantum
number m progresses across the rows by integer steps from 0 in the upper left to 4 in the lower right and counts the pairs of angular lobes.
Amplitudes as well as x-axis and y-axis coordinates are in dimensionless units.

x− in Fig. 4. For comparison, we present a second example
with Eq. (5) for the longitudinal mode in Fig. 5. Our purpose in
presenting Figs. 4 and 5 is to suggest the richness, flexibility,

FIG. 4. (Color online) Transverse sections of the real part of a 3D
basis function involving a 2D harmonic oscillator and a longitudinal
mode of Eq. (4) with antiperiodic boundary conditions. The quantum
numbers for this basis function are k = 1

2 , n = 1, and m = 0. The
basis function is shown for the full range −L ! x− ! L.

and economy of texture available for solutions in a basis
function approach. Note that the choice of basis functions
is rather arbitrary, including which boundary conditions are

FIG. 5. (Color online) Transverse sections of a 3D basis function
involving a 2D harmonic oscillator and a longitudinal mode of
Eq. (5) with box boundary conditions (wave function vanishes at
±L). The quantum numbers for this basis function are k = 1, n = 0,
and m = 3. The basis function is shown for positive values of x− and
is antisymmetric with respect to x− = 0.
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!  Discretize longitudinal  momentum 
!  Longitudinal box of length L 
!  (anti)periodic boundary conditions 
 

!  Select value of total  longitudinal momentum 
!  Parameterize by dimensionless integer 
!  K determines resolution of longitudinal momentum grid 

 

!  Pick total  angular momentum projection – “M-scheme” 

!  For QCD, choose color singlet configurations 
 
!  Single-Par t icle Coordinates 

!  Use specially chosen coordinates to guarantee exact CM factorization in truncated 
basis 
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The eigenvalue E = E
cm

+ Eint. The CM part is a HO with natural length ⇧/
⌃
N , where ⇧ =

⌃
~

M
ho

�
ho

is the natural length of the basis.
Unfortunately, the factorization theorem does not hold for arbitrary Kmax.

Momentum Fraction Weighed HO Basis (Maris Basis)

Introduce momentum fraction weighed variables (aka. “Maris variables” ):

qi =
pi⌃
xi

; si =
⌃
xiri (4)

[si,qj ] = �ij1 holds. The kinetic energy and confining potential in terms of Maris variables are

Trel =
⌅

i

q2
i �

�
⌅

i

⌃
xiqi

⇥2

; Ve⇥ = ⇥4
⌅

i

s2i � ⇥4

�
⌅

i

⌃
xisi

⇥2

. (5)

The CM variables become,

P =
⌅

i

⌃
xiqi; R =

⌅

i

⌃
xisi (6)

For a 2-particle system, relative momentum/coordinate may be introduced as:

qrel =
⌃
x2q1 �

⌃
x1q2, srel =

⌃
x2s1 �

⌃
x1s2 =

⌃
x1x2(r1 � r2). (7)

Kinetic energy Trel = q2
rel Potential Vrel = Ve⇥(srel)+V

LFqcd

(qrel). is only a function of relative variables.
Relative variables for multi-particle system are not uniquely defined.

Introduce q representation and s representation. Let x be longitudinal momentum fraction, i.e. only
consider the

⇤
i p

+
i = P+ sector.

q̂ |p⇧ = p̂⌃
x
|p⇧ = p⌃

x
|p⇧ = q |p⇧ =⇥ |q⇧ = C |p⇧

(2⇤)3�2(q� q�)�(x� x�) = ⌅q, x|q�, x�⇧ = |C|2 ⌅p, x|p�, x�⇧ = (2⇤)3|C|2�2(p� p�)�(x� x�)

=⇥ |C|2�2(
⌃
xq�

⌃
x�q�)�(x� x�) = �2(q� q�)�(x� x�)

=⇥ C =
⌃
xei⇥

By choosing ⌅ = 0, we fix the q representation |q, x⇧ =
⌃
x |p, x⇧, or, |q⇧ =

⌃
x |p⇧ for short. It can be

shown q-representation is complete and orthonormal,

⌅q, x|q�, x�⇧ = (2⇤)2�2(q� q�)(2⇤)�(x� x�)
⇧

d2q

(2⇤)2

⇧ 1

0

dx

2⇤
|q, x⇧ ⌅q, x| = Id3

(8)

Similarly, s representation may be defined as |s, x⇧ = 1⇥
x
|r, x⇧. This is also an orthonormal complete

basis.

