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Shell evolution: a key property of exotic nuclei  

• Shell structure 

– Important not only in single-particle energy levels but also in collectivity 

– Sharp change in exotic nuclei, called shell evolution, is suggested. 

• How to deduce the shell evolution? 

– Follow the change of “single-particle energies” along a long isotope chain. 

• Purity of single-particle (SP) states 

– Controversial levels in Sb (Z=51) isotopes 

• SP (Schiffer et al., 2004) or coupling  

to collective (Sorlin and Porquet, 2008) 

 

J. P. Schiffer et al., Phys. Rev. Lett. 92, 162501 (2004). 

Many-body calculations with a  
suitable shell-evolution mechanism  
are needed. 
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Taken from SciDAC Review (2007) 



Computational strategy 

 

Exact diagonalization 

Monte Carlo shell model 



Two major sources of evolution in p-n channel  

• Central and tensor effective forces 

 

 

 

 

 

j’>=l’ +1/2 node = n 

tensor 
central 

known for several decades 

node = n 

node ≠ n 

j>=l+1/2 

j<=l-1/2 

known for a decade (Otsuka et al., 2005) 



Monopole-based universal interaction: VMU 

• A quantitative implementation of the basic features 

– Effective tensor force:  bare π+ρ meson exchange 

• “Renormalization persistency” 

– Effective central force:  Gaussian 

• Phenomenological but supported 

from empirical interactions 



Importance of the tensor force in Sb levels 

Pure single-particle picture 

h11/2 

Single-particle strengths 

Including correlation 

Evolution due to the tensor force 
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Neutron-rich N≈28 region  

Shell evolution of interest: 

• Proton side 

– Reduction of spin-orbit splitting 

• Neutron side 

– Disappearance of the N=28 magic 

– Appearance of the N=32, 34 magic 
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Shell-model calculations 

• Model space 

– sd-pf shell without excitation 

across the N=20 gap 

• Effective interaction 

– Intra-shell: well-tested empirical 

interactions 

• USD for sd and GXPF1B for pf 

– Cross-shell: refined VMU 

• tensor: p+r 

• spin-orbit: M3Y 

• central: fine-tuned to be close 

to GXPF1 

 

Central force fitted with six parameters 



Shell evolution due to VMU 

Proton shell gap as function of N Neutron shell gap as function of Z 

reduction 
by tensor 

L-S closure j-j closure L-S closure j-j closure 

w/o tensor 

w/ tensor 

• Tensor force 

– Large effect for doubly j-j closed configurations, such as 42Si and 44S 



Probing the spin-orbit splitting in 48Ca 

full VMU interaction (w/ tensor) 

Y. Utsuno et al., Phys. Rev. C 86, 051301(R) (2012).  

w/o tensor in the cross shell 

d3/2-s1/2 gap 
d5/2-s1/2 gap 

Exp. 

Cal. 



Occurrence of large deformation in 42Si 

Y. Utsuno et al., Phys. Rev. C 86, 051301(R) (2012). 



Tensor-force-driven Jahn-Teller effect 

Oblate deformation 
is favored for Si 
to obtain a large |Q|. 

Simple Hamiltonian 
H = s.p.e - Q∙Q 

To get lowest energy:  
Maximize |Q|. 
(if s.p.e. is neglected) 



Evolution of the N=34 magic number 

• N=34 magic number (at Ca) 

– Predicted by Otsuka et al. in 2001, but no 

experimental signs were found before 

• Direct measurement of 2+
1 for 54Ca at RIBF 

– Establishing magicity (Steppenbeck et al., 2013 

and talk on Friday) 

• Very localized magic number 

– Sharp lowering of f5/2 due to central and tensor 

D. Steppenbeck et al., Nature 502, 207 (2013).  



How large is the N=34 gap at Ca? 

• GXPF1B (Honma, 2008: 3.21 MeV gap) vs. GXPF1Br (2.66 MeV gap) 

– Systematic improvement with GXPF1Br (51Ca: suggested by Rejmund et al.) 

 ~2.5 MeV gap is established. 



Separation energies of Ca isotopes 

• Prediction with GXPF1Br 

– Drop of separation energies beyond N=34 is predicted due to the N=34 gap, 

but it is not as pronounced as that of GXPF1A or GXPF1B. 



