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Basic	
  equa*on	

•  TDHF	
  eq.	
  (TDKS	
  eq.)	
  

•  TDHFB	
  eq.	
  (TDBdGKS	
  eq.)	
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Time-­‐dependent	
  DFT	
  (TDDFT)	
  

δVKS(t) =
δVKS
δρ

δρ(t)

The collective motion is induced by the motion of the potential. 

Complete analogue of the unified model by Bohr and Mottelson 
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Induced (screening) field 

VKS(t)

Time-dependent Kohn-Sham equation (1984) 



Neutrons 

Protons 

δρ> 0 

δρ< 0 

16O 

( )ppp tt 0)()( ρρδρ −=
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Time-dep. transition density 

Instantaneous weak E1 field	


Vext (t) =ηM (E1)δ(t)



Neutrons 

Protons 

δρ> 0 

δρ< 0 

22O 
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Time-dep. transition density 

Instantaneous weak E1 field	


Vext (t) =ηM (E1)δ(t)



IS octupole resonances in 16O 
Time evolution of IS 
octupole moment 

IS octupole strength function 
[ fm6/MeV ] 

Particle decay of 
HEOR 



Canonical-basis TDHFB	


•  Time-dependent canonical states “k” 
•  Time-dependent (u,v)-factors	


i ∂
∂t
k(t) = h(t)−ηk (t)( ) k(t)

i ∂
∂t
ρk (t) = Δk

*(t)Kk (t)− c.c.

i ∂
∂t
Kk (t) = ηk (t)+ηk (t)( )Kk (t)+Δk (t) 2ρk (t)−1( )

Ebata, TN, Inakura, Yoshida, Hashimoto, Yabana, PRC 82 (2010) 034306 



Skyrme Cb-TDHFB in real space & real time 
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3D mesh representation for canonical states 
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Spatial size is a spherical box of 
radius of 12 - 15 fm. 

Spatial mesh size is 0.8 fm. 

Time step is about 0.2 fm/c 

Time evolution is calculated by the predictor-corrector method. 

uk (t),vk (t) k =1,,M



HFB+QRPA for axially deformed nuclei 
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•  HFB equations are solved in the 2D coordinate space, assuming the axial 
symmetry for the SkM* functional with the cutoff of Eqp < 60 MeV. 

•  The pairing energy functional is the one determined by a global fitting to 
deformed nuclei (Yamagami, Shimizu, TN, PRC 80, 064301 (2009)) 

•  QRPA matrix is calculated in the quasiparticle basis (E2qp < 60 MeV). 

•  All the residual interactions are taken into account, except for the residual 
Coulomb interaction. 

ρ	
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Finite Amplitude Method 
T.N., Inakura, Yabana, PRC 76 (2007) 024318 
Avogadro and T.N., PRC 84, 014314 (2011) 

Trivial programming of the (Q)RPA code 
Only need the single-particle potential, with different bras and kets. 

. 

To avoid the calculation of “two-body”-like residual interaction 
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Residual fields can be calculated with small parameter η 

•  3D real-space FAM without pairing 
–  Inakura, T.N., Yabana, PRC 80, 044301 (2009); PRC 84, 021302 (2011) 

•  2D HO-basis FAM with pairing 
–  Stoitsov et al, PRC 84, 041305 (2011) 



Figure from UNEDF Web Site 



Skyrme energy density 
functional	


•  Kohn-Sham scheme     (BdG-KS, HFB) 

 
 

 
•  Spontaneous symmetry breaking 

– nuclear deformation, pair condensation 
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In this talk, I present results with the SkM* functional.	




Nuclear deformation predicted by 
Energy Density Functional Theory (EDFT) 
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HFB (BdGKS) equations	




spherical deformed 

Increasing neutrons 

Shape phase transition 
Phonon 
excitation Rotational 

excitation 

Nuclear 
surface 
vibration 



Evolution of nuclear shapes: R4/2  

Onset of deformation à 
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Calculated effective potential	




Shape transition produced by EDFT	


Nd Sm 

Yoshida, Nakatsukasa, PRC PRC 83, 021304(R) (2011) 	


SkM*	
  
Intrinsic	
  Q	
  moment	
  



Time-­‐dependent	
  density-­‐func*onal	
  theory	
  
with	
  Skyrme	
  energy	
  density	
  func*onals	
  
•  Time-­‐odd	
  densi*es	
  (current	
  density,	
  spin	
  
density,	
  etc.)	
  

•  Time-­‐dependent	
  BdGKS	
  (HFB)	
  eq.	
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Linear response and photoabsorption cross section 

SkM*	
  func*onal	
  

Intrinsic	
  Q	
  moment	
  

Yoshida, Nakatsukasa, PRC 83, 021304(R) (2011) 	




Giant resonances in Sm isotopes (IS, L=0~3)	

K.Yoshida and TN, PRC 88 034309 (2013) 

IS-GMR	
 IS-GDR	

IS-GOR 
(HEOR)	
IS-GQR	


SHAPE EVOLUTION OF GIANT RESONANCES IN Nd AND . . . PHYSICAL REVIEW C 88, 034309 (2013)

C. Giant resonances

Let us discuss properties of GRs. In order to quantify
the excitation energy of the GR, two kinds of definition are
utilized. The centroid energy Ec is frequently used in the
experimental analysis, defined by

Ec = m1

m0
, (17)

where mk is a kth moment of the transition strength distribution
in an energy interval of [Ea,Eb] MeV,

mk ≡
∫ Eb

Ea

EkSτ
λ (E)dE. (18)

Here Sτ
λ (E) is defined by Eq. (6) in the calculation. We take

the upper and lower limits, [Ea,Eb], the same as those used
in the experimental analysis.

Another definition of the excitation energy is denoted as
Ex . This is extracted by fitting the strength distribution of the
GR, Sτ

λ (E), by the Lorentz curve with two parameters, the
peak energy Ex and the width #.

1. Positive-parity excitation

Figure 2 shows the strength distributions of IS monopole
and quadrupole excitations in the Nd and Sm isotopes. We
discuss first the giant quadrupole resonance (GQR). Both in
the Nd and Sm isotopes, ISGQRs are located around 12–
14 MeV. With increase in the mass number, the peak energy
of the ISGQR becomes smaller. This is consistent with the
experiment on the systematic observation of the ISGQR energy
in the Sm isotopes [39,40]. Figure 3 shows the centroid energy
of the ISGQR in the Sm isotopes. Here we used the energy
interval of [9,15] MeV. Open squares in Fig. 3 are obtained
from the strength distribution in Ref. [39]. The present results
well reproduce the experimental data. The calculated centroid
energy is well fitted by the 65.6A−1/3 line, which agrees with
the empirical behavior, (64.0 ± 1.7) × A−1/3 [1]. Dependence
on the choice of the Skyrme functional is discussed later.

The phenomenological pairing-plus-quadrupole (P + Q)
model is known to fail to reproduce the ISGQR in deformed
nuclei. The P + Q model predicts peak splitting that is too
large due to deformation. In fact, the deformation splitting for
154Sm is calculated to be about 7 MeV [42]. This failure can
be attributed to the violation of the nuclear self-consistency
between the shapes of the potential and the density distri-
butions [42,43]. In order to satisfy the self-consistency in the
P + Q model, we need higher-order terms [44]. Figure 4 shows
the IS quadrupole transition-strength distribution in 154Sm
for the Kπ = 0+, 1+, and 2+ excitations. The K splitting,
EK=2 − EK=0, for the ISGQR is 2.8 MeV in the present
calculation, which is much smaller than the value (about 7
MeV) of the P + Q model. This indicates the fact that the
present calculation based on the EDF naturally takes into
account the nuclear self-consistency. Since the energy splitting
associated with the deformation is comparable to the smearing
parameter, the deformation splitting, which is clearly visible
in the photoabsorption cross sections [19], does not appear in
the ISGQR. Instead, we find a broadening of the width for the

FIG. 2. The strength distributions (shifted) of ISGMR [(a), (b)]
and ISGQR [(c), (d)] in Nd and Sm isotopes.