In practice, the longitudinal coordinate is compactified to a circle x+ ⇤ [�L
2 ,+L

2 ]. Hence the mo-
mentum is discrete: p+ = 2�

L n, (n = 1, 2, · · · ; or 1
2 , 3

2 , · · · ). Then the orthonormality and completeness
become:

⌅q, x|q�, x�⇧ = (2⇤)2�2(q� q�)�x,x�

⌅

x

⇧
d2q

(2⇤)2
|q, x⇧ ⌅q, x| = Id3

(8�)

2
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P+ = 2!
L K

p+ = 2!
L j

xi =
pi
+

P+
=
ji
K



HAMILTONIAN MATRIX 
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Iterated Interactions: 



!  Projection operators P and Q 

!  Eigenvalue equation can be rewritten: 

EFFECTIVE POTENTIAL 

e!e+ e!e+!

e!e+

e!e+!

PHP PHQ 

QHP QHQ 
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Coulomb singularity was present in a light-cone Hamil-
tonian formalism also, of course, did these difficulties
fade away. For this reason, comparatively broad room is
devoted to the "Coulomb trick" in Sec. III, treating the
nonrelativistic Coulomb problem in the momentum rep-
resentation on its own merit.
The major part of this work deals with a careful

specification of the model, leaving out eventually all de-
tails which could be found in Ref. [9]. But much effort
has been devoted to developing the technology, including
the symmetries discussed in Sec. IV, which ultimately has
lead to an amazingly effective numerical approach. One
is able to see the essential physics already when diagonal-
izing a 25X25 matrix. This simplicity provides the po-
tential for treating more complicated models in the fu-
ture.
Unfortunately, as discussed in Sec. V, the formalism is

not yet developed sufficiently well to establish an approxi-
mate independence of the results on formal parameters
such as the covariant momentum cutoff at sufficiently
large coupling constants. As we plan to discuss the relat-
ed problems in forthcoming work (II), the present work
can be only an intermediate step.

Hoo I f &o+Ho& I P &
&

=~
I P & o

Hio~t&o+H» ~@&i=~~@&»
(2 2)

with m—:M; and the projected eigenfunctions
lg)„=Q„Ig; ). Quite in general, by introducing inverse
matrices or resolvents 6 (co)—:I /(to H), one—can express
~P), in terms of ~g)o from the latter of the above equa-
tions, i.e.,

(ee) and the electron po-sitron ph-oton (eey) Fock states,
denoted collectively by ~

ee ) and
~
ee y ), respectively. It

is convenient to introduce them as projectors, i.e.,
Qo—:g, ~(ee), ) ((ee), ~

and Q&
—=g, ~(eey), ) ((eey), ~.

The index i runs over the discrete light-cone momenta
and helicities of the partons (electron e, positron e, and
photon y) subject to fixed total momenta and to covari-
ant regularization by a sharp momentum cutoff. Oc-
casionally, we shall refer to Qo and Q& as P and-Q-space,
respectively. The one-boson model was recently investi-
gated also by Kaluza [16]and by Hollenberg et al. [17].
The Hamiltonian matrix equation, Eq. (2. 1), can then

be understood as a coupled matrix equation involving the
block matrices H„„:Q„H—LCQ„:

II. DERIVING THE LIGHT-CONE
TAMM-DANCOFF EQUATION

1
Hiolf&o

ct) H) i
(2.3)

H~c I g, & =M', I g, &, (2.1)

it delivers the (stationary) eigenfunctions ~t(, ) and eigen-
values M; which have the dimension of an invariant mass
squared. For QED3+, their derivation as Fock-space
operators can be found elsewhere [9,10] together with the
complete tables of the Hamiltonian matrix elements.
Some of the latter are compiled in Appendix B.
In the sequel we proceed the way we think DLCQ

should be applied. One formulates the model in a discre-
tized momentum basis, where the Hamiltonian can be
visualized as a matrix with a finite number of rows and
columns. Next, one formulates all necessary model as-
sumptions, in accord with covariance and gauge invari-
ance, and finally by going over to the continuum limit
one converts the matrix equation to an integral equation.
Finally, one solves the integral equations with suitably
optimalized numerical methods. It should be emphasized
that the regularization scheme of DLCQ [9] explicitly al-
lows for such a procedure, since the regularization scales
are equal both for discretization and the continuum, con-
trary to lattice gauge theory, for example.

