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Outline

• The abstract problem setup

– Why off­diagonal perturbations

– Maximal angle between subspaces

– The questions we answer

• Review of known bounds on variation of spectral subspaces

• Bounds on the shift of the spectrum (under off­diagonal perturbations)

• Applications to Schrödinger operators
(in particular to few­body Hamiltonians)

First, we present rather general, abstract results that hold for operators on ar­

bitrary Hilbert spaces. Then we will turn to quantum­mechanical Hamiltonians.
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Recalling of the operator norm definition

If V is a bounded linear operator on a Hilbert space H, its norm
∥V∥ is given by

∥V∥= sup
∥ f∥=1

∥V f∥ (N.B.: sup = least upper bound).

For any f ∈ H we have ∥V f∥ ≤ ∥V∥∥ f∥.
If V is a self­adjoint (i.e. Hermitian) operator on H, and

mV = min spec(V ) and MV = max spec(V ),

then
∥V∥= max{|mV |, |MV |}.

Example 1. V = |ϕ⟩κ⟨ϕ | with ∥ϕ∥= 1, κ ∈ R =⇒ ∥V∥= |κ|.
Example 2. H = L2(R), (V f )(x) = V (x) f (x) with V (·) a bounded
function on R. In this case ∥V∥= sup

x∈R
|V (x)|.
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Let A be a self­adjoint operator on a Hilbert space H such that

spec(A) = σ0∪σ1, dist(σ0,σ1) = d > 0.

The spectral subspaces of A:

H0 = RanEA(σ0), H1 = RanEA(σ1).

A 2× 2 operator block matrix representation of A w.r.t. the de­
composition H= H0⊕H1 :

A =

(
A0 0
0 A1

)
, A0 = A

∣∣
H0
, A1 = A

∣∣
H1
.

We focus on the problem of variation of the spectral subspaces
under off­diagonal perturbations (i.e. potentials in the case)

V =

(
0 B
B∗ 0

)
(∥V∥= ∥B∥).

Perturbed operator (total Hamiltonian):

H = A+V.
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Comment: Why off­diagonal perturbations?

One can decompose any bounded V into the sum V =Vdiag+Voff of
the diagonal and off­diagonal (w.r.t. H= H0⊕H1 ) parts

Vdiag =

(
P0V
∣∣
H0

0
0 P1V

∣∣
H1

)
and Voff =

(
0 P0V

∣∣
H1

P1V
∣∣
H0

0

)
,

where P0 and P1 are the orthogonal projections onto H0 and H1,
respectively, P0 = EA(σ0) and P1 = EA(σ1).

The subspaces H0 and H1 remain invariant under Vdiag and, hence,
under A+Vdiag. Therefore, for the diagonal perturbations the prob­
lem reduces to the perturbation of spectra only.

The action of the off­diagonal part Voff is completely nontrivial: it
may change the spectrum and does change the spectral subspaces.
Thus, the core of the perturbation theory for invariant subspaces
is in the study of their variation under off­diagonal perturbations.
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The bounds on variation of the spectral subspaces will be given in
terms of the maximal angle between two subspaces.

It is well known that
∥P−Q∥ ≤ 1

for any two orthogonal projections P and Q in the Hilbert space H.

Definition. Let HP = RanP and
HQ = RanQ. The quantity

θ(HP,HQ) := arcsin(∥P−Q∥)
is called the maximal angle between
the subspaces HP and HQ.

The concept of maximal angle is traced back at least to [Krein,
Krasnoselsky, Milman (1948)]; [Dixmier (1949)].
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Remark. Assuming that (HP,HQ) is an ordered pair of subspaces in H with
HP ̸= {0}, Krein, Krasnoselsky, and Milman applied the notion of the (relative)
maximal angle between HP and HQ to the number φ(HP,HQ)∈

[
0, π

2

]
introduced

by

sinφ(HP,HQ) = sup
x∈HP, ∥x∥=1

dist(x,HQ).

If both HP ̸= {0} and HQ ̸= {0} then

θ(HP,HQ) = max{φ(HP,HQ),φ(HQ,HP)}.

Unlike φ(HP,HQ), the maximal angle
θ(HP,HQ) is always symmetric w.r.t. the
interchange of the arguments HP and HQ.

φ(HP,HQ) =
π
2

Furthermore,

φ(HP,HQ) = φ(HQ,HP) = θ(HP,HQ) whenever ∥P−Q∥< 1.
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Surely,
∥P−Q∥= sin

(
θ(HP,HQ)

)
.

One is interested in the case where the “rotation angle” from an
unperturbed spectral subspace to the perturbed one is acute (i.e.
the maximal angle θ between them is smaller than 90◦).