ISGQR associated with the development of the deformation
(see the table in Appendix B).

Next, let us discuss the monopole excitation. In the spherical
nuclei, we can see a sharp peak at around 15 MeV, which
is identified as the ISGMR. In 144Sm, the peak energy and
the width are Ex = 14.8 MeV and # = 2.61 MeV. This is
compatible with the observed values of Ex = 15.40 ± 0.30
and # = 3.40 ± 0.20 MeV [40].

The ISGMR in deformed nuclei has a double-peak struc-
ture. The lower energy peak (8 < E < 13.5 MeV) and the
higher energy peak (13.5 < E < 19 MeV) exhaust 31.4% and
60.6% of the IS monopole energy-weighted-sum-rule (EWSR)
value, 3.38 × 105 fm4 MeV, in 154Sm. The higher energy peak
of the IS monopole strength is identified as a primal ISGMR
and the lower energy peak is associated with the coupling to
the Kπ = 0+ component of the ISGQR. The lower peak of the
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FIG. 6. The strength distributions (shifted) of IVGMR [(a), (b)]
and IVGQR [(c), (d)] in Nd and Sm isotopes.

components of the HEOR. Because of these two effects, the
total strength distribution becomes very broad. When we fit
the calculated strength distribution with a Lorentz line in
the energy region of [15,35] MeV, we obtain the width ! =
13.4 MeV. The large width is observed experimentally as
22.6 ± 4.2 MeV in Ref. [39], while the rather small width
(11.8 ± 0.5 MeV) is reported in Ref. [40].

We furthermore find a low-energy (LE) ISGDR at about
14 MeV. We also find that the low-lying dipole states appear
below 5 MeV with possession of large transition strengths in
the deformed systems as shown in the left panels of Fig. 9.
This is due to the coupling to the low-lying octupole modes of
excitation.

The strength distribution in 154Sm obtained by the (α,α′)
experiment in Ref. [40] shows a three-peak structure at around

FIG. 7. Strength distributions (shifted) of ISGDR [(a), (b)] and
ISGOR (HEOR) [(c), (d)] in Nd and Sm isotopes.

the excitation energies of 12–16, 20–24, and 26–29 MeV.
The data were compared with the fluid dynamics results of
Ref. [45]; however, the mechanism for appearance of the
second peak was unclear. According to the present calculation,
it is suggested that the first peak corresponds to the low-energy
ISGDR, the second peak is associated with the coupling to the
K = 0 and 1 components of the HEOR, and the third peak is
the primal ISGDR.

Figure 11 shows the strength distributions of IV dipole
and octupole excitations. The IV giant octupole resonance
(GOR) is seen above 30 MeV, and we find a bump structure at
around 10 MeV corresponding to the IV-LEOR. The strength
is smaller than that of the IV-HEOR. Note that the strength of
the IS-LEOR is compatible to that of the IS-HEOR.

034309-8
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  func*onal	
  



Isoscalar giant monopole resonances	


Peak splitting is properly described. 
Coupling to IS-GQR due to deformation	


SkM*	
  func*onal	
  

Exp: M. Itoh et al., PRC 68, 064602 (2003).	
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FIG. 8. (Color online) (a) The centroid energies of the low-energy
and high-energy components of the ISGDR in the Sm isotopes. (b)
The centroid energies of the HEOR and the LEOR in the Sm isotopes.
The centroid energy of LEOR is evaluated in the energy range of
[Ea, Eb] = [3, 10] MeV. The dotted line is obtained by fitting the
results with an A−1/3 line. The experimental data [39] are denoted by
open symbols with error bars.

In the deformed systems, we see an appearance of the
shoulder structure at about 15 MeV. Figures 10(b) and 10(d)
presenting the IV dipole and octupole strength distributions
in 154Sm show that the shoulder structure is associated with
the deformation splitting of the GDR and its coupling to the
IV-LEOR.

3. Low-lying collective states

In this subsection, we are going to discuss the low-lying
states. As shown in Fig. 9, we see an appearance of the
collective mode for the IS dipole excitation below 2 MeV
associated with an onset of deformation. This is due to the
strong coupling to the collective octupole mode of excitation.

What has to be mentioned here is an absence of the
collective K = 0 mode in 148Sm. In the present calculation, we
have two imaginary solutions in the Kπ = 0− channel, one of
which is associated with the spurious center-of-mass motion.
In 150Sm, we have the K = 0 mode at 0.72 MeV. The excitation
energy of the collective K = 0 mode becomes higher when
increasing the neutron number. Thus, we can consider that the
second imaginary solution in 148Sm indicates the instability
against the axially symmetric octupole deformation. In fact, the
largest B(E3; 0+

1 → 3−
1 ) value is measured in 148Sm among

the even-even Sm isotopes [53].

FIG. 9. (Color online) The low-energy IS dipole and octupole
transition strengths in the Sm isotopes. The strengths with different
K are all identical for the spherical nuclei.

Before going to the next subsection, we summarize the
energy of the low-lying collective states in the spherical and
the well-deformed Nd and Sm isotopes. Figure 12 shows the
excitation energies of the lowest Kπ = 0+, 2+, 0−, and 1−

states. The available experimental data [53] are also shown. For
the experimental values, we neglect the rotational correction,
which is 30 keV at most in 154Sm. Figure 12 shows that the
observed isotopic dependence is well reproduced.

The excitation energies of the quadrupole-vibrational states
agree with the experimental data within 0.5–1 MeV. This result
is close to the one obtained in Ref. [54], where the authors
obtained the γ -vibrational state at 2.5 and at 2.3 MeV in 152Nd
and 154Sm, respectively, despite the use of a different pairing
functional from ours. Reproduction of the experimental values
of the octupole-vibrational states in the deformed nuclei is
extremely good.

Table III summarizes the excitation energy of the low-lying
collective states in 154Sm obtained by the QRPA calculations
employing the different kinds of Skyrme functionals. All the
Skyrme functionals under consideration give a reasonable

034309-9

IS-GDR and IS-GOR	


IS-GDR	


HEOR	


LEOR	


Exp: M. Itoh et al., PRC 68, 064602 (2003).	


IS-GDR	




Fermi Liquid Properties 
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This is different from the classical (incompressible) liquid model. 

Sum-rule analysis for nuclear IS Giant Quadrupole Resonance 



KENICHI YOSHIDA AND TAKASHI NAKATSUKASA PHYSICAL REVIEW C 88, 034309 (2013)

FIG. 3. (Color online) The centroid energies of the ISGQR in
the Sm isotopes with a fitted line. The experimental data [40,41] are
denoted by open symbols.

ISGMR, around 11 MeV, is located at the peak position of the
Kπ = 0+ component of the ISGQR shown in Fig. 4.

Figure 5(a) shows the peak energy of the ISGMR in the
Sm isotopes. The calculation shows an excellent agreement
with the experimental data both in spherical and deformed
nuclei. As the deformation develops from 148Sm, the higher
energy peak of the ISGMR slightly increases. In Fig. 5(b),
the energy difference of the upper and lower peaks of the
ISGMR is shown as a function of the deformation parameter
of the ground state. The results are compared with the
predictions by the fluid dynamics model and the simple scaling
model with the effective mass m∗/m = 0.8 and the Landau
parameter F0 = −0.25 [45]. The result of the fluid dynamics
model is consistent with our result, although it underestimates
the excitation energy of the low-energy peak of ISGMR.
The deformation dependence of the splitting energy is well
reproduced. On the other hand, the simple scaling model
significantly overestimates the ISGMR peak energy, which
results in splitting of the peak energies that is too large.

