Super Heavy Element Studies at RAON

Youngman Kim

Rare Isotope Science Project (RISP)

Institute for Basic Science (IBS), Daejeon, Korea

Happy Birthday, James!!!

라온 (RAON): RISP accelerator complex, a pure Korean word, meaning "delightful" or "happy"

Based on Baseline Design Summary (August 2012) and RISP domestic science meeting (February 2013).

RAON: RISP Accelerator Complex

* ISOL-type facilities: radioactive ions are produced at rest in a thick target either by direct bombardment with particles from a driver accelerator or via fission induced both by fast and thermal secondary neutrons.

* In-flight (IF) facilities: a high energy ion beam is fragmented in a suitable thin target and the reaction products are and then transported to the secondary target.

Key Science Drivers of RISP

• Highest priority research subjects

- Nuclear reaction experiments important to **nuclear-astrophysics** : e.g. ${}^{15}O(a,\gamma){}^{19}Ne, \, {}^{45}V(p,\gamma){}^{46}Cr$
- Search for **super heavy elements**: $Z > 119 (Z \sim 120)$
- Nuclear structure of n-rich RI: @ near N=126, @ 80<A<140
- Nuclear symmetry energy at sub-saturation density
- Precision mass measurement & Laser spectroscopy

Important scientific applications

- Material science : β-NMR, μSR
- Medical and bio-science : **RI beam irradiation**
- Nuclear data for Gen-IV NPP and nuclear waste transmutation

Experimental System

Large-Acceptance Multipurpose Spectrometer (LAMPS)

• Nuclear symmetry energy

$$m = Zm_p + Nm_n - \frac{E_B}{c^2}$$

$$E_{\rm B} = a_{\rm v}A - a_a(N-Z)^2/A - a_c Z^2/A^{1/3} - a_s A^{2/3} \pm a_{\delta}/A^{3/4}$$

$$E(\rho, \tilde{\alpha}) \simeq E(\rho, 0) + S_2(\rho) \tilde{\alpha}^2,$$

$$\tilde{\alpha} \equiv (N - Z)/A$$

 $Z\ (N)$ is the number of protons (neutrons) in a nucleus.

Depending on the value of the parameter x, various high density behaviors are possible

L.W. Chen, C.M. Ko, and B.A. Li, Phys. Rev. Lett. 94, 032701 (2005)

Y. Kim, Y. Seo, I. J. Shin, and S.-J. Sin, JHEP 1106:011,2011

KOBRA (Korea Broad acceptance Recoil spectrometer and Apparatus)

"The Low Energy Nuclear Physics Program is carrying out an outstanding program of high impact science with exciting directions for the future..."

Report of the NSAC subcommittee on Low Energy Nuclear Physics (2001)

Science program

Nuclear structure

- Charge symmetry and charge independence in isobaric mirror nuclei at drip lines
- Two proton radioactivity new radioactive decay phenomena
- Continuum states in unbound nuclei
- Spin physics dipole/quadrupole moment, Island of inversion, Magic number

Nuclear astrophysics

- capture reactions (p,gamma), (alpha,gamma), (n,gamma)
- resonant scattering proton & alpha resonant elastic scattering
- transfer reactions (d,p) / (alpha,p) reactions

Rare event study

- super heavy elements search
- decay spectroscopy

Symmetry energy

- PDR (pigmy dipole resonance)
- GDR (giant dipole resonance)
- LAMP-L

Development Plan

We are here (TDR, etc).

Science program with beam schedule (as of this February, subject to change)