A. The formulation of the model

As part of the model we restrict ourselves to the
charge-zero sector and include only the electron-positron

In discretized light-cone quantization [9] (DLCQ) the
generalized momentum operators P" are a discrete and
covariant realization of the Heisenberg operators which
propagate the system in space-time, i.e., id„p=[Q,P„].
Their Lorentz-invariant contraction H„c=P"P„ is
discrete and frame independent, and is called the light-
cone Hamiltonian. Upon diagonalization

and insert it into the first one. Eventually, Eq. (2.1) can
be identically rewritten in terms of an "effective Hamil-
tonian" acting only in P-space: i.e.,

H.g(to) l q;(~o) )o =M2(to) l q;(to) )o,
with

1H tt(to)—:Hoo +Ho& H&o
co Hi i

(2.4)

Once the P-space eigenfunction ~P, (to}&o is known, one
can calculate ~g), from Eq. (2.3) by a quadrature. The
projection technique of deriving an effective Hamiltonian
is fairly standard in many-body theory [18],and has been
applied to light-cone formulation before, both implicitly
[6] and with explicit mentioning [19]. Apart from a
different model (gauge theory instead of Yukawa),
different regularization and a different space-time param-
etrization (equal light-cone time instead of equal time),
the model is the light-cone analogue of the Tamm-
Dancoff' approach [14,15]. A similar approach was ap-
plied recently [20] also to QED with scalar fields.
The effective Hamiltonian H,z depends on the un-

known eigenvalue co through the resolvent ("energy
denominator"). To solve it in principle, one starts, for
example, with some fixed value co as the "starting point
energy, " inverts (to HLC) in Q-space, calc—ulates and
subsequently diagonalizes H,~ in P-space to get the eigen-
values M, (to). The true eigenvalues are determined by
variation of co and the fixed-point equation ~=M;(~).
An alternative and very elegant method to solve the
equations has also been formulated by Tamm [14].
Despite acting only in the smaller P-space Eq. (2.4} is
thus not necessarily simpler to solve than the full prob-
lem. But Eq. (2.4) can be approximated easier than Eq.
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PHP ! H00

PHQ ! H01

QHP ! H10

QHQ ! H11
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H ! P2
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!  In special case where H11 is diagonal 

!  Resolvent operator (ω -H11)-1 not diagonal in H.O. basis 
! Work in momentum space initially 
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EFFECTIVE POTENTIAL 
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cone Hamiltonian. Upon diagonalization

and insert it into the first one. Eventually, Eq. (2.1) can
be identically rewritten in terms of an "effective Hamil-
tonian" acting only in P-space: i.e.,

H.g(to) l q;(~o) )o =M2(to) l q;(to) )o,
with

1H tt(to)—:Hoo +Ho& H&o
co Hi i

(2.4)

Once the P-space eigenfunction ~P, (to}&o is known, one
can calculate ~g), from Eq. (2.3) by a quadrature. The
projection technique of deriving an effective Hamiltonian
is fairly standard in many-body theory [18],and has been
applied to light-cone formulation before, both implicitly
[6] and with explicit mentioning [19]. Apart from a
different model (gauge theory instead of Yukawa),
different regularization and a different space-time param-
etrization (equal light-cone time instead of equal time),
the model is the light-cone analogue of the Tamm-
Dancoff' approach [14,15]. A similar approach was ap-
plied recently [20] also to QED with scalar fields.
The effective Hamiltonian H,z depends on the un-

known eigenvalue co through the resolvent ("energy
denominator"). To solve it in principle, one starts, for
example, with some fixed value co as the "starting point
energy, " inverts (to HLC) in Q-space, calc—ulates and
subsequently diagonalizes H,~ in P-space to get the eigen-
values M, (to). The true eigenvalues are determined by
variation of co and the fixed-point equation ~=M;(~).
An alternative and very elegant method to solve the
equations has also been formulated by Tamm [14].
Despite acting only in the smaller P-space Eq. (2.4} is
thus not necessarily simpler to solve than the full prob-
lem. But Eq. (2.4) can be approximated easier than Eq.

