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First, we present rather general, abstract results that hold for operators on ar-

bitrary Hilbert spaces. Then we will turn to quantum-mechanical Hamiltonians.



Recalling of the operator norm definition

If V is a bounded linear operator on a Hilbert space §), its norm
|V is given by
V]| = sup [|[Vf] (N.B.: sup = least upper bound).
1£lI=1

For any f < $ we have [[Vf][ < [[V][|[f].

If V is a self-adjoint (i.e. Hermitian) operator on §), and
my = min spec(V) and My = max spec(V),

then
V|| = max{|my|, |My|}.

Example 1. V = |¢) k(0| with ||¢]| =1, ke R = ||V|| = |x|.

Example 2. § =1,(R), (Vf)(x)=V(x)f(x) with V(-) a bounded
function on R. In this case ||V| =sup |V (x)|.

xeR



The abstract problem setup 4

Let A be a self-adjoint operator on a Hilbert space §) such that
spec(A) = opU oy, dist(op,01) =d > 0.
The spectral subspaces of A:
$Ho=RanEs(0p), $H1=RanEs(0oy).

A 2 X 2 operator block matrix representation of A w.r.t. the de-
composition H = HoD N :

Ay O
A:<00 A1>, AO:A\%, AI:A|51.

We focus on the problem of variation of the spectral subspaces
under off-diagonal perturbations (i.e. potentials in the case)

v (;1 ﬁ) (VI = 1B]).

Perturbed operator (total Hamiltonian):

H=A+YV.



Comment: Why off-diagonal perturbations!?

One can decompose any bounded V into the sum V = Vo + Vi of
the diagonal and off-diagonal (w.r.t. = 7D H;) parts

(RV], O [ 0 RV|,
Vdiag — < 0 k Plv‘g)l> and Voff— (Plvﬁo 0 1) ’

where P, and P, are the orthogonal projections onto $, and %,
respec’rively, Py = EA(G()) and P = EA(Gl).

The subspaces $)y and $); remain invariant under V., and, hence,
under A + Vjiae. Therefore, for the diagonal perturbations the prob-
lem reduces to the perturbation of spectra only.

The action of the off-diagonal part Vi is completely nontrivial: it
may change the spectrum and does change the spectral subspaces.
Thus, the core of the perturbation theory for invariant subspaces
is in the study of their variation under off-diagonal perturbations.
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The bounds on variation of the spectral subspaces will be given in

terms of the maximal angle between two subspaces.

It is well known that
1P-0| <1

for any two orthogonal projections P and Q in the Hilbert space §).

Definition. Let 7 = RanP and
7 =Ran Q. The quantity

0(Hp, Hp) = arcsin(||P — Qf|)

is called the maximal angle between
the subspaces .77p and 7).

e

The concept of maximal angle is traced back at least to [Krein,
Krasnoselsky, Milman (1948)]; [Dixmier (1949)].
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Remark. Assuming that (775, .77)) is an ordered pair of subspaces in § with
p # {0}, Krein, Krasnoselsky, and Milman applied the notion of the (relative)
maximal angle between .7 and ./ to the number ¢(.7%p,.74)) € |0,%| introduced
by

sinp(p, 7)) =  sup  dist(x, D).

xeHp, ||x||=1
If both 77p # {0} and 7, # {0} then /—M/%’Q
0 (I, Hp) = max{ @( A, H), 9 Hop, 7)) o and
Unlike ¢@(7,.7,), the maximal angle @ (Hp, Hp) =

2
0(p,.7}) is always symmetric w.r.t. the

interchange of the arguments .77» and 7).

Furthermore,

©(p, 7)) = (I, 7p) = 0(Hp, 7)) whenever ||P—QJ < 1.



Surely,
|P— Q| = sin(@(%ﬂp,%)).

One is interested in the case where the "“rotation angle” from an
unperturbed spectral subspace to the perturbed one is acute (i.e.
the maximal angle 0 between them is smaller than 90°).

