International Conference Nuclear Theory in the Supercomputing Era – 2014 (NTSE-2014)

Chiral EFT and nuclear forces: Are we in trouble?

R. Machleidt, University of Idaho

Outline

Nuclear forces from chiral EFT: Basic ideas and overview
Two-nucleon forces (2NF) and renormalization
Three-nucleon forces (3NF)
Higher orders: The explosion of contributions
Conclusions

The ultimate goal of nuclear physics: Understanding nuclei from first principles

Forces from first principals (QCD)

Ab initio many-body methods

R. Machleidt

Forces from first principles, i.e., QCD

- QCD at low energy is strong.
- Quarks and gluons are confined into colorless hadrons.
- Nuclear forces are residual forces (similar to van der Waals forces)
- Separation of scales

- Calls for an EFT:
 - soft scale: $\mathbf{Q} \approx \mathbf{m}_{n}$, hard scale: $\Lambda_{\chi} \approx \mathbf{m}_{\rho}$; pions and nucleons are relevant d.o.f.
- Low-momentum expansion: $(Q/\Lambda_{\chi})^{\nu}$ with ν bounded from below.
- Most general Lagrangian consistent with all symmetries of low-energy QCD, particularly, chiral symmetry which is spontaneously broken.
 Weakly interacting Goldstone bosons = pions.
 п-п and п-N perturbatively
 NN has bound states:
 - (i) NN potential perturbatively (ii) apply nonpert. in LS equation. (Weinberg)

Chiral NFs NTSE2014, June 23-27, 2014

R. Machleidt

NN phase shifts up to 300 MeV

Red Line: N3LO Potential by Entem & Machleidt, PRC 68, 041001 (2003). Green dash-dotted line: NNLO Potential, and blue dashed line: NLO Potential

by Epelbaum et al., Eur. Phys. J. A19, 401 (2004).

NTSE2014, June 23-27, 2014

R. Machleidt

Optimized Chiral Nucleon-Nucleon Interaction at Next-to-Next-to-Leading Order

A. Ekström,^{1,2} G. Baardsen,¹ C. Forssén,³ G. Hagen,^{4,5} M. Hjorth-Jensen,^{1,2,6} G. R. Jansen,^{4,5} R. Machleidt,⁷
 W. Nazarewicz,^{5,4,8} T. Papenbrock,^{5,4} J. Sarich,⁹ and S. M. Wild⁹

$\operatorname{Bin}(\operatorname{MeV})$	# of data	N ³ LO	NNLO	NLO	AV18
0-100	1058	1.05	1.00	4.5	0.95
100 - 190	501	1.08	1.87	100	1.10
190 - 290	843	1.15	6.09	180	1.11
$0\!-\!290$	2402	1.10	2.95	86	1.04
.					

N3LO Potential by Entem & Machleidt, PRC 68, 041001 (2003). NNLO and NLO Potentials by Epelbaum et al., Eur. Phys. J. A19, 401 (2004).

Summary: χ²/datum

- NLO: ≈ 100
- NNLO: ≈ 10
- N3LO: ≈ 1

Great rate of convergence!

In contrast to older approaches to the nuclear force, like the meson model, chiral EFT wants to be a theory. How true is that?

R. Machleidt

If EFT wants to be a theory, it better be renormalizable.

The problem in all field theories are divergent loop integrals.

The method to deal with them in field theories:

 Regularize the integral (e.g. apply a "cutoff") to make it finite.
 Remove the cutoff dependence by Renormalization ("counter terms").

For calculating pi-pi and pi-N reactions no problem.

However, the NN case is tougher, because it involves two kinds of (divergent) loop integrals.

R. Machleidt

The NN interaction involves two kinds of renormalizations

- Perturbative: NN Potential. No problem.
 Non-perturbative: NN T-matrix:
 - The potential is inserted into the Schroedinger or Lippmann-Schwinger (LS) equation: non-perturbative re-summation of ladder diagrams (infinite sum):

$$T(\vec{p}\,',\vec{p}) = V(\vec{p}\,',\vec{p}) + \int d^3p'' \, V(\vec{p}\,',\vec{p}\,'') \, \frac{M_N}{p^2 - p''^2 + i\epsilon} \, T(\vec{p}\,'',\vec{p}) \,,$$

- Divergent integral.
- Regularize it:

$$V(\vec{p}',\vec{p}) \longmapsto V(\vec{p}',\vec{p}) \ e^{-(p'/\Lambda)^{2n}} \ e^{-(p/\Lambda)^{2n}}$$
.