Since the experimental studies for the detailed structure of
the ISGMR in 154Sm are available [40,46], we are going to
discuss here the properties of the calculated ISGMR in 154Sm.
Table II summarizes the parameters of the ISGMR in 154Sm.
The peak energy Ex and the width " in a deformed system are
obtained by fitting the strength distribution with a sum of two
Lorentz lines. The calculations are compared with inelastic
α scattering experiments at Texas A&M University [40] and
at RCNP, Osaka University [46]. Results of the calculations

FIG. 4. (Color online) The IS quadrupole transition-strength
distribution in 154Sm for the Kπ = 0+, 1+, and 2+ excitations. The
eigenenergies obtained with use of the P + Q model are denoted by
the arrows, and the peak position of the GQR was adjusted to the
experimental data [42].

employing the SLy4 [31] and SkP [22] functionals and other
models [45,47] are also shown. The same pairing energy
functional, Eq. (3), is used in all the calculations.

The excitation energies are described best by the SkM*
functional among three kinds of functionals. The ratio of the
energy-weighted sum of the strengths for the upper peak to that
for the lower peak varies from 1.6 (SLy4) to 3.2 (SkP), and the
SkP gives better agreement with the experimental data. This
implies that the coupling effect between the GMR and the GQR
is weaker for the SkP functional than for the SkM* and SLy4
functionals. As discussed above, the coupling is determined by
the quadrupole moment (deformation parameter) of the ground
state. Indeed, the mass deformation parameter obtained in the
present calculation is β2 = 0.29 for SkP, while β2 = 0.31 for
SkM* and SLy4.

Figure 6 shows the strength distributions for the isovector
(IV) monopole and quadrupole excitations. Although the
experimental data for the IVGMR and IVGQR are unavailable
in the mass region under investigation, the present calculation
suggests the existence of these GR modes in the Nd and
Sm isotopes. The energy of IVGQR is approximately fitted
by 129.5 and 130.3 ×A−1/3 MeV for Nd and Sm isotopes,
respectively. This is consistent with the experimental observa-
tions ∼130A−1/3 MeV in A = 140–240 nuclei [48]. The K
splitting of the IVGQR in deformed nuclei is invisible because
the K splitting is small.

A double-peak structure can be seen in deformed nuclei for
the IVGMR as well as for the ISGMR. The lower peak around
20 MeV in the deformed nuclei emerges and is associated
with the coupling to the Kπ = 0+ component of the IVGQR.
The upper peak around 30 MeV may be identified as a primal
IVGMR because the resonance peak appears in this energy re-
gion in the spherical nuclei. Similarly to the ISGMR, the upper
peak of the IVGMR is upward shifted with increasing neutron
number. This is due to the stronger coupling between the
IVGMR and the IVGQR in nuclei with larger deformation.
The energy difference between the upper and lower peaks
of the IVGQR in 154Sm approaches about 10 MeV, which is
more than twice as large as the energy difference seen in the
ISGMR.

2. Negative-parity excitation

Figure 7 shows the strength distributions of the IS com-
pression dipole and octupole excitations. In the IS octupole-
transition-strength distributions, we can see a high-energy
octupole resonance (HEOR) at around 25 MeV. Furthermore,
we find a broadening of the width associated with the
deformation as observed in the experiment [49]. We show
the centroid energy of the HEOR and the low-energy octupole
resonance (LEOR) in the Sm isotopes in Fig. 8(b). The centroid
energy of HEOR and LEOR is evaluated in the energy range
of [17,33] MeV and [3,10] MeV, respectively. The calculated
energy of HEOR is best fitted to a 124.8 × A−1/3 line, and
agrees with the experimental observation [39]. However, this
excitation energy is significantly higher than the systematic
value of 110 ± 5 × A−1/3 MeV [1].

Below 10 MeV, we find low-lying collective (discrete)
states and the LEOR. The right panels of Fig. 9 show the
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FIG. 3. (Color online) The centroid energies of the ISGQR in
the Sm isotopes with a fitted line. The experimental data [40,41] are
denoted by open symbols.

ISGMR, around 11 MeV, is located at the peak position of the
Kπ = 0+ component of the ISGQR shown in Fig. 4.

Figure 5(a) shows the peak energy of the ISGMR in the
Sm isotopes. The calculation shows an excellent agreement
with the experimental data both in spherical and deformed
nuclei. As the deformation develops from 148Sm, the higher
energy peak of the ISGMR slightly increases. In Fig. 5(b),
the energy difference of the upper and lower peaks of the
ISGMR is shown as a function of the deformation parameter
of the ground state. The results are compared with the
predictions by the fluid dynamics model and the simple scaling
model with the effective mass m∗/m = 0.8 and the Landau
parameter F0 = −0.25 [45]. The result of the fluid dynamics
model is consistent with our result, although it underestimates
the excitation energy of the low-energy peak of ISGMR.
The deformation dependence of the splitting energy is well
reproduced. On the other hand, the simple scaling model
significantly overestimates the ISGMR peak energy, which
results in splitting of the peak energies that is too large.

Since the experimental studies for the detailed structure of
the ISGMR in 154Sm are available [40,46], we are going to
discuss here the properties of the calculated ISGMR in 154Sm.
Table II summarizes the parameters of the ISGMR in 154Sm.
The peak energy Ex and the width " in a deformed system are
obtained by fitting the strength distribution with a sum of two
Lorentz lines. The calculations are compared with inelastic
α scattering experiments at Texas A&M University [40] and
at RCNP, Osaka University [46]. Results of the calculations

FIG. 4. (Color online) The IS quadrupole transition-strength
distribution in 154Sm for the Kπ = 0+, 1+, and 2+ excitations. The
eigenenergies obtained with use of the P + Q model are denoted by
the arrows, and the peak position of the GQR was adjusted to the
experimental data [42].

employing the SLy4 [31] and SkP [22] functionals and other
models [45,47] are also shown. The same pairing energy
functional, Eq. (3), is used in all the calculations.

The excitation energies are described best by the SkM*
functional among three kinds of functionals. The ratio of the
energy-weighted sum of the strengths for the upper peak to that
for the lower peak varies from 1.6 (SLy4) to 3.2 (SkP), and the
SkP gives better agreement with the experimental data. This
implies that the coupling effect between the GMR and the GQR
is weaker for the SkP functional than for the SkM* and SLy4
functionals. As discussed above, the coupling is determined by
the quadrupole moment (deformation parameter) of the ground
state. Indeed, the mass deformation parameter obtained in the
present calculation is β2 = 0.29 for SkP, while β2 = 0.31 for
SkM* and SLy4.

Figure 6 shows the strength distributions for the isovector
(IV) monopole and quadrupole excitations. Although the
experimental data for the IVGMR and IVGQR are unavailable
in the mass region under investigation, the present calculation
suggests the existence of these GR modes in the Nd and
Sm isotopes. The energy of IVGQR is approximately fitted
by 129.5 and 130.3 ×A−1/3 MeV for Nd and Sm isotopes,
respectively. This is consistent with the experimental observa-
tions ∼130A−1/3 MeV in A = 140–240 nuclei [48]. The K
splitting of the IVGQR in deformed nuclei is invisible because
the K splitting is small.

A double-peak structure can be seen in deformed nuclei for
the IVGMR as well as for the ISGMR. The lower peak around
20 MeV in the deformed nuclei emerges and is associated
with the coupling to the Kπ = 0+ component of the IVGQR.
The upper peak around 30 MeV may be identified as a primal
IVGMR because the resonance peak appears in this energy re-
gion in the spherical nuclei. Similarly to the ISGMR, the upper
peak of the IVGMR is upward shifted with increasing neutron
number. This is due to the stronger coupling between the
IVGMR and the IVGQR in nuclei with larger deformation.
The energy difference between the upper and lower peaks
of the IVGQR in 154Sm approaches about 10 MeV, which is
more than twice as large as the energy difference seen in the
ISGMR.

2. Negative-parity excitation

Figure 7 shows the strength distributions of the IS com-
pression dipole and octupole excitations. In the IS octupole-
transition-strength distributions, we can see a high-energy
octupole resonance (HEOR) at around 25 MeV. Furthermore,
we find a broadening of the width associated with the
deformation as observed in the experiment [49]. We show
the centroid energy of the HEOR and the low-energy octupole
resonance (LEOR) in the Sm isotopes in Fig. 8(b). The centroid
energy of HEOR and LEOR is evaluated in the energy range
of [17,33] MeV and [3,10] MeV, respectively. The calculated
energy of HEOR is best fitted to a 124.8 × A−1/3 line, and
agrees with the experimental observation [39]. However, this
excitation energy is significantly higher than the systematic
value of 110 ± 5 × A−1/3 MeV [1].