H00 H01 

(ω-H11)-1 H10 

Heff 

f Heff !( ) i = f H00 i +
f H01 n n H10 i
! ! n H11 nn

"



!  Perturbative calculation of scattering amplitude 

!  Each term has a divergence at small x 
!  Divergences cancel in perturbative calculation 
!  Result is identical to scattering amplitude obtained via usual 

Feynman rules in equal-time quantization 
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SMALL-x DIVERGENCES 

! k1
+ ! k3

+( ) ! k3
+ ! k1

+( )

We have,

(u+)
†
(p2, σ2)ε

−
λ
∗
(q)u+(p1, σ1) = (u+)

†
(p2, σ2)2

q⊥

q+
· (ε⊥λ )∗(q)u+(p1, σ1)

= χ†
σ2

2
q⊥

q+
χσ1 ,

(u+)
†
(p2, σ2)α

⊥ · (ε⊥λ )∗(q)u−(p1, σ1) = χ†
σ2

[

σ̂⊥ σ̂⊥ · p⊥1
p+

1

+ i
m

p+
1

σ̂⊥
]

χσ1 · (ε⊥λ )∗,

(u−)
†
(p2, σ2)α

⊥ · (ε⊥λ )∗(q)u+(p1, σ1) = χ†
σ2

[ σ̂⊥ · p⊥2
p+

2

σ̂⊥ − i
m

p+
2

σ̂⊥
]

χσ1 · (ε⊥λ )∗. (3.15)

Thus we have the short hand notation in the four component form,

ū(p2, σ2)γµ(εµ
λ)

∗(q)u(p1, σ1) = χ†
σ2

[2qi

q+
−

σ⊥.p⊥2
p+

2

σi − σi σ
⊥.p⊥1
p+

1

+ im(
1

p+
2

−
1

p+
1

)σi
]

χσ1 εi∗
λ .

(3.16)

k2

k1

k4

k3

k2

k1

k4

k3

k2

k1

k4

k3

(a) (b) (c)

+ +

Fig. 3.I

The instantaneous interaction contribution is given by (see Fig. 3.Ic)

Tfi(inst) = 4g2T aT a
√

k+
1 k+

2 k+
3 k+

4 χ†
σ3

χσ1χ
†
σ4

χσ2

1

(k+
1 − k+

3 )2

= g2T aT a
√

k+
1 k+

2 k+
3 k+

4

ū(k3, σ3)γ+u(k1, σ1)ū(k4, σ4)γ+u(k2, σ2)

(k+
1 − k+

3 )2
. (3.17)

The second order time ordered contributions are (Fig. 3.Ia-b)

Tfi(to) = g2T aT a
√

k+
1 k+

2 k+
3 k+

4

27

!
1

x1 " x3( )2
!

1
x1 " x3( )2



!  Consider just second term of effective interaction 

!  Sum reduces to sum over polarization states of photon 

!  Expected cancellation is achieved only if: 
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TWO-BODY EFFECTIVE INTERACTION 

f H (2)
eff !( ) i =

f H01 n n H10 i
! !Enn

"

respectively. Note that both states are invariant under SU(n
!
). The usual color singlets of QCD are

obtained by setting n
!
"3. The intermediate state

!q", qN , g#"! 2
n!
!
!1

"!

!
!"#

"!
!

!$"#

"!!%#
!
#"#

¹#
!&!$

b!
!$M

(k"
%
, $"

%
)d!

!$M $
(k

%N
, $

%N
)a!

#
(k

&
, $

&
)!0# , (3.31)

has “a gluon in flight”. Under that impact, the quark has changed its momentum (and spin), while
the antiquark as a spectator is still in its initial state. At the second vertex, the gluon in flight is
absorbed by the antiquark, the latter acquiring its final values (k"

%N
, $"

%N
). Since the gluons longitudinal

momentum is positive, the diagram allows only for k"
%
'(k'

%
. Rule 3 requires at each vertex the

factors

%q, qN !»!q", qN , g#" g
(2")'(!!n!

!
!1
2n

!

[uN (k
%
, $

%
)&!'!(k&, $&)u(k"

%
, $"

%
)]

"2k'
%
"2k'

&
"2k"'

%

, (3.32)

%q", qN , g!»!q", qN "#" g
(2")'(!!n!

!
!1
2n

!

[uN (k
%N
, $

%N
)&#'*# (k&, $&)u(k"

%N
,$"

%N
)]

"2k'
%N

"2k'
&

"2k"
%N
'

, (3.33)

respectively. If one works with color neutral Fock states, all color structure reduces to an overall
factor C, with C!"(n!