Definition. J7» and J7) are in the acute-angle case if 7 # {0},

Hy#{0}, and
y[9

6(%7%) < 57

that is, if [|[P— Q| < 1.



MAIN QUESTIONS:

(i) What is an optimal requirement on ||V|| (= ||B||) that guarantees
that V does not close the gaps between o, and o; (and, thus,
dist(oy, 07) > 0)?

(ii)) What then can be said about variation of the spectral subspace,

say, o: Is it then true that the unperturbed and perturbed spec-

tral subspaces £y and 9, are in the acute-angle case, i.e.
P 0 9
T

And what is a (sharp) bound on 0 := 6(%,%);) in terms of ||V||
and d = diSt(G(), (71)?

Recall, 0($¢,9,) stands for the maximal angle between the un-
perturbed and perturbed spectral subspaces $y, = RanE,(op) and

f)é) = Ran EA+V(66) .
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Under the assumption that spec(A) = opUo; and cyNo; =D one
distinguishes the following three cases:

Generic case (G): The only condition dist(cy,01) =d > 0.

o
—

o 1 o

1
Special case (S2): oy and o, are subordinated, conv(cy) Nconv(o;) = .

Special case (S3): One of the sets 6y and o7 lies in a finite gap of
the other one, say conv(oy)No; = .

6,: | 6;  = 76’




Review of the results for off-diagonal self-adjoint VZ( ;’* ﬁ) )

(G) [V.Kostrykin, K.A.Makarov, A.K.M. (2007)]: Gaps between o, and o

3
remain open whenever ||V || < ga’ (sharp); ? = 0.866025.....

T
0 < 5 whenever ||V| <c,,d, ¢, =0.675989...

[KA. Makarov, A. Seelmann (2010, 2013)]

(S2) For any ||V|| the initial gap between oy and &; remains in p(L).
The sharp bound for 0:

211V 1 211V T
tan20 < Hd | — 06< Earctan Hd | (< —).

4
(The Davis-Kahan tan260 Theorem, 1970)

(S3) [V.Kostrykin, K.A.Makarov, A.K.M. (2005)]: Gaps between ¢, and o;
T
remain open and 0 < N whenever ||V|| < \/2d (sharp);

tan 0 < — H H [S. Albeverio, A.V. Selin, A.K.M. (2006, 2012)]
(see [Integr. Equa’rlon Operator Theory 73 (2012), 413]).
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Estimates like that in tan260 Theorem (but in terms of quadratic
forms of A and V') have been obtained even for some unbounded V
(see [A.K.M., A.V.Selin, Integr. Equations Oper. Theory 56 (2006), 511], [L.
Grubisi¢, V. Kostrykin, K. A. Makarov, K. Veseli¢, J. Spectr. Theory 3 (2013),

83]).
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Bounds on position of the perturbed spectrum

(G) [V.Kostrykin, K.A.Makarov, A.K.M., 2007, bounded A],
[C. Tretter, 2009, unbounded A]:
GZIC 01’v(6i)7 i:O,l,

where O, (0;) denotes the closed ry-neighborhood of o; with

1 2|V
ry = ||V tan (Earctan Hd H> < |IV|l.

(S2) The gap between o; and o| remains in p(A+V).

($3) 6, € O,,(0p). The gaps between O,,(0c)) and o)
remain in p(A+V).
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Bounds in the case of non-off-diagonal self-adjoint V:(ZEZ 51)

In order to have disjoint perturbed spectral components, one should

assume ||V|| < > In this case o] C Oy (0;), i=0,1.

(G) The subspaces $y and §); are in the acute case,

0 < g, whenever ||V|| <c.d, ¢, =0.454839...[A. Seelmann (2013)].

In particular,

1 ||V T 1
0 < iarcsin Hd | <7 if ||V <Ed

[S. Albeverio, A.K.M. (2013)].

(S2 &S3) The sharp bound for 6 (Davis-Kahan sin26 Theorem, 1970):

0 < 1arcsinzHVH < i
-2 d 4
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Applications to Schrodinger operators
(in particular to few-body Hamiltonians)

Let A = Hy+ V) be the Schrodinger operator with Hj the kinetic en-
ergy and V| the "main” potential (combining, say, two-body forces).
Let V be an additional interaction (say, three-body forces), and

H=A+YV.