Below 10 MeV, we find low-lying collective (discrete)
states and the LEOR. The right panels of Fig. 9 show the
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C. Giant resonances

Let us discuss properties of GRs. In order to quantify
the excitation energy of the GR, two kinds of definition are
utilized. The centroid energy Ec is frequently used in the
experimental analysis, defined by

Ec = m1

m0
, (17)

where mk is a kth moment of the transition strength distribution
in an energy interval of [Ea,Eb] MeV,

mk ≡
∫ Eb

Ea

EkSτ
λ (E)dE. (18)

Here Sτ
λ (E) is defined by Eq. (6) in the calculation. We take

the upper and lower limits, [Ea,Eb], the same as those used
in the experimental analysis.

Another definition of the excitation energy is denoted as
Ex . This is extracted by fitting the strength distribution of the
GR, Sτ

λ (E), by the Lorentz curve with two parameters, the
peak energy Ex and the width #.

1. Positive-parity excitation

Figure 2 shows the strength distributions of IS monopole
and quadrupole excitations in the Nd and Sm isotopes. We
discuss first the giant quadrupole resonance (GQR). Both in
the Nd and Sm isotopes, ISGQRs are located around 12–
14 MeV. With increase in the mass number, the peak energy
of the ISGQR becomes smaller. This is consistent with the
experiment on the systematic observation of the ISGQR energy
in the Sm isotopes [39,40]. Figure 3 shows the centroid energy
of the ISGQR in the Sm isotopes. Here we used the energy
interval of [9,15] MeV. Open squares in Fig. 3 are obtained
from the strength distribution in Ref. [39]. The present results
well reproduce the experimental data. The calculated centroid
energy is well fitted by the 65.6A−1/3 line, which agrees with
the empirical behavior, (64.0 ± 1.7) × A−1/3 [1]. Dependence
on the choice of the Skyrme functional is discussed later.

The phenomenological pairing-plus-quadrupole (P + Q)
model is known to fail to reproduce the ISGQR in deformed
nuclei. The P + Q model predicts peak splitting that is too
large due to deformation. In fact, the deformation splitting for
154Sm is calculated to be about 7 MeV [42]. This failure can
be attributed to the violation of the nuclear self-consistency
between the shapes of the potential and the density distri-
butions [42,43]. In order to satisfy the self-consistency in the
P + Q model, we need higher-order terms [44]. Figure 4 shows
the IS quadrupole transition-strength distribution in 154Sm
for the Kπ = 0+, 1+, and 2+ excitations. The K splitting,
EK=2 − EK=0, for the ISGQR is 2.8 MeV in the present
calculation, which is much smaller than the value (about 7
MeV) of the P + Q model. This indicates the fact that the
present calculation based on the EDF naturally takes into
account the nuclear self-consistency. Since the energy splitting
associated with the deformation is comparable to the smearing
parameter, the deformation splitting, which is clearly visible
in the photoabsorption cross sections [19], does not appear in
the ISGQR. Instead, we find a broadening of the width for the

FIG. 2. The strength distributions (shifted) of ISGMR [(a), (b)]
and ISGQR [(c), (d)] in Nd and Sm isotopes.

ISGQR associated with the development of the deformation
(see the table in Appendix B).

Next, let us discuss the monopole excitation. In the spherical
nuclei, we can see a sharp peak at around 15 MeV, which
is identified as the ISGMR. In 144Sm, the peak energy and
the width are Ex = 14.8 MeV and # = 2.61 MeV. This is
compatible with the observed values of Ex = 15.40 ± 0.30
and # = 3.40 ± 0.20 MeV [40].

The ISGMR in deformed nuclei has a double-peak struc-
ture. The lower energy peak (8 < E < 13.5 MeV) and the
higher energy peak (13.5 < E < 19 MeV) exhaust 31.4% and
60.6% of the IS monopole energy-weighted-sum-rule (EWSR)
value, 3.38 × 105 fm4 MeV, in 154Sm. The higher energy peak
of the IS monopole strength is identified as a primal ISGMR
and the lower energy peak is associated with the coupling to
the Kπ = 0+ component of the ISGQR. The lower peak of the
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FIG. 15: (a) The frictions as a function of neutron number, (b) the frictions as a function of differential r.m.s radii, for 100−140Sn
isotopes, (c) levels of neutron single-particle state around chemical potential λn for 134Sn with SkM∗ and SkI3 parameter sets.
Circle symbols indicate the results on SkM∗ interaction, square symbols indicate those on SkI3 interaction. The open symbols
are same as those in Fig.13 and Fig.14.

of SkM∗, the behavior of the PDR-f is similar with that of Ref.[Dao11]. These results indicate that main reason of
the quantitative discrepancy of PDR between results of RMF and non-RMF is interaction dependence. The effects of
interaction appear in the ordering of single-particle levels, especially. We can confirm the differences of level ordering
for g7/2 - d5/2 and d3/2 - s1/2 in Fig.15 (c). The difference between the PDR-fs of SkM∗ and SkI3 becomes big from
N = 60 which is corresponding to the occupation of d5/2 orbits in SkI3.
Figure 15 (b) shows one of the interaction dependence of correlation between skin-thickness and PDR. If there is a

strong correlation between skin-thickness and PDR, the behavior should not change depending on interaction. From
N = 82, we can recognize the “linear” relation in the both cases, but the case of SkI3 has almost parabolic relation
from N = 50 to 70. The “linear” relation between skin-thickness and PDR can not be regarded as universal property
of PDR. The linear relation should be considered as a special case.

VI. DEFORMATION EFFECTS FOR PDR

In general, the nucleus is not always spherical in intrinsic frame. It is easily expected that the low-lying E1 mode
is affected the shape of the ground state. Ref.[PKR09] reports that the bias appears in the components of low-
lying E1 strength on the axial symmetric quadrupole deformed nuclei. Furthermore, they indicate that the bias is
caused by the difference of skin-thickness on each directions (z:K = 0 and x, y:K = 1), which is estimated from
deformation parameters of neutron and proton. In the previous section, we mention the “linear” relation of PDR
with skin-thickness is special, then we confirm the picture of skin-thickness in other isotope chain.
Figure 16, 17 and 18 show the energy cutoff Ec dependence of the PDR-f in Zr isotope chain and the distribution

of those on each direction. The upper side of the bar indicates the PDR-f of z-direction which is corresponding to
K = 0 component, and the under side is corresponding to that of y, x-directions and K = 1 components, in these
figures. The behavior of the PDR-f is not changing in each energy cutoff, but the quantity of ratio is different. The
case of Ec = 11 MeV has largest value, due to the tail of GDR.
We can see clearly the bias of the PDR-f distribution fromN = 60 to 72 which have prolate shape; their deformation-

parameter β2 is almost constant about 0.37. 114Zr has a triaxial deformation in this work. The other Zr isotopes have
spherical shape, and same distribution of the PDR-f on x, y, z-direction. On the prolate deformed isotopes, K = 0
component is lager than one of K = 1 in all energy-cutoff cases. Figure 18 show the largest bias ratio of K = 0 to
K = 1 components, which is reflected that GDR of K = 0 appears lower than one of K = 1. If we evaluate the
bias-ratio, we need to consider the strong dependence of cutoff energy, in other words, the separation between PDR
and GDR is important. We can not separate PDR from GDR perfectly, but will be able to regard the bias of PDR
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of SkM∗, the behavior of the PDR-f is similar with that of Ref.[Dao11]. These results indicate that main reason of
the quantitative discrepancy of PDR between results of RMF and non-RMF is interaction dependence. The effects of
interaction appear in the ordering of single-particle levels, especially. We can confirm the differences of level ordering
for g7/2 - d5/2 and d3/2 - s1/2 in Fig.15 (c). The difference between the PDR-fs of SkM∗ and SkI3 becomes big from
N = 60 which is corresponding to the occupation of d5/2 orbits in SkI3.
Figure 15 (b) shows one of the interaction dependence of correlation between skin-thickness and PDR. If there is a

strong correlation between skin-thickness and PDR, the behavior should not change depending on interaction. From
N = 82, we can recognize the “linear” relation in the both cases, but the case of SkI3 has almost parabolic relation
from N = 50 to 70. The “linear” relation between skin-thickness and PDR can not be regarded as universal property
of PDR. The linear relation should be considered as a special case.