- Cutoff dependent results.
- Renormalize to get rid of the cutoff dependence:

>Non-perturbative renormalization

Chiral EETitofINUEd. Forces INPCS20131,47,10nemce306705/020113

Some Results from non-perturbative renormalization

Infinite cutoff: no reasonable power counting scheme, no order-by-order improvement (Idaho group).
Infinite cutoff only at LO, higher orders perturbatively (Valderrama; Gegelia): How to implement in nuclear structure calculations? Also: huge tensor force.
Finite cutoff (below the hard scale): cutoff independence for the range 450-800 MeV, substantial improvements from NLO to NNLO (Idaho group).

Cutoff = 450-800 MeV

NLO

Cutoff = 450-800 MeV

NNLO 20 ¹S₀ Phase Shift (deg) Phase Shift (deg) 60 10 0 40 20 0 -10 -20 0 50 100 150 200 100 150 0 50

³P₀

200

NLO NNLO N3LO Cutoff = 450-600 MeV

The plateaus improve with increasing order.

NTSE2014, June 23-27, 2014

The plateaus improve with increasing order.

Chiral NFs NTSE2014, June 23-27, 2014

21

Renormalization Summary

Non-perturbative reno using finite cutoffs $\leq \Lambda \chi \approx 1$ GeV. For this, we have shown:

Cutoff independence for a certain finite range below 1 GeV (shown for NLO and NNLO).

Order-by-order improvement of the predictions.

This is what you want to see in an EFT!

So much about two-body forces; there isn't much more to say, because ...

Two-body interactions are easy – in physics

and in human life:

But, now let's turn to three-body forces ...

Three-body interactions are difficult – in human life ...

Fujita-Miyazawa, 1957

Status of Three-body forces 50+ years ago

What progress did we have in the past 50 years on the topic of three-body forces?

Three-body forces in physics

Phenomenological three-nucleon forces (3NFs):
Fujita-Miyazawa (1957)
Tucson-Melbourne (1975-1999)
Urbana (1995)
Illinois (2001-2010)
CD-Bonn + ∆ (Deltuva, Sauer, 2003)
Chiral three-nucleon forces (3NFs)

Now, showing only 3NF diagrams.

Chiral NFs NTSE2014, June 23-27, 2014

R. Machleidt

Calculating the properties of light nuclei using chiral 2N and 3N forces

Calculating the properties of light nuclei using chiral 2N and 3N forces

Calculating the properties of light nuclei using chiral 2N and 3N forces

Continuum Effects and Three-Nucleon Forces in Neutron-Rich Oxygen Isotopes

G. Hagen,^{1,2} M. Hjorth-Jensen,^{3,4,5} G. R. Jansen,³ R. Machleidt,⁶ and T. Papenbrock^{2,1}

FIG. 1 (color online). Ground-state energy of the oxygen isotope ^{A}O as a function of the mass number A. Black circles: experimental data; blue diamonds: results from nucleon-nucleon interactions; red squares: results including the effects of threenucleon forces.

FIG. 1: (Color online) Ground-state energy of the calcium isotopes as a function of the mass number A. Black circles: experimental data; red squares: theoretical results including the effects of three-nucleon forces; blue diamonds: predictions from chiral NN forces alone. The experimental results for 51,52 Ca are from Ref. [34].

The nuclear matter equation of state with consistent two- and three-body perturbative chiral interactions

L. Coraggio,¹ J. W. Holt,² N. Itaco,^{1,3} R. Machleidt,⁴ L. E. Marcucci,^{5,6} and F. Sammarruca⁴

Chiral NFs NTSE2014, June 23-27, 2014

R. Machleidt

Fig. 6. $p - {}^{3}$ He A_{ψ} observable calculated with the I-N3LO (blue dashed line), the I-N3LO/N-N2LO (blue solid line), and the AV18/UIX (thin green solid line) interaction models for three different incident proton energies. The experimental data are from Refs. [37,22,36].

And so, we need 3NFs beyond NNLO, because ...

 The 2NF is N3LO; consistency requires that all contributions are included up to the same order.

 There are unresolved problems in 3N and 4N scattering, and nuclear structure.