N=34 gap: Persist or diminish in lower Z?  

Some enhancement of the N=34 gap for lower Z 

Central SO Tensor 

d3-f5 -1.184 +0.041 +0.278 

d3-p1 -0.706 +0.045 +0.091 

diff. -0.478 -0.004 +0.187 

0f5/2 

1p1/2 

0d3/2 

34 

VMU (with spin-orbit force) 



Possible widening of the N=34 gap for lower Z 

• Spectroscopic factors available 

– Along the N=20 core, but not 

the N=34 core 

– However, according to shell 

evolution due to the monopole 

interaction, the change of the 

shell gap is irrelevant to the 

neutron core assumed. 

G. Burgunder et al., Phys. Rev. Lett. 112, 042502 (2014). Si 
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N=34 core 

Ca 



2+ levels: comparison between π(pf) and π(sd)  

 

π(pf) 

π(sd) 

doubly magic 



Monte Carlo shell-model calculation 



Basic idea 

• Reducing the size of the Hamiltonian matrix 

– Possible if one can choose a set of “efficient” basis states 

T. Otsuka, M. Honma, T. Mizusaki, N. Shimizu, and Y. Utsuno, Prog. Part. Nucl. Phys. 47, 319 (2001). 

very big 
~ a billion or more 

spherical-basis representation  

“selected”-basis representation  

~ a hundred or less 



Spherical vs. deformed basis state 

• Spherical basis state (Slater det.) 

𝑐𝑝(1)
† ⋯𝑐𝑝(𝑁𝑝 (𝑝))

†𝑐𝑛(1)
† ⋯𝑐𝑛(𝑁𝑝 (𝑛))

†|core  

– Each single-particle state created by 

𝑐𝑝(𝑖)
†or 𝑐𝑛(𝑖)

† has a good j and m. 

• Deformed basis state (Slater det.) 

𝑎𝑝(1)
† ⋯𝑎𝑝(𝑁𝑝 (𝑝))

†𝑎𝑛(1)
† ⋯𝑎𝑛(𝑁𝑝 (𝑛))

†|core  

– Each single-particle state created by 

𝑎𝑝(𝑖)
†or 𝑎𝑛(𝑖)

† does not necessarily have 

a good j or a good m. 

– Mixing among different spherical states 

is characterized by a matrix D: 

𝑎𝑖
† = 𝐷1𝑖𝑐1

† + 𝐷2𝑖𝑐2
† + ⋯+ 𝐷𝑁𝑝𝑖𝑐𝑁𝑝

† 

en
er

gy
 

pure d5/2 

mixing with 
s1/2, d3/2 etc. 



MCSM wave function 

• Superposition of deformed Slater determinants with symmetry 

restoration 

|Ψ𝐼𝑀𝜋 𝑁𝑏  =  𝑓 𝑑  𝑔𝐾
𝑑

𝐼

𝐾=−𝐼

  𝑃 𝜋
𝑁𝑏

𝑑=1

𝑃 𝑀𝐾
𝐼  |Φ(𝐷 𝑑 )  

 

 

where |Φ 𝐷 𝑑  =  𝑎 𝐷 𝑑
𝑖

†
|core 𝑖  and 𝑎 𝐷 𝑑

𝑖

†
=  𝐷𝑙𝑖

(𝑑)
𝑙 𝑐𝑙

† 

– The energy of the state is determined by a set of D(d) (d=1, …, Nb): 

𝐷(1), … , 𝐷(𝑁𝑏 )
yields

𝐸(𝑁𝑏). f and gK are automatically determined by 

diagonalizing H. 

– Ideally, the matrices D(d) are determined from the variational principle. But its 

practical implementation is not easy. 

 

 

superposition Projection onto  
good I, M, π 

deformed basis state 

MCSM basis dimension ≈ 100 



Sequential optimization 

• In most cases, we adopt a sequential optimization scheme for D(k) 

(k=1, …, Nb), i.e., optimization carried out in the order D(1), D(2), … 

– The first basis state is determined with the variation after 

angular-momentum projection method. 

– In optimizing the second basis characterized by D(2), the first 

basis is fixed by the above-mentioned basis. Only D(2) is varied to 

obtain the energy as low as possible.  