VI. DEFORMATION EFFECTS FOR PDR

In general, the nucleus is not always spherical in intrinsic frame. It is easily expected that the low-lying E1 mode
is affected the shape of the ground state. Ref.[PKR09] reports that the bias appears in the components of low-
lying E1 strength on the axial symmetric quadrupole deformed nuclei. Furthermore, they indicate that the bias is
caused by the difference of skin-thickness on each directions (z:K = 0 and x, y:K = 1), which is estimated from
deformation parameters of neutron and proton. In the previous section, we mention the “linear” relation of PDR
with skin-thickness is special, then we confirm the picture of skin-thickness in other isotope chain.
Figure 16, 17 and 18 show the energy cutoff Ec dependence of the PDR-f in Zr isotope chain and the distribution

of those on each direction. The upper side of the bar indicates the PDR-f of z-direction which is corresponding to
K = 0 component, and the under side is corresponding to that of y, x-directions and K = 1 components, in these
figures. The behavior of the PDR-f is not changing in each energy cutoff, but the quantity of ratio is different. The
case of Ec = 11 MeV has largest value, due to the tail of GDR.
We can see clearly the bias of the PDR-f distribution fromN = 60 to 72 which have prolate shape; their deformation-

parameter β2 is almost constant about 0.37. 114Zr has a triaxial deformation in this work. The other Zr isotopes have
spherical shape, and same distribution of the PDR-f on x, y, z-direction. On the prolate deformed isotopes, K = 0
component is lager than one of K = 1 in all energy-cutoff cases. Figure 18 show the largest bias ratio of K = 0 to
K = 1 components, which is reflected that GDR of K = 0 appears lower than one of K = 1. If we evaluate the
bias-ratio, we need to consider the strong dependence of cutoff energy, in other words, the separation between PDR
and GDR is important. We can not separate PDR from GDR perfectly, but will be able to regard the bias of PDR
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FIG. 26: E1 strength functions below 12 MeV for each Zr isotope with N=78 - 86 using the smoothing function of Eq.(??),
which are obtained by full and unperturbed calculation with SkM∗ Skyrme parameter set. The solid and dashed line show full
self-consistent and unperturbed calculations.
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FIG. 27: Same as Fig. 26, but for Sn isotopes with SkM∗ Skyrme parameter set.
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FIG. 4: Same as Fig.2, but for Ni to Sn isotopes. Show only the results of Cb-TDHFB.

are corresponding to magic number. Furthermore, we can see the kink of the PDR-f around N = 60 and 74 which
are corresponding to start and end point of deformation, respectively in our results.
At N = 50 → 52, the PDR-f increases in all isotope chain. If the low-lying E1 mode of heavy mass region has

similar structure of those of light isotopes, they indicate the occupation of d5/2 has also important role to emerge PDR.
These results almost consistent with previous systematic study[Ina11], but over Z = 40, the gradient of the PDR-f
become to gentle as the proton number increase. This behavior appears also in the relation between skin-thickness
and the PDR-f, which is mentioned in Sec.V. Again, we can see a remarkable increases of the PDR-f at N = 82 → 84.
The shape of isotopes around N = 82 are almost spherical, then N = 84 means the occupation of f7/2 orbits which
can contribute to emergence of PDR. f7/2 will be no longer regarded as “low” orbital angular momentum. We can
mention that the low orbital angular momentum is not essential condition to emerge the low-lying E1 strength, which
indicates that theres is other good key to know the property of the strength.
We mention the deformation effect which can bee seen from N = 60 to 74 isotopes. In Ne and Mg neutron-rich

isotopes, our results said the deformation makes a small jump of the PDR-f. However, the behavior of the fraction
in heavier mass region is opposite. The PDR-fs decrease once at N = 60, and they increase by N = 72 while having
deformed shape, then again they decrease at N = 74 which is corresponding to the start point to tend to spherical.
We need the universal explanation for these deformation effects in light and heavy mass region. In Sec. VII, we
suggest an one of viewpoint to understand these behavior.
Summarized the behaviors of the PDR-f as a function of neutron number in heavy isotopes, we can regard the

importance of the occupation of single-particle states for the emergence and significant increase of the low-lying E1
strength. However, the low orbital angular momentum of the occupied single-particle state is not essential condition
to increase the low-lying E1 strength. The deformation effects for the PDR-f appear in Kr, Sr and Zr isotopes clearly
at N = 60 and 72, which are corresponding to the shape transition from spherical to deformed (prolate) shape and
opposite direction, respectively. These transition points are deferent from HF results, due to the pairing effects for
ground state.

C. Behavior of the low-lying E1 strength for Proton-rich isotopes

In this section, we focus on the PDR of proton-rich isotope. Figure 5 and 6 show that the neutron number
dependence of the PDR-f for light and heavy isotopes in proton-rich side, respectively. The open circle symbols in
each figure, indicate the results of stable nuclei.
In Fig. 5, the PDR-fs of stable nuclei are less than 1.0 %. They increase significantly as neutron number decrease

immediately. The PDR-fs in Fig.5 and Fig.6 are always bigger than those of the isotope which has smaller Z with
same neutron number, excluding the case of 72Kr. These behavior are opposite to the results in neutron-rich side
(Fig.2, Fig.3 and Fig.4). In Fig.6, the increases of the PDR-f are much smaller than those of light isotopes. The
PDR-f of Ni isotopes has some strange behavior from other present works, but if we investigate the Ti, Cr and Fe
isotopes, we will be able to confirm the similar behavior in Ref.[Ina11].
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FIG. 16: Same as Fig.4, but for Zr
isotope including results over N = 84
with the Ec = 9 MeV in Eq.(20).
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10 MeV.
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FIG. 18: Same as Fig.16, but the the
Ec = 11 MeV.

components in deformed isotopes which remains in Fig.16, also. Figure 19 and 20 are same as Fig.17, but for Sr and
Pd isotopes. Sr isotopes have prolate deformed shape from N = 60 to 72, and oblate deformed shape at N = 38 and
74. These β2 of prolate deformed isotopes are about 0.37, then we can see the similar bias of PDR components to
those of prolate deformed Zr isotopes. In the cases of oblate nuclei (78Sr and 112Sr), K = 1 component is dominant.
Pd isotopes have prolate deformed shape from N = 58 to 74 whose β2 are smaller than those of Zr isotopes; their
values are from 0.1 to 0.2. We can confirm somewhat large K = 0 component in the prolate deformed region, however
the biases are smaller than those of Zr isotope.
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Figure 21 shows the direction dependence of neutron skin-thickness for prolate deformed nuclei in Sr, Zr, Pd and Cd
isotopes, excluding results of oblate of triaxial deformed nuclei. These skin are defined by

√
〈x2〉n −

√
〈x2〉p, and for

y, z-directions. The solid lines mean the neutron skin along z-direction, dashed lines means results for x, y-direction
which are same value in both directions. Figure 22 shows the β2 of neutron (filled) and proton (open).
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Deformation effect 

Deformed ground state	


x	


y	


z	

x	


y	


z	


The skin thickness is larger for (x,y) 
directions than z direction. 
Inconsistent with the skin-mode picture?	


Enhancement of the 
low-energy E1 strength 
along z axis	
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E1 Hindrance and decoupling 

N=82	


λn ≈ 4 MeV λn ≈ 2 MeV

Unperturbed E1	
E1 strength	


•  Hindrance of low-energy E1 
•  “Destructive coherence” 
•  Strength goes to GDR	


Threshold E1 strengths 
below 5 MeV are untouched 
by the dipole correlations.	