	~ •	+	Beam sp	pecies on exp. target	Beam Intensity			
Beam schedule	Science program	Exp. facility [⊭]	Day1 [†]	Extra 2 Years	on exp. target (pps) (required/expected)			
2017.June.1 ~	Nuclear structure SHE search, rp-process, Spin physics	RS	⁵⁸ Fe	⁶⁴ Ni ^{26m} Al (²⁸ Si), ²⁵ Al (²⁸ Si), ⁴⁴ Ti (⁴² Ca), ^{14,15} O (¹⁵ N)	¹⁵ N, ⁵⁸ Fe (<10 ⁹⁻¹⁰) ²⁸ Si, ⁴² Ca, ⁶⁴ Ni (<10 ⁷) ²⁵ Al, ^{26m} Al, ⁴⁴ Ti, ^{14,15} O: (10 ⁵⁻⁶)			
from SCL1 (<18.5 MeV/u)	Pigmy dipole resonance	LAS-L	⁵⁸ Ni	⁴⁰ Ca, ¹¹² Sn	(10 ⁶⁻⁸ / <10 ⁹⁻¹⁰)			
	Biological effects	BM	¹² C		(< 10 ¹² /> 10 ¹²)			
2017.July.1 ~ from ISOL (~5 keV/u)	Fine structure, mass measurement	AT/LS	¹³² Sn	¹³⁰⁻¹³⁵ Sn	¹³² Sn (<10 ⁵ /10 ⁷)			
2018.Jan.1 ~ ISOL-SCL3 (<18.5 MeV/u)	r-process	RS	¹³² Sn	¹³⁰⁻¹³⁵ Sn	¹³² Sn (10 ⁶ / 10 ⁷), ¹³⁰⁻¹³⁵ Sn (10 ³⁻⁶ / 10 ³⁻⁷)			
	Pigmy dipole resonance	LAS-L	¹³² Sn	⁶⁰⁺ⁿ Ni, ¹³⁰⁻¹³⁵ Sn	^{65,66} Ni (10 ⁶⁻⁸ /10 ⁶⁻⁷)			
<mark>SCL1-SCL2</mark> (~ hundreds MeV/u)	New materials	μSR	Muon b	oy (p, πx)→ μ	p ~full intensity, $\mu (10^8/10^9)$			
	Biological effects	BM	¹² C		(< 10 ¹² /> 10 ¹²)			
	Baseline experiments, Spin physics	LAS-H	⁴⁰ Ca	⁵⁸ Ni, ¹¹² Sn, ¹³² Xe	(10 ⁶ ~10 ⁸ /<10 ⁹⁻¹¹)			
SCL1-SCL2(X)	New material, Polarized beam	β-NMR	⁸ Li by (d,α)	¹¹ Be	p, d ~full intensity, n (< 10 ¹² /10 ¹²) ⁸ Li (10 ⁸ /10 ⁹), ¹¹ Be(10 ⁷ /10 ⁸)			
$(\sim tens ivie v/u)$	Neutron cross section	NSF	<mark>n</mark> by (p,	n) (d ,n)				
2018.Mar.1 ~ SCL1-SCL2-IF (~ hundreds MeV/u)	Nuclear structure	ZDS & HRS	¹²⁸ Sn	¹³² Sn, ¹⁸ O				
	Symmetry energy	LAS-H	¹²⁸ Sn	¹³² Sn, ⁴⁴⁺ⁿ Ca, ⁶⁰⁺ⁿ Ni, ¹⁴⁴ Xe	¹²⁸ Sn (10 ⁶⁻⁸ / 10 ⁷), ¹³² Sn (10 ⁶⁻⁸ / 10 ⁶) [‡]			
2018.Sep.1 ~	Nuclear structure	ZDS & HRS	¹³² Sn		¹³² Sn (10 ⁶⁻⁸ /10 ⁷), ¹⁴⁴ Xe (10 ⁶⁻⁸ /10 ⁶)			
(~ hundreds MeV/u)	Symmetry energy	LAS-H	¹³² Sn	¹⁴⁴ Xe				

RS: Recoil Spectrometer, LAS: Large Acceptance Spectrometer, BM: Bio & Medical, AT/LS: Atom Trap & Laser Spectrometer, NSF: Neutron Science Facility, ZDS: Zero Degree Spectrometer, HRS: High Resolution Spectrometer, † Beam purity >50 % from ISOL, Beam species : SI(black), RI(Blue), ‡ Beam available on Sep. 2018

Theory at RISP

- Nuclear reactions
- Nuclear structures
- Chiral EFT

- Nuclear transport
- (Nuclear) astrophysics
- Particle (hadron) physics

Super Heavy Element at RAON?

Group → ↓ Period	• 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 H																	2 He
2	3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
3	11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra		104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuo
	La	nthan	ides	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
		Actin	ides	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

- ✓ New heavy elements discovered and got their names (May, 2012)
 - Z=114 Flerovium (JINR, Dubna)
 - Z=116 Livermorium (JINR, Dubna)
- ✓ An island of stability at large atomic number has been expected. There can be exist spherical(deformed) shape super heavy elements.
- ✓ Already, super heavy elements up to Z=118 are experimentally observed.
- ✓ To reach Z>118, we need to study properties related to the synthesis of super heavy elements carefully.

SHE in DNS concept

(V.V Volkov, G.G. Adamian, N.V. Antonenko, A.K. Nasirov, et al)

Compound nucleus (fusion): through transfers of nucleons from the light nucleus to the heavy one.