Definition. HP and HQ are in the acute­angle case if HP ̸= {0},
HQ ̸= {0}, and

θ(HP,HQ)<
π
2
,

that is, if ∥P−Q∥< 1.
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MAIN QUESTIONS:

(i) What is an optimal requirement on ∥V∥ (= ∥B∥) that guarantees
that V does not close the gaps between σ0 and σ1 (and, thus,
dist(σ ′

0,σ ′
1)> 0)?

(ii) What then can be said about variation of the spectral subspace,
say, H0: Is it then true that the unperturbed and perturbed spec­
tral subspaces H0 and H′

0 are in the acute­angle case, i.e.

θ(H0,H
′
0)<

π
2

?

And what is a (sharp) bound on θ := θ(H0,H
′
0) in terms of ∥V∥

and d = dist(σ0,σ1)?

Recall, θ(H0,H
′
0) stands for the maximal angle between the un­

perturbed and perturbed spectral subspaces H0 = RanEA(σ0) and
H′

0 = RanEA+V(σ ′
0).
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Under the assumption that spec(A) = σ0∪σ1 and σ0∩σ1 = ∅ one
distinguishes the following three cases:

Generic case (G): The only condition dist(σ0,σ1) = d > 0.

Special case (S2): σ0 and σ1 are subordinated, conv(σ0)∩ conv(σ1) = ∅.

Special case (S3): One of the sets σ0 and σ1 lies in a finite gap of
the other one, say conv(σ0)∩σ1 = ∅.
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Review of the results for off­diagonal self­adjoint V=

(
0 B
B∗ 0

)
(G) [V.Kostrykin, K.A.Makarov, A.K.M. (2007)]: Gaps between σ0 and σ1

remain open whenever ∥V∥<
√

3
2

d (sharp);
√

3
2

= 0.866025 . . ..

θ <
π
2

whenever ∥V∥<cMS d, cMS = 0.675989 . . .

[K.A.Makarov, A. Seelmann (2010, 2013)]

(S2) For any ∥V∥ the initial gap between σ0 and σ1 remains in ρ(L).
The sharp bound for θ :

tan2θ ≤ 2∥V∥
d

⇐⇒ θ ≤ 1
2

arctan
2∥V∥

d

(
<

π
4

)
.

(The Davis­Kahan tan2θ Theorem, 1970)

(S3) [V.Kostrykin, K.A.Makarov, A.K.M. (2005)]: Gaps between σ0 and σ1

remain open and θ <
π
2

whenever ∥V∥<
√

2d (sharp);

tanθ ≤ ∥V∥
d

[S. Albeverio, A.V. Selin, A.K.M. (2006, 2012)]

(see [Integr. Equation Operator Theory 73 (2012), 413]).
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Estimates like that in tan2θ Theorem (but in terms of quadratic
forms of A and V ) have been obtained even for some unbounded V
(see [A.K.M., A.V.Selin, Integr. Equations Oper. Theory 56 (2006), 511], [L.

Grubišić, V. Kostrykin, K. A. Makarov, K. Veselić, J. Spectr. Theory 3 (2013),

83]).
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Bounds on position of the perturbed spectrum

(G) [V.Kostrykin, K.A.Makarov, A.K.M., 2007, bounded A],
[C. Tretter, 2009, unbounded A]:

σ ′
i ⊂ OrV(σi), i = 0,1,

where OrV(σi) denotes the closed rV­neighborhood of σi with

rV = ∥V∥ tan
(

1
2

arctan
2∥V∥

d

)
< ∥V∥.

(S2) The gap between σ0 and σ1 remains in ρ(A+V ).

(S3) σ ′
0 ∈ OrV(σ0). The gaps between OrV(σ0) and σ1

remain in ρ(A+V ).
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Bounds in the case of non­off­diagonal self­adjoint V=
(

V0 B
B∗ V1

)

In order to have disjoint perturbed spectral components, one should

assume ∥V∥< d
2
. In this case σ ′

i ⊂ O∥V∥(σi), i = 0,1.

(G) The subspaces H0 and H′
0 are in the acute case,

θ <
π
2
, whenever ∥V∥<cS d, cS = 0.454839 . . . [A. Seelmann (2013)].

In particular,

θ ≤ 1
2

arcsin
π∥V∥

d
<

π
4

if ∥V∥<1
π

d

[S. Albeverio, A.K.M. (2013)].