!
!1)/2n

!
. This factor is the only difference between QCD and QED for this

example. For QCD C!")
'

and for QED C!"1. Rule 4 requires the energy denominator 1/(E.
With the initial energy

'"PI
'

"#
!
PI %"(k

%
#k

%N
)
'

"#
!
(k

%
#k

%N
)%,

the energy denominator

2(E"(k
%
#k

%N
)%!(k

&
#k"

%
#k

%N
)%"!Q!/k'

&
(3.34)

can be expressed in terms of the Feynman four-momentum transfers

Q!"k'
&
(k

&
#k"

%
!k

%
)%, QM !"k'

&
(k

&
#k

%N
!k"

%N
)%. (3.35)

Rule 5 requires two Dirac-delta functions, one at each vertex, to account for conservation of
three-momentum. One of them is removed by the requirement of rule 6, namely to integrate over all
intermediate internal momenta and the other remains in the final equation (3.43). The momentum
of the exchanged gluon is thus fixed by the external legs of the graph. Rule 6 requires that one sums
over the gluon helicities. The polarization sum gives

d!#(k&
),!

$&

'!(k&
, $

&
) '*# (k&

, $
&
)"!g!##(k

&&!)##k
&&#)!)/k%

&
)% , (3.36)

see Appendix B. The null vector )! has the components [299]

)!"()', !
"
, )%)"(0, 0

"
, 2) , (3.37)
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the antiquark as a spectator is still in its initial state. At the second vertex, the gluon in flight is
absorbed by the antiquark, the latter acquiring its final values (k"

%N
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momentum is positive, the diagram allows only for k"
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. This factor is the only difference between QCD and QED for this
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and for QED C!"1. Rule 4 requires the energy denominator 1/(E.
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can be expressed in terms of the Feynman four-momentum transfers
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Rule 5 requires two Dirac-delta functions, one at each vertex, to account for conservation of
three-momentum. One of them is removed by the requirement of rule 6, namely to integrate over all
intermediate internal momenta and the other remains in the final equation (3.43). The momentum
of the exchanged gluon is thus fixed by the external legs of the graph. Rule 6 requires that one sums
over the gluon helicities. The polarization sum gives
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see Appendix B. The null vector )! has the components [299]
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and thus the properties !!,!!!!"0 and k!"k!. In light-cone gauge, we find for the !-
dependent terms

!!""

"q, qN #»#q$, qN , g%"q$, qN , g#»#q$, qN $%"#
"(gC)!

(2")"
1

2k!
"

(k
"
!)

$#[uN (q)&!k!
"
u(q$)]

%4k!
#
k$
#
!

[uN (qN )&&!&u(qN $)]
%4k!

#N
k$
#N
!

#[uN (q)&
$
!!u(q$)]

%4k!
#

k$
#
!

[uN (qN )&&k&
"
u(qN $)]

%4k!
#N

k$
#N
! $ . (3.38)

Next, we introduce four-vectors like l!
#
"(k

"
#k

#
!k$

#
)!. Since its three-components vanish by

momentum conservation, l!
#

must be proportional to the null vector !!. With Eq. (3.35) one gets

l!
#
"(k

"
#k

#
!k$

#
)!"(Q!/2k!

"
)!!, l!

#N
"(k

"
#k$

#N
!k

#N
)!"(QM !/2k!

"
)!! . (3.39)

The well-known property of the Dirac spinors, (k
#
!k$

#
)![uN (k

#
, '

#
)&!u(k$

#
, '$

#
)]"0, yields then

[uN (q)&!k!
"
u(q$)]"[uN (q)&!!!u(q$)]Q!/2k!

"
"[uN (q)&!u(q$)]Q!/2k!

"
,

and Eq. (3.38) becomes

!!""
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#
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#
!
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#N
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#N
!

. (3.40)

Including the g!& contribution, the diagram of second order in » gives thus

» 1
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, (3.41)

up to the delta functions, and a step function !(k$
#
!4k!

#
), which truncates the final momenta k$!.

Evaluating the second time ordered diagram, one gets the same result up to the step function
!(k$

#
!5k!

#
). Using

!(k$
#
!4k!