R. Machleidt

Δ -less \mathbf{LO} $(Q/\Lambda_{\chi})^0$ NLO $(Q/\Lambda_{\chi})^2$ The 3NF at NNLO; used so far. **NNLO** $(Q/\Lambda_{\chi})^3$ N^3LO $(Q/\Lambda_{\chi})^4$ $\mathbf{N}^{4}\mathbf{LO}$ $(Q/\Lambda_{\chi})^5$

Chiral NFs NTSE2014, June 23-27, 2014

R. Machleidt

Chiral 3N Force

Chiral 3N Force

LO $(Q/\Lambda_\chi)^0$ NLO

 $(O / A)^2$

 2π -exchange

$$\phi_{-}\phi_{-}\phi = \left\{ \begin{array}{c} \frac{1}{2} \frac{1}{2} \frac{1}{2} + \left[\begin{array}{c} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} + \left[\begin{array}{c} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} + \left[\begin{array}{c} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} + \left[\begin{array}{c} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} + \left[\begin{array}{c} \frac{1}{2} \frac{1}{2}$$

 Δ -less

 2π - 1π -exchange

$$\oint = \oint + \frac{1}{2} + \frac{1}{2$$

ring diagrams

$$\left(\begin{array}{c} -1 \\ -1 \\ -1 \\ -1 \end{array} \right) = \left(\begin{array}{c} -1 \\ -1 \\ -1 \\ -1 \end{array} \right) + \left(\begin{array}{c} -1 \\ -1 \\ -1 \end{array} \right) + \left(\begin{array}{c} -1 \\ -1 \\ -1 \end{array} \right) + \left(\begin{array}{c} -1 \\ -1 \\ -1 \end{array} \right) + \left(\begin{array}{c} -1 \\ -1 \\ -1 \end{array} \right) + \left(\begin{array}{c} -1 \\ -1 \\ -1 \end{array} \right) + \left(\begin{array}{c} -1 \\ -1 \\ -1 \end{array} \right) + \left(\begin{array}{c} -1 \\ -1 \\ -1 \end{array} \right) + \left(\begin{array}{c} -1 \\ -1 \\ -1 \end{array} \right) + \left(\begin{array}{c} -1 \\ -1 \\ -1 \end{array} \right) + \left(\begin{array}{c} -1 \\ -1 \\ -1 \end{array} \right) + \left(\begin{array}{c} -1 \\ -1 \\ -1 \end{array} \right) + \left(\begin{array}{c} -1 \\ -1 \\ -1 \end{array} \right) + \left(\begin{array}{c} -1 \\ -1 \\ -1 \end{array} \right) + \left(\begin{array}{c} -1 \\ -1 \end{array} \right) + \left(\begin{array}{c} -1 \\ -1 \\ -1 \end{array} \right) + \left(\begin{array}{c} -1 \end{array} \right) + \left(\begin{array}{c} -1 \\ -1 \end{array} \right) + \left(\begin{array}{c} -1 \end{array} \right) + \left(\begin{array}{c}$$