•  Decoupling of low-lying 
dipole modes 

•  “Single-particle” excitations	
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Decoupling of low-E E1 
N=82	
Unperturbed E1	
E1 strength	
 SkM*	


SkI3	
Low-energy E1 strength enhanced by correlations	


Decoupled peaks	




Slope	
  parameter	
  of	
  symmetry	
  energy	

㘻๺ኒᐲઃㄭ䈱⁁ᘒᣇ⒟ᑼ

• 䉪䊤䉴䊃䈪䈱ේሶᩭ䉰䉟䉵䈱⸘▚䈮ㆡ↪䇯

N only

N = Z௑䈐
 

L

n0

nB

ᦛ₸ K0

E/A

w0

Neutron Star

Ꮕ S0

Oyamatsu and Iida Phys. Rev. C 75 䋨2007䋩
 

015801•  Symmetry	
  energy	


Curvature	


Slope L	




Neutron	
  skin	
  thickness	


Neutron density

Proton density

Neutron rms radius

Proton rms radius

Neutron Skin and Density Dependence of the Symmetry Energy 

Neutron skin thickness

Density dependence of the symmetry energy

Density distribution of protons and 
neutrons in a nucleus

X. Roca-Maza et al., PRL106, 252501 (2011)

Neutron density

Proton density

Neutron rms radius

Proton rms radius

Neutron Skin and Density Dependence of the Symmetry Energy 

Density distribution of protons and 
neutrons in a nucleus

Neutron	
  skin	
  thickness	
  
(Difference	
  in	
  radius	
  between	
  
neutrons	
  and	
  protons)	
  

Roca-­‐Maza	
  et	
  al.,	
  PRL106,	
  252501	
  (2011)	




Selected	
  isotopes	

RAPID COMMUNICATIONS

INAKURA, NAKATSUKASA, AND YABANA PHYSICAL REVIEW C 88, 051305(R) (2013)

0.34 0.38 0.42 0.46
1.4

2.0

2.6

3.2

Skin thickness (fm)

S P
D

R 
(e

2 f
m

2 )

r = 0.94

84Ni
SGII

r = 0.97

0.34 0.38 0.42 0.46
2.0

2.5

3.0

3.5
84Ni

SIII

0.13 0.14 0.15 0.16 0.17 0.18
0.0

0.3

0.6

0.9

1.2

r = 0.74

68Ni
SGII

0.12 0.13 0.14 0.15 0.16 0.17
0.0

0.3

0.6

0.9

1.2

r = 0.66

68Ni
SIII

FIG. 5. (Color online) Same as Fig. 2 but for 68,84Ni with SGII
and SIII interactions.

parameter sets, we estimate the correlation coefficient r in
Eq. (3) with Nd = 11. Again, we have found a weak correlation
with r = 0.47 for 68Ni and a strong correlation r = 0.89 for
84Ni.

We also examine the correlation between the slope param-
eter of the symmetry energy L and the PDR fraction fPDR in
68Ni and 84Ni. This leads to the similar coefficients r = 0.37
and 0.84 for 68Ni and 84Ni, respectively. Thus, to quantitatively
constrain !rnp and L, the measurement of the PDR in the very
neutron-rich 84Ni is more favored than in 68Ni.

The small correlation coefficient between L and fPDR for
68Ni (r = 0.37) turns out to be due to the fact that the choice of
ωc = 10 MeV has different meanings for different functionals.
Namely, the different energy functionals produce different
PDR peak energies, some of which are below 10 MeV, but
some are above that. The tail of the GDR strength also depends
on the choice of the energy functionals. Therefore, to perform
a more sensible analysis for this study, we should use the
variable cutoff ωc. This will be discussed below.

Use of variable ωc. The PDR strength (1) and PDR fraction
(2) based on variable ωc are, hereafter, referred to as S

(v)
PDR and

f
(v)
PDR, respectively. The variable ωc is determined according

to the following procedure: The calculated (discrete) B(E1)
values are smeared with the Lorentzian with a width of γ =
1 MeV. By plotting this smeared E1 strength S(E1; E) as
a function of energy, if we can find a distinguishable PDR
peak and its energy Epeak, ωc is defined as the energy that
corresponds to the minimum value of S(E1; E) at E > Epeak.
In Fig. 6, as an example, the determination of ωc is shown
for 84Ni. Since the determination of the variable ωc requires a
noticeable PDR peak structure, it is difficult to define S

(v)
PDR for

most of the stable isotopes.
The values of ωc vary from nucleus to nucleus within a

range of 10 ± 2 MeV for those listed in Table I. Note that
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According to the procedure described in the text, the cutoff energy is
determined as ωc = 8.59 MeV.

ωc may also change when we slightly modify the Skyrme
parameters. Although the correlation is slightly enhanced
by replacing SPDR with S

(v)
PDR in most cases, they are ap-

proximately similar, r (v) ≈ r . In Table I, there are a few
exceptions; 78Ni (r = 0.76 → r (v) = 0.92), 68Ni (r = 0.69 →
r (v) = 0.77), and deformed 110Zr (r = 0.74 → r (v) = 0.84).
In these cases, we found that the separation between PDR
and GDR is somewhat ambiguous, and the results depend on
the choice of ωc. On the other hand, isotopes that indicate
r > 0.9 with fixed ωc = 10 MeV show r (v) ≈ 1 with the
variable ωc as well. In Ni isotopes, although the values
of r (v) are slightly different from r , it is confirmed that
the linear correlation is significantly stronger in 84Ni than
in 68Ni.

For eleven different parameter sets, the correlation between
S

(v)
PDR and !rnp for 68,84Ni is shown in the upper part of Fig. 7. A

strong positive correlation (r (v) > 0.9) between PDR strength
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parameter sets, we estimate the correlation coefficient r in
Eq. (3) with Nd = 11. Again, we have found a weak correlation
with r = 0.47 for 68Ni and a strong correlation r = 0.89 for
84Ni.

We also examine the correlation between the slope param-
eter of the symmetry energy L and the PDR fraction fPDR in
68Ni and 84Ni. This leads to the similar coefficients r = 0.37
and 0.84 for 68Ni and 84Ni, respectively. Thus, to quantitatively
constrain !rnp and L, the measurement of the PDR in the very
neutron-rich 84Ni is more favored than in 68Ni.

The small correlation coefficient between L and fPDR for
68Ni (r = 0.37) turns out to be due to the fact that the choice of
ωc = 10 MeV has different meanings for different functionals.
Namely, the different energy functionals produce different
PDR peak energies, some of which are below 10 MeV, but
some are above that. The tail of the GDR strength also depends
on the choice of the energy functionals. Therefore, to perform
a more sensible analysis for this study, we should use the
variable cutoff ωc. This will be discussed below.

Use of variable ωc. The PDR strength (1) and PDR fraction
(2) based on variable ωc are, hereafter, referred to as S
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PDR and

f
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PDR, respectively. The variable ωc is determined according

to the following procedure: The calculated (discrete) B(E1)
values are smeared with the Lorentzian with a width of γ =
1 MeV. By plotting this smeared E1 strength S(E1; E) as
a function of energy, if we can find a distinguishable PDR
peak and its energy Epeak, ωc is defined as the energy that
corresponds to the minimum value of S(E1; E) at E > Epeak.
In Fig. 6, as an example, the determination of ωc is shown
for 84Ni. Since the determination of the variable ωc requires a
noticeable PDR peak structure, it is difficult to define S
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PDR for

most of the stable isotopes.
The values of ωc vary from nucleus to nucleus within a

range of 10 ± 2 MeV for those listed in Table I. Note that
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In these cases, we found that the separation between PDR
and GDR is somewhat ambiguous, and the results depend on
the choice of ωc. On the other hand, isotopes that indicate
r > 0.9 with fixed ωc = 10 MeV show r (v) ≈ 1 with the
variable ωc as well. In Ni isotopes, although the values
of r (v) are slightly different from r , it is confirmed that
the linear correlation is significantly stronger in 84Ni than
in 68Ni.
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•  Nuclear TDDFT 
– Calculation of response functions 
– Parallel computing 

•  Orbital parallelization (real-time cal.) 
•  Matrix element parallelization (QRPA cal.) 

