Ab initio study of natural and unnatural parity states of ⁶Li

NTSE-2014 @ PNU (Khabarovsk) 2014 Jun. 23-27

Rare Isotope Science Project / Institute for Basic Science Ik Jae Shin

In collaboration with :

- Youngman Kim (RISP/IBS)
- James Vary, Pieter Maris (Iowa State Univ.)
- Christian Forssen, Jimmy Rotureau (Chalmers Univ. of Technology)

Institute for Basic Science

itute for Basic Scienc

50 Research centers(by 2017) in

- **Mathematics** Chemistry Life Sciences
- PI of the center can be a foreigner
- 2-3 centers for research at RAON

Institute for Basic Science

Rare isotop

Science Project

Rare Isotope Science Project

ZAO

- Goal : To build a world class heavy ion accelerator RAON, for rare isotope science research in Korea
- Project period : 2011.12-2020.02
- Budget : 460BWon (1BWon~1M\$)
 - include initial experimental apparatus
 - does not include civil engineering, conventional facilities

High intensity rare isotope beam with ISOL and IF methods

- 70MeV, 1mA proton beam, ²³⁸U target 70kW ISOL system
- 200MeV/u, 8.3pμA, ²³⁸U beam and other SI beam 400kW IF system
 - 600 MeV for proton

High current high purity neutron-rich RI beam
 For example, ¹³²Sn : ~250MeV/u, ~ 10⁸ pps

Production of exotic beams combining ISOL and IF methods

Simultaneous operation of IF and ISOL systems

* ISOL-type facilities: radioactive ions are produced at rest in a thick target either by direct bombardment with particles from a driver accelerator or via fission induced both by fast and thermal secondary neutrons.

* In-flight (IF) facilities: a high energy ion beam is fragmented in a suitable thin target and the reaction products are and then transported to the secondary target.

Hyperfine Structure Study

• Highest priority research subjects

- Nuclear reaction experiments important to synthesize elements in Universe
- Search for super heavy elements : Z > 119 (Z ~ 120)
- Abnormal nuclear structure of exotic rare isotopes
- Nuclear symmetry energy at sub-saturation density
- Precision mass measurement & Laser spectroscopy

Important scientific applications

- Material science : β -NMR, μ SR
- Medical and bio-science : RI beam irradiation
- Nuclear data for Gen-IV NPP and nuclear waste transmutation