contact- 1π -exchange

contact- 2π -exchange

$$(1) = \chi_{--} + \chi_{-$$

R. Machleidt

virtual institute "Spin an 16 "Subnuclear Structure under contract number R

APPENDD	$2M_{\pi}^{2}q_{2}^{2}\left(z\left(-3\right.$	
	$\frac{zg_A^6M_\pi}{2M}$	$R_7 = \frac{3g_A^e M_{\pi}}{256 E_{\pi}^e c^2 (-A_{\pi})}$
In this appendix we give	$128F^{6}\pi q_{1}(-4$	$250T \cdot \pi q_1 (-4) \cdot \frac{1}{2}$
diagrams (1) and (2) can	$R_4 = \frac{A(q_2) g_A^6 q_2^2}{(-)}$	$\frac{5A(q_1)g_A(2M_{\pi})}{256F^6}$
$V_{ m ring} = ec{\sigma}_1 \cdot ec{\sigma}_2 au_2$		$3I(4:0, -q_1)$
$+ \vec{a}_1 \cdot \vec{q}_3 \vec{a}_2 + \vec{a}_1 \cdot \vec{a}_2 R$	$\frac{A\left(q_{1}\right)g_{A}^{\circ}\left(-2I\right)}{2}$	$\overline{64F^6(-1+z^2)^2}$
where the functions $R_i \equiv$	$A(a_{2})$	$4\left(-1+z^2 ight)M_\pi^2$
$(-1+z^2) q_A^6 M$	$\frac{11}{128F^6\pi} (-1 +$	$3zq^6 \Lambda$
$R_1 = \frac{75A}{128F^6\pi (4)}$	$q_3 \left(-\left(z+z^3\right)\right)$	$R_8 = -\frac{5A}{256F^6\pi q_1 (-4)}$
$A\left(q_{3} ight) g_{A}^{6}\left(zq_{2}^{2}\left(ight) ight)$	I	$3zA(q_1) g_A^6(2M$
	$32F^{6}(-1+z^{2})$	256F'
$A(q_1) g_A^o (2M_{\pi}^2)$	8(-1+z)(1+	3I(4:0,-q)
I(4:0)	$2M_{\pi}^2 q_2^2 \left(z^2 \left(-z^2\right)\right)$	$64F^6 (-1+z^2)^2$
$\overline{32F^6(-1+z^2)}$	$\frac{zg_{A}^{b}M_{\pi}}{108E6}$	$4 \left(-1 + z^2 ight) M_\pi^2$
$z\left(-1+z^2 ight)q_1$ ç	$128F^{5}\pi q_{1}(-4)$	$R_{0} = -\frac{3A(q_{2})g_{A}^{6}(2M)}{2}$
$A(q_2) g_A^6 q_2^2 (-2$	$R_5 = \frac{A(q_2) g_A^{\circ} q_2^{\circ} (-)}{2}$	
$R_2 =$	A (a-) :	$3A(q_1) g^o_A((1 +$
$A\left(q_{3} ight) g_{A}^{6}\left(M_{\pi}^{2} ight)$ ($\frac{11}{128F^6\pi(-1+)}$	$24(a) a^{6} (2a)^{3}$
	$(1+z^2) q_1 q_3^2$	$\frac{3A(q_3)g_A(2zq_1)}{2}$
$\frac{A(q_1)g}{128F6-(-1+1)}$	$A\left(q_{1} ight)g_{A}^{6}\left(2M ight)$	3I(4:0,-
$128F^{-\pi}(-1+z^{3})$		$\overline{64F^6(-1+z^2)^5}$
45 ((* (*)) i I(-	<i>I</i> (4	$4(-1+z^2)M^2$
$\overline{32F^6(-1+z^2)}$	$32F^{6}(-1+z^{2})$	$4(-1+z)$ M_{π}
8(-1+z)(1+z)	8(-1+z)(1+z)(1+z)(1+z)(1+z)(1+z)(1+z)(1+z)($a_{D_{-}} = 3(-1+z^2)g_A^6.$
$2M_{\pi}^2 q_2^2 (2zq_1^3 +$	$2M_{\pi}^{2}q_{2}^{2}(z(-3))$	$n_{10} = \frac{1}{256F^6\pi} (-4(-1))$
$g_A^6 M_\pi (2M_i)$	$\frac{g_A m_{\pi}}{128 F^6 \pi} (-4)$	$\frac{3A\left(q_{1} ight)g_{A}^{b}\left(zq_{1}^{3} ight.}{}$
$+\frac{1}{128F^{6}\pi q_{1}^{2}}$ (4 ($4(x) a^{6} (2M)$	$34(a_2)a_2^6(a_3^3-$
$zA(q_2) g_A^6 q_2^2 +$	$R_6 = \frac{A(q_2) g_A(2M)}{128 F^6 \pi}$	511 (q3) 9 _A (q1
A3 =	$A\left(q_{3} ight)g_{A}^{6}\left(2zq_{2} ight)$	$3I(4:0,-q_1,,q_1,$
$zA(q_3)g$		$\overline{64F^6(-1+z^2)}$
$128F^{6}\pi (-1 + 1)$	108E6 = -(4)4	$4 \left(-1 + z^2 ight) M_\pi^2$
$2z q_1 q_3 + (1 + zA(q_1)) a^6 (2M)$	$2(19 - 18z^2)$	$B_{11} = -\frac{A(q_2) g_A^6 q_2^2 (4)}{2}$
$\frac{\frac{2\pi (q_1)g_A(2m)}{g_A(2m)}}{2}$	$(77 - 36z^2) q_1$	$256F^6\pi$ (-1)
I(4	$2z (9 + 2z^2) q$	$rac{A\left(q_3 ight)g_A^{lpha}\left(2M_\pi^2 ight)}{2}$
$\overline{32F^{6}\left(-1+z^{2} ight)}$	$I(4:0,-q_1,q$	$A(a_1) a_4^6 (2M^2)$
	$32F^{6}q_{1}(-4(-$	(11) 3A (211 <u>m</u>
	$2M_{\pi}^{2}\left(4q_{1}q_{3}\left(q\right)\right)$	<i>I</i> (4
		$(64F^6(-1+z^2))$
		$2z^{s}q_{1}q_{3}\left(-4M_{\pi}^{4}\right)$
		$zq_1q_3 (8M_{\pi}^{\pi}+q_1^{2})$