(S2 & S3) The sharp bound for θ (Davis­Kahan sin2θ Theorem, 1970):

θ ≤ 1
2

arcsin
2∥V∥

d
<

π
4
.
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Applications to Schrödinger operators
(in particular to few­body Hamiltonians)

Let A = H0+V0 be the Schrödinger operator with H0 the kinetic en­
ergy and V0 the “main” potential (combining, say, two­body forces).
Let V be an additional interaction (say, three­body forces), and

H = A+V .

1. Suppose that E0 is the g.s. energy (simple eigenvalue) of A,
and ψ0 the g.s. wave function, Aψ0 = E0ψ0 (∥ψ0∥= 1).

Set spec(A) = σ0∪σ1 with σ0 = {E0} and σ1 = spec(A)\{E0} (̸= ∅).

If 2∥V∥< d := dist(E0,σ1) then there is g.s. (E ′
0,ψ ′

0) for H,

Hψ ′
0 = E ′

0ψ ′
0.

We claim that |⟨ψ ′
0,ψ0⟩|= cosθ with θ < π/4 such that

sin2θ ≤ 2∥V∥
d

.

This is the consequence of the Davis­Kahan sin2θ Theorem (1970).
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If, in addition, V is off­diagonal then, for any arbitrary large ∥V∥,
NO spectrum of H enters the gap between E0 and σ1, and

|⟨ψ ′
0,ψ0⟩|= cosθ

with

tan2θ ≤ 2∥V∥
d

.

In particular, we have:

|⟨ψ ′
0,ψ0⟩|2 ≥

1
2

(
1+

d√
d2+4∥V∥2

) (
>

1
2

)
(Probability of the system to remain in the initial ground state ψ0.)

Furthermore, necessarily

E ′
0 ≤ E0

and

E0−E ′
0 ≤ ∥V∥ tan

(
1
2

arctan
2∥V∥

d

)
(< ∥V∥).
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2. Suppose that
σ0 = {E0,E1, . . . ,En}

consists of the n+1 lowest eigenvalues of A and let σ1 = spec(A)\σ0

be the remainder of the spectrum of A.

Denote by H0 the spectral subspace of A associated with σ0, i.e.
the linear span of the corresponding eigenvectors.

Assume that 2∥V∥ < d := dist(σ0,σ1) and σ ′
0 combines the eigen­

values of H = A+V that stem from the eigenvalues of A contained
in σ0.

Then

θ ≤ 1
2

arcsin
2∥V∥

d

(
=⇒ θ <

π
4

)
,

where, recall, θ := θ(H0,H
′
0) is the maximal angle between H0 and

the spectral subspace of H = A+V associated with σ ′
0.
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If, in addition, V is off­diagonal, then, for any arbitrary large ∥V∥,
NO spectrum of H enters the gap between En+1

(
= max(σ0)

)
and

σ1, and

θ ≤ 1
2

arctan
2∥V∥

d
.

Moreover, necessarily
E ′

0 ≤ E0

and

E0−E ′
0 ≤ ∥V∥ tan

(
1
2

arctan
2∥V∥

d

)
(< ∥V∥).
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3. Suppose that

σ0 = {En+1,En+2, . . . ,En+k}, n ≥ 0, k ≥ 1,

is a set of consecutive eigenvalues of A and σ1 = spec(A)\σ0.

Notice that there are eigenvalues E0,E1, . . . ,En of A lying to the left
of σ0. Also there is a part of spec(A) lying to the right of σ0.

Assume that

∥V∥< d
2

(
d = dist(σ0,σ1)

)
,

and σ ′
0 consists of the eigenvalues of H = A+V that result from the

eigenvalues of A contained in σ0. Then θ = θ(H0,H
′
0)<

π
4 and

sin2θ ≤ 2∥V∥
d

.

This follows again from the Davis­Kahan sin2θ Theorem.
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If V is off­diagonal then the bound may be essentially strengthened:

• The gaps between σ0 and σ1 remain open whenever condition

∥V∥<
√

2d

is satisfied.

• Moreover, under this condition

tanθ ≤ ∥V∥
d

.

This is corollary of the a priori tanθ Theorem [S. Albeverio, A.V. Selin,

A.K.M. (2006, 2012)].
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Conclusions

• We have found new sharp norm bounds on rotation of spectral
subspaces of a self­adjoint operator under off­diagonal perturba­
tions.

• We have also established optimal bounds on the shift of the
spectrum under off­diagonal perturbations.

• The maximal angle bounds obtained allow one to derive the cor­
responding bounds on variation of spectral subspaces under non­
off­diagonal (generic) perturbations.

• The general results have been applied to quantum­mechanical (in
particular, to few­body) Hamiltonians.

• The spectral shift and subspace variation bounds may be em­
ployed to verify the quality of numerical calculations. They may
be used to give the corresponding upper estimates prior the
actual calculations.