•  Evolution of IS giant resonances 
– Peak splitting due to deformation 

•  Prominent in GMR,  “invisible” in GQR/GOR 

– m*/m = 0.8 ~ 0.9; K = 210 ~ 230 MeV 
•  Pygmy dipole states in neutron-rich nuclei 

– Strong neutron shell effects 
– Decoupling from GDR 
– Skin thickness (L parameter) in select nuclei 

Summary	
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•  Constrain the neutron skin 
thickness and the neutron matter 
EOS? 
–  Yes, but better in very neutron rich! 
–  Data on 84Ni are better than 68Ni 

•  Influence the r-process? 
–  Significantly influence the direct 

neutron capture process near the 
neutron drip line 

–  We need calculation with a proper 
treatment of the continuum. 

Goriely, 
PLB436, 10 

Low-energy E1 strength in exotic nuclei 
Inakura, Nakatsukasa, Yabana, PRC 84, PRC 88, 051305(R) (2013) 

Ebata, Nakatsukasa, Inakura, in preparation. 



Beyond the linear regime 
Future subjects	


•  Nuclear reaction involving a large shape 
change, such as fission, fusion, etc. 

•  Problems 
– Numerical cost for solution of TDHFB eq. 

– How to obtain quantum spectra?	
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Time-dependent Hartree-Fock-Bogoliubov (TDHFB) 
     calculations with Gogny interaction        (Y. Hashimoto)	
 

1. Aim:  
　　The aim of the TDHFB calculations is to understand the dynamical role  of the pairing correlation in              

the large-amplitude collective motions including the reaction processes. 

2. Method :  
        i) A new method of carrying out the Gogny-TDHFB calculations was proposed        
           with the three-dimensional harmonic oscillator basis (3DHO).  
       ii) The program codes  were extended to make use of the spatial grids  
           (Lagrange mesh) instead of the 3DHO .  At present, two-dimensional  
           harmonic oscillator + one-dimensional Lagrange mesh (2DHO+LM) is used. 	


Strength functions of quadrupole vibrations  
in superconducting nuclei 20O and 34Mg.	


Colliding superconducting nuclei  
20O + 20O.	


EPJ A48:55 (2012)	
 PRC88, 034307 (2013)	
 ( calculations are in progress on a computer )	




Applicable to nuclear dynamics beyond the 
liner regime: fusion and fission reactions.	


3D cal. w Coulomb 

~ 20 CPU hours 

2D cal. w/o Coulomb 

~1000 CPU h 

Canonical-basis real-time method may 
significantly reduces computational task.	


i ∂
∂t
k(t) = h(t)−ηk (t)( ) k(t)

i ∂
∂t
ρk (t) = Δk

*(t)Kk (t)− c.c.

i ∂
∂t
Kk (t) = ηk (t)+ηk (t)( )Kk (t)+Δk (t) 2ρk (t)−1( )



J. Phys. G: Nucl. Part. Phys. 37 (2010) 064018 K Matsuyanagi et al

Figure 1. Illustration of basic concepts of LACM. The collective path and the collective
hypersurface embedded in the huge-dimensional TDHFB configuration space (right-hand side).
Mapping of the collective path and the hypersurface into the (β, γ ) plane and the collective
potential energy on it (lower part on the left-hand side). The excitation spectrum and collective
wavefunctions obtained by solving the collective Schrödinger equation (upper part on the left-
hand side). In this illustration, the result of a microscopic calculation for the oblate–prolate
shape coexistence/mixing phenomenon in 68Se is used, where the collective path is self-
consistently determined by solving the ASCC equations while the collective potential and the
collective masses are evaluated by solving the CHFB and the moving-frame QRPA equations,
respectively, with the pairing-plus-quadrupole force (the quadrupole pairing is also taken into
account). This calculation may be regarded as a first step toward a fully self-consistent
microscopic derivation of the 5D quadrupole collective Hamiltonian starting from modern density
functionals.

(This figure is in colour only in the electronic version)

6.7. Combining with better density functionals

As seen in a number of contributions to this special issue on open problems in nuclear structure,
very active works are going on to build a universal nuclear energy density functional. It is
certainly a great challenge to make a systematic microscopic calculation for LACM phenomena
using better energy density functionals. For carrying out such ambitious calculations, it is
certainly necessary to develop efficient numerical algorithms to solve the basic equations of the
LACM theory. In practical applications, for instance, we need to iteratively solve the moving-
frame HFB equation and the moving-frame QRPA equations at every point on the collective
path. When we extend these equations to 2D hypersurfaces, the numerical calculation grows
to a large scale. Especially, an efficient method of solving the moving-frame QRPA equations
is needed. An extension of the finite amplitude method [61] into a form suitable for this
purpose may be promising. It may also be worthwhile to examine the applicability of the
separable approximation [62] to the effective interaction derived from the energy density
functionals.
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FIG. 1: (Color online) Correlations between the PDR
strength SPDR in 132Sn and the neutron skin thickness ∆rnp

in 208Pb. The cross denotes a result obtained with the orig-
inal SkM∗ parameter set. Other symbols represent results
with the modified parameter set as shown in the right panel.
The solid line indicates a linear fit. The correlation coefficient
for these parameter set is also shown. See the text for detail.

pairing correlation is neglected for simplicity, which has
little impact on E1 modes [7].
Definition of PDR strength, PDR fraction, and corre-

lation coefficient— We define the PDR strength as

SPDR ≡

∫ ωc

0
S(E1;E)dE =

En<ωc
∑

n

B(E1;n), (1)

with the PDR cutoff energy ωc. The PDR fraction fPDR

is the ratio of the integrated photoabsorption cross sec-
tion below ωc to the total integrated cross section.

fpdr =

∫ ωc σabs(E)dE
∫

σabs(E)dE
=

∑En<ωc

n EnB(E1;n)
∑

n EnB(E1;n)
, (2)

In Eqs. (1) and (2), we fix the cutoff at ωc = 10 MeV.
Many former works adopted the same definition [10, 12],
because of its simplicity. In light spherical neutron-rich
nuclei, the value of ωc = 10 MeV can reasonably sepa-
rate the PDR peaks from the GDR. However, for heavier
nuclei, the separation becomes more ambiguous. It is es-
pecially difficult for deformed nuclei. Later, we introduce
another definition of the PDR strength using a variable
ωc, to check the validity.
To quantify the correlation between two quantities, we

use the correlation coefficient r. When we have data
points for (xi, yi) with i = 1, · · · , Nd, it is defined by

r ≡

∑Nd

i=1(xi − x̄)(yi − ȳ)
√

∑Nd

i=1(xi − x̄)2
√

∑Nd

j=1(yj − ȳ)2
, (3)

where x̄ and ȳ are the mean values of xi and yi, respec-
tively. The absolute value of r does not exceed the unity.
A perfect linear correlation, yi = axi + b, corresponds to
r = ±1 with the same sign as that of parameter a. In the
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FIG. 2: (Color online) (a)-(c) Correlations between SPDR and
∆rnp in 68,78,84Ni. See the caption of Fig. 1. Calculated
correlation coefficients are also shown. (d) fpdr as functions
of ∆rnp for even-even Ni isotopes, calculated with the SkM∗

parameter set. See the text for detail.

followings, the correlation with r > 0 (r < 0) is referred
to as “positive” (“negative”) correlation.
Neutron skin thickness in 208Pb — First, we confirm

the result in Ref. [10]. Reference [10] reported that the
SPDR for 132Sn has only a weak correlation with the neu-
tron skin thickness defined by ∆rnp ≡