8(-1+z)(1+

 $zA\left(q_{2}
ight) g_{A}^{4}\left(\left(1+
ight)
ight) % \left(\left(1+
ight) \left(1+
ight)
ight)
ight) \left(\left(1+
ight)
ight)
ight) \left(\left(1+
ight)
ight)
ight) \left(\left(1+
ight)
ight)
ight)
ight) \left(\left(1+
ight)
ight)
ight)
ight) \left(\left(1+
ight)
ight)
ight)
ight)
ight) \left(\left(1+
ight)
ight)
ight)
ight)
ight) \left(\left(1+
ight)
ight
i$

NTSE2014, Jun

$$\begin{split} S_5 \;\;=\;\; & -\frac{A\left(q_1\right)g_{A}^4q_1\left(\left(1+z^2\right)q_1+2zq_3\right)}{128F^6\pi\left(-1+z^2\right)^2q_5^2} - \frac{A\left(q_3\right)g_{A}^4\left(2zq_1+\left(1+z^2\right)q_3\right)}{128F^6\pi\left(-1+z^2\right)^2q_3} \;+ \\ & \frac{I\left(4:0,-q_1,q_3;0\right)g_{A}^4q_1\left(-4z\left(-1+z^2\right)M_{\pi}^2+2zq_1^2+\left(1+3z^2\right)q_1q_3+2zq_3^2\right)}{32F^6\left(-1+z^2\right)^2q_3} \;+ \end{split}$$
 $\frac{A\left(q_{2}\right)g_{A}^{4}\left(\left(1+z^{2}\right)q_{1}^{2}+z\left(3+z^{2}\right)q_{1}q_{3}+\left(1+z^{2}\right)q_{3}^{2}\right)}{128F^{6}\pi\left(-1+z^{2}\right)^{2}q_{3}^{2}}\,,$ $S_{6} \ = \ - \frac{A\left(q_{3}\right)g_{A}^{4}q_{3}\left(zq_{1}+q_{3}\right)}{128F^{6}\pi\left(-1+z^{2}\right)} + \frac{A\left(q_{2}\right)g_{A}^{4}\left(q_{1}^{2}-z\left(-3+z^{2}\right)q_{1}q_{3}+q_{3}^{2}\right)}{128F^{6}\pi\left(-1+z^{2}\right)} - \frac{A\left(q_{1}\right)g_{A}^{4}q_{1}\left(q_{1}+zq_{3}\right)}{128F^{6}\pi\left(-1+z^{2}\right)} + \frac{A\left(q_{2}\right)g_{A}^{4}\left(q_{1}^{2}-z\left(-3+z^{2}\right)q_{1}q_{3}+q_{3}^{2}\right)}{128F^{6}\pi\left(-1+z^{2}\right)} - \frac{A\left(q_{1}\right)g_{A}^{4}q_{1}\left(q_{1}+zq_{3}\right)}{128F^{6}\pi\left(-1+z^{2}\right)} + \frac{A\left(q_{2}\right)g_{A}^{4}\left(q_{1}^{2}-z\left(-3+z^{2}\right)q_{1}q_{3}+q_{3}^{2}\right)}{128F^{6}\pi\left(-1+z^{2}\right)} - \frac{A\left(q_{1}\right)g_{A}^{4}q_{1}\left(q_{1}+zq_{3}\right)}{128F^{6}\pi\left(-1+z^{2}\right)} + \frac{A\left(q_{1}^{2}-z\left(-3+z^{2}\right)q_{1}q_{3}+q_{3}^{2}\right)}{128F^{6}\pi\left(-1+z^{2}\right)} - \frac{A\left(q_{1}^{2}-z\left(-3+z^{2}\right)q_{1}q_{3}+q_{3}^{2}\right)}{128F^{6}\pi\left(-1+z^{2}\right)} + \frac{A\left(q_{1}^{2}-z\left(-3+z^{2}\right)q_{1}q_{3}+q_{3}^{2}\right)}{128F^{6}\pi\left(-1+z^{2}\right)} - \frac{A\left(q_{1}^{2}-z\left(-3+z^{2}\right)q_{1}q_{3}+q_{3}^{2}\right)}{128F^{6}\pi\left(-1+z^{2}\right)} + \frac{A\left(q_{1}^{2}-z\left(-3+z^{2}\right)q_{1}q_{3}+q_{3}^{2}\right)}{128F^{6}\pi\left(-1+z^{2}\right)} - \frac{A\left(q_{1}^{2}-z\left(-3+z^{2}\right)q_{3}+q_{3}^{2}\right)}{128F^{6}\pi\left(-1+z^{2}\right)} + \frac{A\left(q_{1}^{2}-z\left(-3+z^{2}\right)q_{3}+q_{3}^{2}\right)}{128F^{6}\pi\left(-1+z^{2}\right)} - \frac{A\left(q_{1}^{2}-z\left(-3+z^{2}\right)q_{3}+q_{3}^{2}\right)}{128F^{6}\pi\left(-1+z^{2}\right)} + \frac{A\left(q_{1}^{2}-z\left(-3+z^{2}\right)q_{3}+q_{3}^{2}-q_{3}^{2}\right)}{128F^{6}\pi\left(-1+z^{2}\right)} - \frac{A\left(q_{1}^{2}-z\left(-3+z^{2}\right)q_{3}+q_{3}^{2}-q_$ $I\left(4:0,-q_{1},q_{3};0\right)g_{A}^{4}q_{1}q_{3}\left(zq_{1}+q_{3}\right)\left(q_{1}+zq_{3}\right)$ $32F^6(-1+z^2)$ $S_{7} \;=\; \frac{A\left(q_{1}\right)g_{A}^{4}\left(2M_{\pi}^{2}+q_{3}^{2}\right)}{256F^{6}\pi\left(-1+z^{2}\right)q_{3}^{2}} - \frac{A\left(q_{2}\right)g_{A}^{4}\left(zq_{3}^{2}\left(zq_{1}+q_{3}\right)+2M_{\pi}^{2}\left(q_{1}+zq_{3}\right)\right)}{256F^{6}\pi\left(-1+z^{2}\right)q_{1}q_{3}^{2}} + \frac{zA\left(q_{3}\right)g_{A}^{4}\left(2M_{\pi}^{2}+q_{3}^{2}\right)}{256F^{6}\pi\left(-1+z^{2}\right)q_{1}q_{3}^{2}} + \frac{zA\left(q$ $I\left(4:0,-q_{1},q_{3};0
ight)g_{A}^{4}\left(zq_{1}+q_{3}
ight)\left(2M_{\pi}^{2}+q_{3}^{2}
ight)$ (A.7) $64F^6(-1+z^2)q_3$

Examining the above results one observes that the individual terms in the expressions for R_i and S_i are singular for $z = \pm 1$, $q_1 = 0$ and/or $q_3 = 0$. These singularities, however, cancel in such a way that the resulting terms in Eqs. (A.1) and (A.6) are finite. In principle, it is possible to obtain a representation for functions R_i and S_i which is free of at least some of the singularities. In particular, the singularities at $z = \pm 1$ can be avoided if one expresses the results in terms of the functions J_1 and J_2 defined as

$$\begin{split} h_1(d,\vec{q}_1,\vec{q}_3) &= \frac{1}{1-z^2} \Big\{ J(d:\vec{0},-\vec{q}_1,\vec{q}_3) - \frac{1}{2}(1+z) \Big[\frac{J(d:\vec{0},\vec{q}_1)}{q_3^2 + q_1q_3} + \frac{J(d:\vec{0},\vec{q}_3)}{q_1^2 + q_1q_3} - \frac{J(d:\vec{0},\vec{q}_1+\vec{q}_3)}{q_1q_3} \Big] \\ &- \frac{1}{2}(1-z) \Big[\frac{J(d:\vec{0},\vec{q}_1)}{q_3^2 - q_1q_3} + \frac{J(d:\vec{0},\vec{q}_3)}{q_1^2 - q_1q_3} + \frac{J(d:\vec{0},\vec{q}_1+\vec{q}_3)}{q_1q_3} \Big] \Big\},$$
(A.8)