22Ideas of the proof, e.g., of the a priori tanθ theorem:
Relation to the operator Riccati equation

Let K : H0 → H1 be a bounded operator.

The graph of K (the graph subspace associated with K)

G (K) =

{(
x

Kx

)∣∣∣∣ x ∈ H0

}
is an invariant subspace for H =

(
A0 B
B∗ A1

)
if and only if K is a

solution to the operator Riccati equation

KA0−A1K +KBK = B∗. (R)
H1

H0

θ

G (K)

x1 = Kx0

x0

The maximal angle θ between H0

and G (K) is given by

tanθ = ∥K∥.



23Proposition. Let P and Q are orthogonal projections in H with HP = RanP and
HQ = RanQ. Then

∥P−Q∥< 1 ⇐⇒ HQ = G (K)

(
∥K∥= ∥P−Q∥√

1−∥P−Q∥2

)
.

for some bounded operator K from HP to H ⊥
P = H⊖HP.

Remark. G (K)⊥ = G (−K∗).

Theorem. If the graph subspace G (K), K ∈ B(H0,H1), is an invariant subspace

for H =

(
A0 B
B∗ A1

)
then

H =UΛU∗,

where U is a unitary operator on H given by

U =

(
I −K∗

K I

)(
I +K∗K 0

0 I +KK∗

)−1/2

and Λ is a block diagonal self­adjoint operator on H,

Λ = diag(Λ0,Λ1),

whose entries
Λ0 = (I +K∗K)1/2(A0+BK)(I +K∗K)−1/2

and
Λ1 = (I +KK∗)1/2(A1−B∗K∗)(I +KK∗)−1/2

are self­adjoint operators on the Hilbert spaces H0 and H1, resp.
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In case (S3) the existence of the corresponding (in certain sense unique) bounded
solution K : H0 →H1 to the operator Riccati equation under condition ∥V∥<

√
2d

has been proven by Kostrykin, Makarov, A.K.M. (2005) (based on the Virozub­
Matsaev factorization theorem).

Polar decomposition of K:
K =U |K|,

with U the isometry on Ran(|K|) = Ran(K∗); U : Ran(K∗)→ Ran(K).

Our first idea is to obtain an estimate for eigenvalues of |K| (if they exist).

Lemma. Let K be a bounded solution to the operator Riccati equation

KA0−A1K +KBK = B∗

(with B ̸= 0). Suppose that |K| has an eigenvalue λ > 0, |K|u = λu for some
u ∈ H0, ∥u∥= 1. Then the following identity holds:

λ 2(∥A1Uu∥2+∥BUu∥2−∥Λ0u∥2)= ∥A0u∥2+∥B∗u∥2−∥Λ0u∥2,

where Λ0 = (I +K∗K)1/2(A0+BK)(I +K∗K)−1/2.
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In case (S3) we appropriately choose the origin of the spectral parameter plane
and, under condition ∥V∥<

√
2d, notice that

∥A1Uu∥2+∥BUu∥2−∥Λ0u∥2 > 0.

Then the above identity transforms into

λ 2 =
∥A0u∥2+∥B∗u∥2−∥Λ0u∥2

∥A1Uu∥2+∥BUu∥2−∥Λ0u∥2. (⋆)

If H0 is finite dimensional then K is finite rank and the equality (⋆) is used to find
a bound for the maximal eigenvalue of |K|, that is, a bound for the norm of K,

∥K∥ ≤ ∥V∥
d

⇐⇒ tanθ ≤ ∥V∥
d

.

Further on, by using the result for the finite­rank case, we prove this bound for
the infinite­dimensional case.
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To be more precise, our complete consideration involves additional parameter,
the length |∆| of the open gap ∆ of σ1 that contains the whole set σ0. Our detail
estimates for θ , thus, involve three parameters: ∥V∥, d, and |∆|.

∆
(∆ is the gap of σ1 that contains the whole set σ0)



27Under the (sharp) gap­nonclosing condi­
tion

∥V∥<
√

d|∆|
there is an optimal estimating function
M(D,d,v), defined for

d > 0, D ≥ 2d, 0 ≤ v <
√

dD,

such that

tanθ ≤ M(|∆|,d,∥V∥)
(
<
√

2
)
.
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Explicit expression for M has been found.

For ∥V∥<
√

2d,

sup
D≥2d

M(D,d,∥V∥) = ∥V∥
d

.

The sharp estimating function M(D,d,v) is plotted in the figure above right, in
terms of the “dimensionless” variables

x :=
D−2d

D
and y :=

4v2

D2

[
0 ≤ x < 1, 0 ≤ y < 2(1− x)

]
.
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