√

〈r2〉n −
√

〈r2〉p
of 208Pb. In Fig. 1, the SPDR for 132Sn is shown as a func-
tion of the neutron skin thickness, ∆rnp, of 208Pb. The
plotted 21 points are obtained by calculating ∆rnp and
SPDR with the SkM∗ functional, and with slightly modi-
fied values of 10 Skyrme parameters (t0,1,2,3, x0,1,2,3, W0,
and α). It seems to indicate some correlation, however,
the calculated points are somewhat scattered.
Using these 21 sample values (Nd = 21), the corre-

lation coefficient r is calculated according to Eq. (3).
In the present case of Fig. 1, we obtain the coefficient
r = 0.55. The correlations between ∆rnp in 208Pb and
SPDR in 68Ni and 78Ni, are also weak with r = 0.5− 0.6.
Thus, the PDR strength in these spherical (magic) nuclei
indicate a positive correlation with the skin thickness in
208Pb, however, the correlation is weak. This is qualita-
tively consistent with the result in Ref. [10].
Correlation between SPDR and ∆rnp — Next, we dis-

cuss the same correlation, but between the ∆rnp and
SPDR in the same nucleus. In Fig. 2, we show the results
for 68Ni (N = 40), 78Ni (N = 50), and 84Ni (N = 56).
The scattered data points in Fig. 2 (a) suggest a rel-
atively weak correlation in 68Ni, while the correlation
becomes moderately strong for 78Ni. The calculated cor-
relation coefficients are r = 0.69 and 0.76 for 68,78Ni,
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with the modified parameter set as shown in the right panel.
The solid line indicates a linear fit. The correlation coefficient
for these parameter set is also shown. See the text for detail.

pairing correlation is neglected for simplicity, which has
little impact on E1 modes [7].
Definition of PDR strength, PDR fraction, and corre-

lation coefficient— We define the PDR strength as

SPDR ≡

∫ ωc

0
S(E1;E)dE =

En<ωc
∑

n

B(E1;n), (1)

with the PDR cutoff energy ωc. The PDR fraction fPDR

is the ratio of the integrated photoabsorption cross sec-
tion below ωc to the total integrated cross section.

fpdr =

∫ ωc σabs(E)dE
∫

σabs(E)dE
=

∑En<ωc

n EnB(E1;n)
∑

n EnB(E1;n)
, (2)

In Eqs. (1) and (2), we fix the cutoff at ωc = 10 MeV.
Many former works adopted the same definition [10, 12],
because of its simplicity. In light spherical neutron-rich
nuclei, the value of ωc = 10 MeV can reasonably sepa-
rate the PDR peaks from the GDR. However, for heavier
nuclei, the separation becomes more ambiguous. It is es-
pecially difficult for deformed nuclei. Later, we introduce
another definition of the PDR strength using a variable
ωc, to check the validity.
To quantify the correlation between two quantities, we

use the correlation coefficient r. When we have data
points for (xi, yi) with i = 1, · · · , Nd, it is defined by

r ≡

∑Nd

i=1(xi − x̄)(yi − ȳ)
√

∑Nd

i=1(xi − x̄)2
√

∑Nd

j=1(yj − ȳ)2
, (3)

where x̄ and ȳ are the mean values of xi and yi, respec-
tively. The absolute value of r does not exceed the unity.
A perfect linear correlation, yi = axi + b, corresponds to
r = ±1 with the same sign as that of parameter a. In the
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∆rnp in 68,78,84Ni. See the caption of Fig. 1. Calculated
correlation coefficients are also shown. (d) fpdr as functions
of ∆rnp for even-even Ni isotopes, calculated with the SkM∗

parameter set. See the text for detail.

followings, the correlation with r > 0 (r < 0) is referred
to as “positive” (“negative”) correlation.
Neutron skin thickness in 208Pb — First, we confirm

the result in Ref. [10]. Reference [10] reported that the
SPDR for 132Sn has only a weak correlation with the neu-
tron skin thickness defined by ∆rnp ≡

√

〈r2〉n −
√

〈r2〉p
of 208Pb. In Fig. 1, the SPDR for 132Sn is shown as a func-
tion of the neutron skin thickness, ∆rnp, of 208Pb. The
plotted 21 points are obtained by calculating ∆rnp and
SPDR with the SkM∗ functional, and with slightly modi-
fied values of 10 Skyrme parameters (t0,1,2,3, x0,1,2,3, W0,
and α). It seems to indicate some correlation, however,
the calculated points are somewhat scattered.
Using these 21 sample values (Nd = 21), the corre-

lation coefficient r is calculated according to Eq. (3).
In the present case of Fig. 1, we obtain the coefficient
r = 0.55. The correlations between ∆rnp in 208Pb and
SPDR in 68Ni and 78Ni, are also weak with r = 0.5− 0.6.
Thus, the PDR strength in these spherical (magic) nuclei
indicate a positive correlation with the skin thickness in
208Pb, however, the correlation is weak. This is qualita-
tively consistent with the result in Ref. [10].
Correlation between SPDR and ∆rnp — Next, we dis-

cuss the same correlation, but between the ∆rnp and
SPDR in the same nucleus. In Fig. 2, we show the results
for 68Ni (N = 40), 78Ni (N = 50), and 84Ni (N = 56).
The scattered data points in Fig. 2 (a) suggest a rel-
atively weak correlation in 68Ni, while the correlation
becomes moderately strong for 78Ni. The calculated cor-
relation coefficients are r = 0.69 and 0.76 for 68,78Ni,

Inakura, Nakatsukasa, Yabana, PRC 88, 051305(R) (2013); 84, 021302(R) (2011) 



•  Constrain the neutron skin 
thickness and the NM EOS? 
–  Yes, but better in very neutron rich! 
–  Data on 84Ni are better than 68Ni 

•  Influence the r-process? 
–  Significantly influence the direct 

neutron capture process near the 
neutron drip line 

–  We need calculation with a proper 
treatment of the continuum. 

Goriely, 
PLB436, 10 

Low-energy E1 strength in exotic nuclei 
Inakura, Nakatsukasa, Yabana, PRC 84, PRC 88, 051305(R) (2013) 

Ebata, Nakatsukasa, Inakura, in preparation. 
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Fig. 10: Calculated fusion threshold energies are compared with those obtained by the frozen density approx-

imation V FD
B . The energy differences between the fusion threshold and V FD

B are shown as functions of the

effective fissility defined in [Swiatecki, Nucl. Phys. A 376, 275 (1982)]. The comparison with the experimental

values V exp
B are also shown for light systems.

3.2.3.5 Fusion hindrance studied with the time-dependent density-functional sim-

ulation

L. Guo and T. Nakatsukasa, EPJ Web Conf. 38, 09003 (2012).

RIKEN Accel. Prog. Rep. 44, 46 (2011); 45, 44 (2012);

It is empirically known that the fusion is significantly hindered for the case that colliding two

nuclei whose proton numbers Z1 and Z2 are relatively heavy, typically with the charge product of

projectile and target larger than 1,600 (Z1Z2 ≥ 1, 600). This hindrance was interpreted by Swiatecki

in terms of the extra-push energy beyond the Coulomb barrier which is necessary to overcome the

fission barrier of a compound system. The dissipation effect is also important to quantify the extra-

push energy. In order to clarify the microscopic origin of the extra-push energy, the dynamical fusion

threshold has been investigated, from light to heavy systems, with a TDDFT simulation study with

modern Skyrme energy functionals.

The fusion threshold energy obtained with the numerical simulation is compared to a static

estimate of the nucleus-nucleus potential (“frozen density (FD) approximation”),

V FD(R) = E[ρP+T ](R)− E[ρP ]− E[ρT ], (6)

using the ground-state density of the projectile ρP and target ρT . The maximum value of V FD(R) is

regarded as the fusion barrier height V FD
B . The fusion threshold energy obtained with the TDDFT

simulation is compared with V FD
B in Fig. 10. In relatively light systems, the calculated fusion

threshold energies are always smaller than the static values VFD(R) by a few MeV. This is due

“Extra-push energy”   
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Including residual Coulomb in a larger model space (canonical basis), the 
project is currently running on use of “K” computer. [ 4.4 M node*h ]	
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