1. Suppose that E, is the g.s. energy (simple eigenvalue) of A,

and v, the g.s. wave function, Ay, = Eoyy  (||wol| = 1).

Set spec(A) = opU o7 with 6y = {Ep} and o7 = spec(A) \ {Ey} (# D).

Iif 2||V|| < d :=dist(Ey, 07) then there is g.s. (Ey, ) for H,
Hyy = Eg .

We claim that |(y)), Wo)| = cos @ with 6 < /4 such that

2|V

d

This is the consequence of the Davis-Kahan sin26 Theorem (1970).

sin20 < ——
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If, in addition, V is off-diagonal then, for any arbitrary large ||V||,

NO spectrum of H enters the gap between E, and &, and

{0, Wo)| = cos 6

with y
tan20 < —— 2| H

In particular, we have:

w51+ 7 o) (53)

(Probability of the system to remain in the initial ground state y.)

Furthermore, necessarily

Ey < Ejy
and | 51y
Ey— E, < ||V] tan <§arctan Hd H) (< |IVID-
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2. Suppose that
Op = {E(),El, .. ,En}

consists of the n+ 1 lowest eigenvalues of A and let 6; = spec(A) \ oy
be the remainder of the spectrum of A.

Denote by $, the spectral subspace of A associated with oy, i.e.
the linear span of the corresponding eigenvectors.

Assume that 2||V|| < d := dist(0p,01) and o) combines the eigen-
values of H = A +V that stem from the eigenvalues of A contained
in O0p.

Then

1 2|V T
Ggiarcsin Hd | (:>9<Z),

where, recall, 6 := 0(90,9;) is the maximal angle between $), and
the spectral subspace of H = A +V associated with oj,.
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If, in addition, V is off-diagonal, then, for any arbitrary large ||V,
NO spectrum of H enters the gap between E, (: maX(GO)) and

o, and

0 < la1rc:tan2HVH.
-2 d

Moreover, necessarily

E, < E,

and
o 1 2[[V]|
Ey—E, < ||V| tan 5 arctan — (< |IVI)-
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3. Suppose that
GO:{EH+17EH+27"'7En+k}7 I/ZZO, k> 17
is a set of consecutive eigenvalues of A and | = spec(A) \ 0p.

Notice that there are eigenvalues Ey, E|,... ,E, of A lying to the left
of 0y. Also there is a part of spec(A) lying to the right of oy.

Assume that p
Wi<$  (d=diston0),

and o), consists of the eigenvalues of H = A +V that result from the
eigenvalues of A contained in 6y. Then 6 = 6($,$;) < & and

2|V
d
This follows again from the Davis-Kahan sin26 Theorem.

sin20 < ——
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If V is off-diagonal then the bound may be essentially strengthened:

e The gaps between ¢y and 6| remain open whenever condition

V|| < v2d

is satisfied.

e Moreover, under this condition

tanQ < ——

This is corollary of the a priori tan 6 Theorem [S. Albeverio, A.V. Selin,
A.K.M. (2006, 2012)].
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Conclusions

e We have found new sharp norm bounds on rotation of spectral
subspaces of a self-adjoint operator under off-diagonal perturba-
tions.

e We have also established optimal bounds on the shift of the
spectrum under off-diagonal perturbations.

e The maximal angle bounds obtained allow one to derive the cor-
responding bounds on variation of spectral subspaces under non-
off-diagonal (generic) perturbations.

e The general results have been applied to quantum-mechanical (in
particular, to few-body) Hamiltonians.

e The spectral shift and subspace variation bounds may be em-
ployed to verify the quality of numerical calculations. They may
be used to give the corresponding upper estimates prior the
actual calculations.
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Ideas of the proof, e.qg., of the a priori tan 0 theorem:
Relation to the operator Riccati equation