The dynamics of the DNS (di-nuclear system) is considered as a combined diffusion in the degrees of freedom of the mass symmetry η and of the relative distance describing the formation of the compound nucleus and the quasi-fission process (decay of the DNS), respectively

 $\eta = (A1 - A2)/(A1 + A2)$

(A1 and A2 are the mass numbers of the DNS nuclei)

Capture Process and Potential Pocket

Energy dissipation by friction

In a deep-inelastic process, part of the kinetic energy excites di-nuclear system.

Capture Process

Hydrodynamical Hamiltonian for di-nuclear system

$$H = \frac{m}{2} \int J(\mathbf{R}, \mathbf{r}) \frac{1}{\rho(\mathbf{R}, \mathbf{r})} J(\mathbf{R}, \mathbf{r}) d^{3}\mathbf{r} + \frac{\hbar^{2}}{8m} \int \frac{(\nabla \rho(\mathbf{R}, \mathbf{r}))^{2}}{\rho(\mathbf{R}, \mathbf{r})} d^{3}\mathbf{r} + \frac{1}{2} \int \rho(\mathbf{R}, \mathbf{r}) v_{eff}(\mathbf{R}, \mathbf{r}, \mathbf{r}') \rho(\mathbf{R}, \mathbf{r}') d^{3}\mathbf{r}' \hat{H} = \hat{H}_{rel}(\mathbf{R}; \mathbf{P}) + \hat{H}_{in}(\xi) + \delta \hat{V}(\mathbf{R}, \xi), \begin{bmatrix} \hat{H}_{rel}(\mathbf{R}; \mathbf{P}) = \frac{\hat{\mathbf{P}}^{2}}{2\mu} + \hat{V}(\hat{\mathbf{R}}), \quad \text{Relative motion} \\ \hat{H}_{in} &= \frac{m}{2} \int \hat{j}_{P}(\mathbf{R} - \mathbf{r}) \frac{1}{\rho(\mathbf{R}, \mathbf{r})} \hat{j}_{P}(\mathbf{R} - \mathbf{r}) d^{3}\mathbf{r} + \int \hat{\rho}_{P}(\mathbf{R} - \mathbf{r}) \hat{v}_{eff}(\mathbf{R}, \mathbf{r}, \mathbf{r}') \hat{\rho}_{P}(\mathbf{R} - \mathbf{r}') d^{3}\mathbf{r}' \quad \text{Intrinsic motion} \\ + \frac{m}{2} \int \hat{j}_{T}(\mathbf{r}) \frac{1}{\rho(\mathbf{R}, \mathbf{r})} \hat{j}_{T}(\mathbf{r}) d^{3}\mathbf{r} + \int \hat{\rho}_{T}(\mathbf{R}, \mathbf{r}) \hat{v}_{eff}(\mathbf{R}, \mathbf{r}, \mathbf{r}') \hat{\rho}_{T}(\mathbf{R}, \mathbf{r}') d^{3}\mathbf{r}'. \quad (1.5) \\ \Longrightarrow \hat{H}_{in}(\xi) &= \sum_{i=1}^{A_{P}} \left(\frac{-\hbar^{2}}{2m} \Delta_{i} + \hat{V}_{P}(\mathbf{r}_{i} - \mathbf{R}(t)) \right) + \sum_{i=1}^{A_{T}} \left(\frac{-\hbar^{2}}{2m} \Delta_{i} + \hat{V}_{T}(\mathbf{r}_{i}) \right) + h_{residual}, \\ \text{Woods-Saxon pot. : } V_{P}(\mathbf{r} - \mathbf{R}) = -V_{(0)}^{N_{P}, Z_{P}} \left\{ 1 + \exp\left[\frac{|\mathbf{r} - \mathbf{R}(t)| - R_{P}}{a} \right] \right\}^{-1}$$

Capture Process

<Coupling term between relative and intrinsic motion>

$$\begin{split} \delta \hat{V}(\mathbf{R}(t);\xi) &= \sum_{i \neq i'} V_{ii'}(\mathbf{R}(t)) \mathbf{a}_{i}^{+} \mathbf{a}_{i'} \\ &= \sum_{P \neq P'} \Lambda_{PP'}^{(T)}(\mathbf{R}(t)) \mathbf{a}_{P}^{+} \mathbf{a}_{P'} + \sum_{T \neq T'} \Lambda_{TT'}^{(P)}(\mathbf{R}(t)) \mathbf{a}_{T}^{+} \mathbf{a}_{T'} + \sum_{T,P} \mathbf{g}_{PT}(\mathbf{R}(t)) (\mathbf{a}_{P}^{+} \mathbf{a}_{T} + h.c.), \\ &\int \Lambda_{PP'}^{(T)}(\mathbf{R}(t)) = < P |V_{T}(\mathbf{r})| P' >, \\ &\Lambda_{TT'}^{(P)}(\mathbf{R}(t)) = < T |V_{P}(\mathbf{r} - \mathbf{R}(t))| T' >, \\ &g_{PT}(\mathbf{R}(t)) = \frac{1}{2} < P |V_{P}(\mathbf{r} - \mathbf{R}(t)) + V_{T}(\mathbf{r})| T > \end{split}$$