#
)#!(k$

#
!5k!

#
)"1 ,

the final sum of all time-ordered diagrams to order g! is Eq. (3.41). One proceeds with rule 8, by
including consecutively the instantaneous lines. In the present case, there is only one. From Fig. 5
we find
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Finally, adding up all contributions up to order g!, the qqN -scattering amplitude becomes
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including consecutively the instantaneous lines. In the present case, there is only one. From Fig. 5
we find
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Finally, adding up all contributions up to order g!, the qqN -scattering amplitude becomes
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! =
Ei +Ef

2



!  Final result 

!  3-fold summation 
!  2D Numerical Integral 
!  Infrared Cutoff 
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EXPRESSION FOR EFFECTIVE POTENTIAL 
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BLFQ RESULTS FOR POSITRONIUM 
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COMPARISON 
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GROUND STATE DISTRIBUTION FUNCTION 
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!  Effective two-body photon exchange interaction 
!  Cancellation of Light Front small-x divergences obtained only for a 

particular value of arbitrary parameter ω 

!  Finite result in continuum limit 
!  Results for binding energy and hyperfine splitting of ground state are 

the same order of magnitude as non-relativistic QM predictions 
!  Overbinding for large α also found by H.C. Pauli’s group (DLCQ) 

!  Future Work: 
!  Heavy Quarkonia 
!  Explicit dynamical photons in basis 

!  Non-perturbative renormalization 
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SUMMARY 



!  Harmonic Oscillator Basis for Coulomb Problem 
! Wrong asymptotic behavior            vs. 

HARMONIC OSCILLATOR BASIS 

COULOMB-STURMIAN BASIS FOR THE NUCLEAR MANY- . . . PHYSICAL REVIEW C 86, 034312 (2012)

where HN
c.m. is the space of center-of-mass functions with

exactly N oscillator quanta, and HN
in is the space of intrinsic

functions with N or fewer intrinsic excitation quanta above N0.
Consequently, factorization is maintained, but, in the solution
to the many-body problem in an Nmax-truncated space, several
approximate copies of the intrinsic spectroscopy are obtained,
each in a more highly truncated space. The H0

c.m. ⊗ HNmax
in

block yields the “interesting” solutions, or nonspurious states,
consisting of a 0s center-of-mass function multiplied by the
solutions in the least-truncated intrinsic space HNmax

in . Then the
H1

c.m. ⊗ HNmax−1
in block yields a 0p center-of-mass function

multiplied by the solutions of the intrinsic problem in the
HNmax−1

in space, the H2
c.m. ⊗ HNmax−2

in block yields 1s and 0d
center-of-mass functions multiplied by the solutions of the
intrinsic problem in the HNmax−2

in space, etc. In actual calcula-
tions, these “uninteresting” solutions, or spurious states, may
be identified by evaluating the expectation value 〈N!

c.m.〉.
The presence of such spurious states in the low-lying

calculated spectrum has considerable practical implications.
Although these states are clearly identifiable, as noted, di-
agonalization of such large matrices as encountered in NCCI
calculations typically relies upon methods such as the Lanczos
algorithm [22], which efficiently extract a selected set of
energy eigenvalues (and corresponding eigenvectors), namely,
those lowest in the energy spectrum. With increasing Nmax,
the low-energy spectrum would be increasingly cluttered with
spurious states (as illustrated more concretely in Sec. IV D),
limiting the ability of the Lanczos diagonalization to access
the low-lying intrinsic excited states. The spurious states are
therefore, in practice, typically shifted to higher energy by
inclusion of a Lawson term (Sec. II B) in the Hamiltonian, so
that they do not interfere with the low-lying spectrum obtained
by diagonalization.

As a final practical matter, it is necessary to note that,
for calculations with parity-conserving nuclear interactions,
the Nmax truncation of Eq. (20) is further restricted either
to Ntot even or to Ntot odd. If, e.g., even Ntot are taken,
so HNmax is the even-parity space for the nucleus, then
the H0

c.m. ⊗ HNmax
in subspace yields only even-parity intrinsic

excitations, the H1
c.m. ⊗ HNmax−1

in subspace yields the odd-
parity 0p center-of-mass function multiplied by odd-parity
intrinsic excitations, the H2

c.m. ⊗ HNmax−2
in subspace yields the

even-parity intrinsic excitations again but evaluated in the
smaller Nmax − 2 intrinsic space, etc.