$$I_2(d,\vec{q_1},\vec{q_3}) = \frac{1}{(1-z^2)^2} \Big\{ J(d:\vec{0},-\vec{q_1},\vec{q_3}) - \frac{1}{4}(1-z)^2 \Big[\frac{J(d:0,\vec{q_1})}{q_3^2 - q_1q_3} + \frac{J(d:0,\vec{q_3})}{q_1^2 - q_1q_3} + \frac{J(d:0,\vec{q_1}+\vec{q_3})}{q_1q_3} \Big]$$
(A.9)

$$\begin{split} &+ (1+z) \Big[-\frac{8M^2 - 2q_1^2 + (d-1)(q_1 - q_3)(2q_1 - q_3)}{(d-1)q_3(q_1 - q_3)^3} J(d:\vec{0},\vec{q}_1) \\ &+ \frac{8M^2 - 2q_3^2 + (d-1)(q_1 - q_3)(q_1 - 2q_3)}{(d-1)q_1(q_1 - q_3)^3} J(d:\vec{0},\vec{q}_3) + \frac{2(4M^2 + (d-2)(q_1 - q_3)^2)}{(d-1)q_1q_3(q_1 - q_3)^2} J(d:\vec{0},\vec{q}_1 + \vec{q}_3) \Big] \Big] \\ &- \frac{1}{4}(1+z)^2 \Big[\frac{J(d:\vec{0},\vec{q}_1)}{q_3^2 + q_1q_3} + \frac{J(d:\vec{0},\vec{q}_3)}{q_1^2 + q_1q_3} - \frac{J(d:\vec{0},\vec{q}_1 + \vec{q}_3)}{q_1q_3} \\ &+ (1-z) \Big[\frac{8M^2 - 2q_1^2 + (d-1)(q_1 + q_3)(2q_1 + q_3)}{(d-1)q_3(q_1 + q_3)^3} J(d:\vec{0},\vec{q}_1) \\ &+ \frac{8M^2 - 2q_3^2 + (d-1)(q_1 + q_3)(q_1 + 2q_3)}{(d-1)q_1(q_1 + q_3)^2} J(d:\vec{0},\vec{q}_1 - \frac{2(4M^2 + (d-2)(q_1 + q_3)^2)}{(d-1)q_1q_3(q_1 + q_3)^2} J(d:\vec{0},\vec{q}_1 + \vec{q}_3) \Big] \Big] \Big\}, \end{split}$$

rather than the three-point function $J(d: \vec{0}, -\vec{q_1}, \vec{q_3})$ and uses certain linear combinations of two-point functions and tadpole integrals. In the above expressions, the two-point function is defined as

$$J(d:\vec{p}_1,\vec{p}_2) = \int \frac{d^d l}{(2\pi)^d} \frac{1}{(\vec{l}+\vec{p}_1)^2 + M_\pi^2} \frac{1}{(\vec{l}+\vec{p}_2)^2 + M_\pi^2} \,. \tag{A.10}$$

[1] N. Kalantar-Nayestanaki and E. Epelbaum, Nucl. Phys. News 17, 22 (2007) [arXiv:nucl-th/0703089] [2] D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001 (2003) [arXiv:nucl-th/0304018].

R. Machleidt

10

 $256F^6\pi q_1^2$ (4)

 $4M_{\pi}^{2} \left(2M_{\pi}^{2}+
ight)$ $zq_1q_3 (32M_{\pi}^6)$

In the above expression:

(except in the argumer

the scalar loop integral

 $I(d: p_1, p_2, p_3; p_4) =$

In a general case, this

can be expressed in ter

In particular, the funct

For diagram (5), we ob

where the functions S_i $S_1 = -\frac{A(q_1) g_A^4 (2M_2^2)}{128F^6 \pi}$ $I(4:0,-q_1,q_3;0)$

 $S_2 = -\frac{A(q_1) g_A^4 ((1 + 128F^6 \pi (- 128F^6 \pi (-$

 $S_3 = \frac{A(q_3) g_A^4 ((1+z))}{128 F^6 \pi (-1)}$

 $S_4 = \frac{zA(q_1) g_A^4 ((1 + 128F^6\pi (-1)))}{128F^6\pi (-1)}$ $I(4:0,-q_1,q_3;0)$

 $I(4:0,-q_1,q_3;0)$

 $I(4:0,-q_1,q_3;0)$ $A\left(q_{2}
ight)g_{A}^{4}\left(\left(1+z\right)\right)$

 $V_{\rm ring} = \tau_1$ $+ \vec{\sigma}_{1}$

J

14

Apps of N3LO 3NF:

Triton: Skibinski et al., PRC 84, 054005 (2011). Not conclusive.