The energy of system is converted to excited energy of each nucleon and exchange energy of multinucleon. We call this "friction".

Capture Process

<Energy and angular momentum dependence of capture cross-section>

At high angular momentum, partial capture cross-sections have large values.

<Energy and angular momentum dependence of fusion cross-section>

Partial fusion cross-sections have large values at small angular momentum.

Driving Potential

 $U_{dr}(A, Z; R, l) = B_1 + B_2 + V(Z, l; R) - (B_{CN} + V_{CN}(l))$

 B_1, B_2 and B_{CN} : The binding energies of the nuclei

 ${\cal R}$: Relative distance

l : Angular momentum of the compound nucleus

 $V_{CN}(l)$: The rotational energy of the compound nucleus

Driving Potential

 $U_{dr}(A, Z; R, l) = B_1 + B_2 + V(Z, l; R) - (B_{CN} + V_{CN}(l))$

<Nucleus-Nucleus potential>

Fusion Process

Cross-section for evaporation residues $\sigma_{er}(E) = \sum_{\ell=0}^{\ell_{cap}} (2\ell+1) \sigma_{\ell}^{cap}(E) P_{CN}(E,\ell) W_{sur}(E,\ell)$

Fusion cross-section

 $\sigma_{\ell}^{fus} = \sigma_{\ell}^{cap}(E) P_{CN}(E,\ell)$

Probability for formation of compound nucleus

$$P_{CN} = \frac{\rho(E_{DNS}^* - B_{fus}^*)}{\rho(E_{DNS}^* - B_{fus}^*) + \rho(E_{DNS}^* - B_{qf})}$$

Level density

$$\rho(E_{DNS}^* - B_K^*) = \frac{g(\varepsilon_F)K_{rot}}{2\sqrt{g_1(\varepsilon_F)g_2(\varepsilon_F)}} \frac{\exp\left[2\pi\sqrt{g(\varepsilon_F)(E_{DNS}^* - B_K^*)/6}\right]}{\left[\frac{3}{2}g(\varepsilon_F)(E_{DNS}^* - B_K^*)\right]^{\frac{1}{4}}(E_{DNS}^* - B_K^*)\sqrt{48}}.$$

Fission Barrier

<Temperature and angular momentum dependence of fission barrier>

$$B_f(L,T) = B_f^m(L) - h(T)q(L)\delta W$$

$$h(T) = \{1 + \exp[(T - T_0)/d]\}^{-1}$$

$$q(L) = \{1 + \exp[(L - L_{1/2})/\Delta L]\}^{-1}$$

$$d = 0.2 \text{ MeV}, \ T_0 = 1.15 \text{ MeV}, \ \Delta L = 3\hbar, \ L_{1/2} = 20\hbar$$

Kowal, et al. PRC82 (2010) 014303

Result for Fe+Th

Kyungil Kim (RISP/IBS), A. K. Nasirov (BLTP, Dubna), YK

Result for Ni+Th

- The super heavy element (Z=118) could be formed with excitation energy over 40 MeV.
- Near E_{ex}=45MeV, the threeneutron evaporation residue(ER-3n) cross-section has the maximum value.
- The ER cross-section is expected to be~1 fb.

SHE summary

- In heavy-ion collisions at low energies, capture processes can be understood by frictional energy losses in DNS.
- With driving potentials, we obtain fusion barriers. Then, fusion crosssection is obtained by a product between a capture cross-section and a probability of making compound nucleus.
- After the fusion of SHE, a few neutrons are evaporated from SHE during deexcitation stage. Very few SHEs can survive against fission.
- ✤ We obtain the cross-sections:
 - > Fe+Th (Fusion) : $\sim 10^{-2}$ mb
 - ➢ Fe+Th (ER-3n) : ~10 fb
 - > Ni+Th (Fusion) : $\sim 10^{-3}$ mb
 - ➢ Ni+Th (ER-3n) : ~1 fb