III. THE COULOMB-STURMIAN BASIS

A. Coulomb-Sturmian functions

The harmonic-oscillator functions have the desirable prop-
erties, as basis functions for an eigenfunction expansion,
that these form a complete discrete set (of square-integrable
functions on R3), i.e., without a continuum. However, the
oscillator functions are obtained from an infinitely bound
potential and decay with Gaussian (e−αr2

) asymptotics; i.e.,
they satisfy an undesirable boundary condition for problems
involving finite binding. Conversely, the Schrödinger equation
for the Coulomb potential yields a set of eigenfunctions which

have exponentially decaying asymptotics (e−βr ), as desired,
but which do not form a complete set (of square-integrable
functions on R3) unless the positive-energy continuum
Coulomb wave functions are included. However, a closely
related set of functions, the Coulomb-Sturmian functions
[4–6,8,11], can be obtained as the solutions to a Sturm-
Liouville problem associated with the Coulomb potential.
These functions retain the exponential asymptotics of the
Coulomb problem while also forming, in the final form in
which we will write them, a complete and discrete set of
square-integrable functions on R3. The Coulomb-Sturmian
functions thus combine favorable attributes of both the
oscillator and Coulomb functions, as an expansion basis for
three-dimensional Schrödinger problems.

To begin with, let us recall the Schrödinger equation
solutions for the Coulomb potential. The functions

Wnlm(r) = Nnl

(
2r

n + l + 1

)l

×L2l+1
n

(
2r

n + l + 1

)
e−r/(n+l+1)Ylm(r̂), (22)

with

Nnl =
(

2
n + l + 1

)3/2[
n!

2(n + l + 1)(n + 2l + 1)!

]1/2

, (23)

satisfy the Schrödinger equation
(

−∇2 − 2
r

− 2Enl

)
W (r) = 0, (24)

with energy eigenvalue

Enl = − 1
2(n + l + 1)2

. (25)

This is the Schrödinger equation, written in dimensionless
form (h̄2/m = 1), for the potential V (r) = 1/r . The functions
W are orthonormal with respect to the standard inner product
on R3, that is,

∫
d3r W ∗

n′l′m′ (r)Wnlm(r) = δ(n′l′m′)(nlm). (26)

Observe that r always appears in the usual Coulomb
functions divided by a scale n + l + 1, which depends upon the
quantum numbers n and l.4 The Coulomb-Sturmian functions
are obtained by replacing (n + l + 1) → b in Eq. (22), that is,
by carrying out a radial change of variable on each function so

4The combination n + l + 1 is in fact the principal, or energy,
quantum number, which enters into the energy eigenvalue Enl in
Eq. (25). In comparing with the literature, it should be borne in mind
that, traditionally, the principal quantum number for the Coulomb
problem is denoted by n [23], and this notation propagates to some
discussions of the Coulomb-Sturmian functions (e.g., Refs. [4,5]).
However, consistency with conventional notation for the oscillator
problem [16] and nuclear shell model [24] is strongly desirable in
the present context. Hence, we reserve the symbol n for the radial
quantum number (n = 0, 1, . . .).
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As a final practical matter, it is necessary to note that,
for calculations with parity-conserving nuclear interactions,
the Nmax truncation of Eq. (20) is further restricted either
to Ntot even or to Ntot odd. If, e.g., even Ntot are taken,
so HNmax is the even-parity space for the nucleus, then
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in subspace yields only even-parity intrinsic
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smaller Nmax − 2 intrinsic space, etc.

III. THE COULOMB-STURMIAN BASIS
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(
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r
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)
W (r) = 0, (24)

with energy eigenvalue

Enl = − 1
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. (25)

This is the Schrödinger equation, written in dimensionless
form (h̄2/m = 1), for the potential V (r) = 1/r . The functions
W are orthonormal with respect to the standard inner product
on R3, that is,

∫
d3r W ∗

n′l′m′ (r)Wnlm(r) = δ(n′l′m′)(nlm). (26)

Observe that r always appears in the usual Coulomb
functions divided by a scale n + l + 1, which depends upon the
quantum numbers n and l.4 The Coulomb-Sturmian functions
are obtained by replacing (n + l + 1) → b in Eq. (22), that is,
by carrying out a radial change of variable on each function so

4The combination n + l + 1 is in fact the principal, or energy,
quantum number, which enters into the energy eigenvalue Enl in
Eq. (25). In comparing with the literature, it should be borne in mind
that, traditionally, the principal quantum number for the Coulomb
problem is denoted by n [23], and this notation propagates to some
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!  ε        0 limit is safe provided K        ∞  
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VARIATIONAL CALCULATION 
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!  Neglect instantaneous interactions when corresponding 
dynamical exchange is not present in model space 

Tuesday, May 14, 2013 Paul Wiecki (Iowa State University) NTSE 2013 18 

EXTRA 