Let K: $H9— $H1 be abounded operator.
The graph of K (the graph subspace associated with K)

- {(20)] <o)

is an invariant subspace for H = (‘g‘j ﬁ ) if and only if K is a
1
solution to the operator Riccati equation
KAy—A K+ KBK = B*. (R)

91

4 (K) The maximal angle 0 between $)

and ¥ (K) is given by
tan 6 = ||K]||.
X1 — KX()
0

X0 o



Proposition. Let P and Q are orthogonal projections in ) with 7 = RanP and
7¢p =RanQ. Then

|P— Q|
|P—0Q| <1<+ H#p=%%(K) <|K — )
° Vi-[P—0

for some bounded operator K from 77 to c%’j} = HOHp.
Remark. 4(K)t =¥ (—K*).
Theorem. If the graph subspace ¥ (K), K € #($9,91), is an invariant subspace

_(Ay B
forH—(B* Al)fhen

H=UAU",

where U is a unitary operator on §) given by

g_(1 K\ (I+KK 0 2
“\k 1 0 I+KK*

and A is a block diagonal self-adjoint operator on ),
A = diag(Ag, A1),
whose entries
Ao=(I+K*K)'*(Ag+BK)(I+ K*K)~1/?
and
Ay = (I+KK)'? (A, —B*K*)(I+KK*)~'/2

are self-adjoint operators on the Hilbert spaces $y and $;, resp.
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In case (S3) the existence of the corresponding (in certain sense unique) bounded
solution K : §§, — $, to the operator Riccati equation under condition ||V|| < v/2d
has been proven by Kostrykin, Makarov, A.K.M. (2005) (based on the Virozub-

Matsaev factorization theorem).

Polar decomposition of K:
K =U|K]|,

with U the isometry on Ran(|K|) = Ran(K*); U : Ran(K*) — Ran(K).

Our first idea is to obtain an estimate for eigenvalues of |K| (if they exist).

Lemma. Let K be a bounded solution to the operator Riccati equation
KAy—A K+ KBK = B*

(with B #0). Suppose that |K| has an eigenvalue A >0, |K|lu= Au for some
u € 9o, ||u|| = 1. Then the following identity holds:

A2 (AU ul* + [ BUu|® — || Aoul|*) = [[Aoul|* + ||B"ul|* — || Aou|*,
where Ay = (I +K*K)'?(Ag+BK)(I+K*K)~'/2,
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In case (S3) we appropriately choose the origin of the spectral parameter plane
and, under condition ||V|| < v/2d, notice that

|AiUu||* + [[BUu|* — || Aoul|* > 0.
Then the above identity transforms into
|Aoul|* + [|B"u]|* — || Aoul|? (%)
1A Uull* +[[BUu||> — [| Agul|?

If ) is finite dimensional then K is finite rank and the equality (x) is used to find
a bound for the maximal eigenvalue of |[K|, that is, a bound for the norm of K,

Vv
K| <— <<= tan@ﬁ%.

A* =

Further on, by using the result for the finite-rank case, we prove this bound for
the infinite-dimensional case.
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To be more precise, our complete consideration involves additional parameter,
the length |A| of the open gap A of o) that contains the whole set 6. Our detail
estimates for 0, thus, involve three parameters: ||V|, d, and |A|.

G

(A is the gap of o) that contains the whole set o))
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Under the (sharp) gap-nonclosing condi-

tion
V| < vd|A

there is an optimal estimating function
M(D.d,v), defined for

d>0,D>2d, 0<v<+\VdD,

[]

&,
77

Z7 77
""""'I'I' "".'l
77
such that R Ty
7 /Z /
4] [] [77 l'l',,"" AL ey

tan® < M(|A|,d,||V]]) (<V2).

Explicit expression for M has been found.

For ||V < v2d,

vV
sup M(D,d, ||V || :|—H.
D>2d d

The sharp estimating function M(D,d,v) is plotted in the figure above right, in
terms of the "dimensionless” variables

D —2d 4y?

X:—T and y—ﬁ O§X<1, 0§y<21—x .
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