Neutron matter: Hebeler, Schwenk and co-workers, PRL 110, 032504 (2013). Not small!(?)

N-d scattering (Ay): Witala et al. Small!

N-d A_v calculations by Witala et al.

Apps of N3LO 3NF:

Triton: Skibinski et al., PRC 84, 054005 (2011). Not conclusive.

Neutron matter: Hebeler, Schwenk and co-workers, PRL 110, 032504 (2013). Not small!(?)

N-d scattering (Ay): Witala et al. Small!

Chiral 3N Force

 Δ -less

Girlanda, Kievsky, Viviani, PRC 84, 014001 (2011)

 $\mathbf{k}_i = \mathbf{p}_i - \mathbf{p}'_i$ and $\mathbf{Q}_i = \mathbf{p}_i + \mathbf{p}'_i$, \mathbf{p}_i and \mathbf{p}'_i being the initial and final momenta of nucleon *i*, the potential in momenta space is found to be

$$V = \sum_{i \neq j \neq k} \begin{bmatrix} -E_1 \mathbf{k}_i^2 - E_2 \mathbf{k}_i^2 \boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j - E_3 \mathbf{k}_i^2 \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j - E_4 \mathbf{k}_i^2 \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j \boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j \\ E_5 \left(3\mathbf{k}_i \cdot \boldsymbol{\sigma}_i \mathbf{k}_i \cdot \boldsymbol{\sigma}_j - \mathbf{k}_i \right) - \Gamma_v \left(3\mathbf{k}_i \cdot \boldsymbol{\sigma}_i \mathbf{k}_i \cdot \boldsymbol{\sigma}_j - \mathbf{k}_i^2 \right) \right) \boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j \\ + \frac{i}{2} E_7 \mathbf{k}_i \times \left(\mathbf{Q}_i - \mathbf{Q}_j \right) \cdot \left(\boldsymbol{\sigma}_i + \boldsymbol{\sigma}_j \right) + \frac{i}{2} E \mathbf{k}_i \times \left(\mathbf{Q}_i - \mathbf{Q}_j \right) \cdot \left(\boldsymbol{\sigma}_i + \boldsymbol{\sigma}_j \right) \mathbf{\tau}_j \cdot \boldsymbol{\tau}_k \end{bmatrix}$$

How to deal with the explosion?

• use Δ-less

skip N3LO 3NF

• at N4LO start with

contact 3NF, use

e.g. spin-orbit

that may already

one term at a time,

solve some of your

include NNLO 3NF

Chiral 3N Force

Chiral NFs NTSE2014, June 23-27, 2014

R. Machleidt

problems.

... and then there Is also the Δ-full theory ... **Chiral 3N Force**

Chiral NFs NTSE2014, June 23-27, 2014

R. Machleidt

... and then there Is also the **Δ-full theory**

More explosions!

Conclusions

- The chiral EFT approach has substantially advanced our understanding of nuclear forces.
- Two-, three, and four-nucleon forces have been derived up to N3LO.
- The chiral forces are a perfect starting point for ab initio nuclear structure calculations.
- But there are still some not so subtle "subtleties" to be taken care of:
- The non-perturbative renormalization of the chiral forces
- Sub-leading 3NFs
- The role of 4NFs

The 3NF issue

 The 3NF at NNLO is good, but not good enough.

- The 3NF at N3LO (in the Δ-less theory) may be weak (and useless?).
- However, there is a burst of (potentially large) 3NF contributions at N4LO (including a new set of contact 3NFs!).
- Order by order convergence of the chiral 3NF may be questionable.
- There will be many new 3NFs in the near future. Too many?
- But, practitioners, NO PANIC! For a while you have to pick and choose, and not go for "complete" calculations.

And so, we are not yet completely done with the nuclear force problem, but ...