Science program with beam schedule

Ream schedule	Science program	Exp. facility [#]	Beam species on exp. target [†]		Beam Intensity on exp. (pps)
beam schedule			Day-1	Extra 2 years	(required/expected)
2018.Q2 ~ from SCL1 (<18.5 MeV/u)	Nuclear structure SHE search, rp-process, Spin physics	RS	⁵⁴ Cr	⁶⁴ Ni ^{26m} Al (²⁸ Si), ²⁵ Al (²⁸ Si), ⁴⁴ Ti (⁴² Ca), ^{14,15} O (¹⁵ N)	¹⁵ N, ⁵⁴ Cr ²⁸ Si, ⁴² Ca, ⁵⁰ Ti ²⁵ Al, ^{26m} Al, ⁴⁴ Ti, ^{14,15} O: (10 ⁵⁻⁶)
	Pigmy dipole resonance	LAS-L	⁵⁸ Ni	⁴⁰ Ca, ¹¹² Sn	(10 ⁶⁻⁸ / <10 ⁹⁻¹⁰)
	Biological effects	BM	¹² C		$(<10^{12} / >10^{12})$
	New materials, Polarized beam	β-NMR	⁸ Li by $(d, n)(n, \alpha)$ or $(p, 2p)$		⁸ Li (10 ⁸ / 10 ⁹)
	Neutron cross section	NSF	n by (p,n) and (d,n)		n (< $10^{12}/10^{12}$)
2019.Q4 ~ from ISOL (~5 keV/u)	Hyperfine structure, Mass measurement	Ion Trap LS	¹³² Sn	¹³⁰⁻¹³⁵ Sn	$^{132}\text{Sn} (<10^5 / 10^7)^{\ddagger}, \\ ^{130\text{-}135}\text{Sn} (10^{3\text{-}6} / 10^{3\text{-}7})$
2019.Q4 ~ ISOL-SCL3 (<18.5 MeV/u)	r-process	RS	¹³² Sn	¹³⁰⁻¹³⁵ Sn	¹³² Sn (10 ⁶ / 10 ⁷), ^{65,66} Ni (10 ⁶⁻⁸ / 10 ⁶⁻⁷)
	Pigmy dipole resonance	LAS-L	¹³² Sn	⁵⁰⁺ⁿ Ca, ⁶⁰⁺ⁿ Ni, ¹⁰⁶⁺ⁿ Sn	
2019.Q4 ~ SCL1-SCL2 (~ hundreds MeV/u)	New materials	μSR	μ^+ by (p, πx)		$\mu^+ (10^8 / 10^9)$
	Biological effects	BM	^{12}C		$(<10^{12} / >10^{12})$
	Baseline experiments, Spin physics	LAS-H	⁴⁰ Ca	⁵⁸ Ni, ¹¹² Sn, ¹³² Xe	(10 ⁶⁻⁸ / <10 ⁹⁻¹¹)
2020.Q2 ~ SCL1-SCL2-IF (~ hundreds MeV/u)	Nuclear structure	ZDS & HRS	¹⁰⁰⁺ⁿ Sn	¹⁰⁰⁺ⁿ Sn	¹²⁸ Sn (10 ⁶⁻⁸ / 10 ⁷) ¹³² Sn (10 ⁶⁻⁸ /10 ⁷) [‡]
	Symmetry energy	LAS-H	¹³² Sn	⁴⁴⁺ⁿ Ca, ⁶⁰⁺ⁿ Ni, ¹⁰⁶⁺ⁿ Sn, ¹⁴⁴ Xe	
2020.Q4 ~ ISOL-SCL3-SCL2-IF(X) (~ hundreds MeV/u)	Nuclear structure	ZDS & HRS	¹³² Sn		132 Sn (10 ⁶⁻⁸ / 10 ⁷) [‡]
	Symmetry energy	LAS-H	¹⁰⁶⁺ⁿ Sn	¹³³⁺ⁿ Xe	144 Xe (10 ⁶⁻⁸ / 10 ⁶)
2021.Q2 ~ ISOL-SCL3-SCL2-IF (~ hundreds MeV/u)	Nuclear structure	ZDS & HRS			⁷⁸ Ni (/<2)

RS: Recoil Spectrometer, LAS: Large Acceptance Spectrometer, BM: Bio & Medical, LS: Laser Spectrometer, NSF: Neutron Science Facility, ZDS: Zero Degree Spectrometer, HRS: High Resolution Spectrometer † Beam species : SI (black), RI (Blue) ‡ Beam purity >90 % for ISOL, 9% for IF

Ab initio study of natural (and unnatural parity) states of ⁶Li

Interactions

JISP16 [A. M. Shirokov, et al., Phys. Lett. **B644**, 33 (2007)]

- J-matrix inverse scattering potential
- np scattering data (phase shifts)
- PETs are used to fit properties of some light nuclei

NNLO_{opt} [A. Ekström, et al., Phys. Rev. Lett., **110** (2013), 192502]

- Optimized NN interaction at NNLO using POUNDerS
- 3 pion-nucleon couplings and 11 partial wave contact parameters

No core shell model

from the talk by J. Vary @ RISP, Mar. 2013

MFDn (Many Fermion Dynamics for nuclear structure)

N_{max} : many body truncation parameter

C. Cockrell, et al., Phys. Rev. C86, 034325 (2012) w/ JISP16

Ground state energy

more underbound and slower convergence compared to JISP16

Excitation spectrum

two narrow resonance states converge well for both interactions

Excitation spectrum (unnatural parity)

 systematic trend downward indicating continuum (nonresonant) states

Point-proton rms radius (ground state)

radius converges more slowly than the ground and excited state energies

Magnetic dipole moment (ground state)

well-convergent behavior and good agreement with experiment

Quadrupole moment (ground state)

good agreement with almost vanishing experimental value
drastically different convergence patterns

 $B(E2;(3^+,0) \rightarrow (1^+,0))$

slow convergence for both interactions

B(M1;(2⁺,1)→(1⁺,0))

- reasonable convergent behaviors
- different convergence patterns

Gamow-Teller matrix element

- ✤ (0+,1) of ⁶Li ~ g.s. of ⁶He
- well convergent and good agreement with experimental value

Spin decomposition

[P. Maris and J. Vary, Int. J. Mod. Phys. 22, No.7 (2013) 1330016]

 $J = \frac{1}{I+1} \left(\langle \mathbf{J} \cdot \mathbf{L}_{p} \rangle + \langle \mathbf{J} \cdot \mathbf{L}_{n} \rangle + \langle \mathbf{J} \cdot \mathbf{S}_{p} \rangle + \langle \mathbf{J} \cdot \mathbf{S}_{n} \rangle \right)$

 due to nearly exact isospin symmetry, orbital motions and spin contributions for proton and neutron coincide

Summary

- In general, the ground state energy of NNLO_{opt} converges more slowly compared to JISP16.
- excitation energies
 large magnetic dipoles
 large M1 transition
 large M_{GT}

→ reasonably good convergence

rms radius
 E2 transitions

→ poor convergence (long-range operators)

Future work

✤ other Li isotopes

✤ include 3NFs

investigate convergence in detail,
 e.g. improved extrapolation methods

THANK YOU !

Extrapolation

Extrapolation A5 for ground state energies* (in preparation)

$$E_{gs} = E_{\infty} + ae^{-c\Lambda_{2}^{2}} + E_{IR}(\lambda_{r}); \quad E_{IR}(\lambda_{r}) = de^{-2k_{\infty}/\lambda_{r}} = de^{-2k_{\infty}L_{r}}$$

$$1/\lambda_{r} = L_{r} = L_{2} + \Delta L; \quad L_{i} = 1/\lambda_{i}; \quad \lambda_{i} = \sqrt{\frac{m\Omega}{2(N_{i} + \frac{3}{2})\hbar}}; \quad N_{i} = \max(2n+l) + i$$

$$\Delta L = 0.54437b(L_{0}/b)^{-1/3}; \quad b = \sqrt{\frac{\hbar}{m\Omega}}; \quad \Lambda_{i} = \sqrt{\frac{2(N_{i} + \frac{3}{2})m\Omega}{\hbar}}$$

Extrapolations A3 for point proton rms radii* (in preparation)

$$\begin{split} A3: \ r^{2} &= \left\langle r^{2} \right\rangle_{\infty} \left[1 - \left(c_{0} \beta^{3} + c_{1} \beta \right) e^{-\beta} \right] \\ L_{t} &= L_{2} + \Delta L; \ L_{i} = 1/\lambda_{i}; \ \lambda_{i} = \sqrt{\frac{m\Omega}{2(N_{i} + \frac{3}{2})\hbar}}; \ N_{i} = \max(2n+l) + i; \ \Delta L = 0.54437b(L_{0}/b)^{-1/3}; \ b = \sqrt{\frac{\hbar}{m\Omega}} \\ \beta &= 2k_{\infty}L_{i}; \ "\text{Fit"} \ k_{\infty} \ \text{from} \ E_{gs}; \ "\text{SC"} \ k_{\infty} = \frac{\sqrt{2m(E_{s} + E_{c})}}{\hbar}; \ E_{s} = \text{proton removal energy}; \ E_{c} = \frac{(Z-1)e^{2}}{L_{i}} \end{split}$$

Based on "Extrapolation A" of P. Maris, J.P. Vary and A.M. Shirokov, Phys. Rev. C79, 014308 (2009) with improvements for IR region from

S. Coon, M.I. Avetian, M.K.G. Kruse, U. van Kolck, P. Maris, and J.P. Vary, Phys. Rev. C86, 054002 (2012); arXiv:1205.3230 R.J. Furnstahl, G. Hagen, and T. Papenbrock, Phys. Rev. C86, 031301 (2012); arXiv:1207.6100 S.N. More, A. Ekstroem, R.J. Furnstahl, G. Hagen and T. Papenbrock, Phys. Rev. C87 044326 (2013); arXiv:1302.3815