– Similarly, in optimizing the k-th basis characterized by D(k), the 

basis states already taken (i.e., D(1), D(2), …, D(k-1)) are fixed. Only 

D(k) is varied to obtain the energy as low as possible.  

• The resulting energy E(Nb) decreases with increasing Nb. 

 



Stochastic or deterministic optimization 

• We choose either of the followings: 

1. Stochastic optimization (adopted by the 

original MCSM) 

• Stochastic variation following a 

Monte Carlo sampling 

• If energy is lowered, this variation is 

adopted. If not, rejected.  

2. Deterministic optimization (adopted by 

recent calculations)  

• Calculating the conjugate gradient 

(CG) vector on the energy surface 

• Follow the direction of the CG vector 

until the minimum along the line. 

 

E 

reject 

accept 

start 

|F> 



Efficiency of parallel computing in MCSM 

• Calculating one projected matrix element requires ten thousands 

of unprojected matrix elements because of three-dimensional 

integral (along the Euler angles):  

# matrix elements = 2×Nmeshz
2×Nmeshy×Nb ≈ 106 >> # cores 
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Demonstrating the efficiency of MCSM 

• Example: 56Ni in the pf shell with M-scheme dimension about 109 



Estimating the exact energy: extrapolation 

• Difficult to estimate the exact energy from the dimensional plot 

• Utilizing energy variance <H2>-<H>2  

– Introduced to the Lanczos diagonalization by Mizusaki and Imada 

– The variance of an eigenstate vanishes. Extrapolation thus works well. 

N. Shimizu et al., Phys. Rev. C 82, 061305(R) (2010). 

Energy as a function of dimension 

Energy as a function of variance 

? 



Extrapolated energies for different methods 

Courtesy of N. Shimizu 

• Comparison between stochastic and deterministic variations 

– Example: 64Ge in the pf-g9/2 shell (1014 dimension: beyond current limit) 

– The deterministic way (MCSM+CG) gives lower energies for given dimensions, 

but the extrapolated energies are almost the same.  

extrapolated 
energy 



Application to exotic nuclei: 68Ni 

• Unusual level structure 

– Three low-lying 0+ 

– Nature of those states? 

68Ni 



Triple shape coexistence in 186Pb 

• A similar situation known for 186,188Pb 

– Interpreted as spherical-oblate-prolate shape coexistence  

A. N. Andreyev et al., Nature 405, 430 (2000). 



68Ni 

Shell-model calculations in a small space 

• Missing 0+
3 

– Due to small model space 

– Very large-scale calculation 

is needed to describe. 

28 ≤ N(Z) ≤ 50 shell 



Shell-model calculation in a large space 

• Shell-model calculation in the 20 ≤ N(Z) ≤ 56 shell 

– f7/2 and d5/2 orbits are included in addition to the 28 ≤ N(Z) ≤ 50 space. 

• 1015 M-scheme dimension:  

beyond current limit 

• A reasonable truncation (up to  

~1010 dimension) to this space  

works well (Lenzi et al., 2010). 

• Here we apply MCSM to  

systematic calculations  

for Ni isotopes. 

 

68Ni 

20 ≤ N(Z) ≤ 56 shell 



Systematic MCSM calculations for Ni isotopes 

 

2+ 
4+ 
6+ 

8+ 

0+ 

Y. Tsunoda et al., Phys. Rev. C 89, 031301(R) (2014). 
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68Ni 

2×1010 core∙sec ≈ 600 year∙core in total 



Visualizing the shape of MCSM wave function 

• Distribution of deformation for the MCSM basis states 

|Ψ𝐼𝑀𝜋 𝑁𝑏  =  𝑓 𝑑  𝑔𝐾
𝑑𝐼

𝐾=−𝐼   𝑃 𝜋
𝑁𝑏
𝑑=1 𝑃 𝑀𝐾

𝐼  |Φ(𝐷 𝑑 )  

– For each basis |Φ(𝐷 𝑑 )  (d=1, 2, …, Nb),  

• intrinsic quadrupole moments Q0 and Q2 

• overlap probability between projected  

|Φ(𝐷 𝑑 )  and |Ψ𝐼𝑀𝜋 𝑁𝑏   

are calculated. 

deformation 

importance 



Tensor force: stabilizing deformation 

configuration of prolate 0+
3 

1p1/2 

0g9/2 

0f5/2 

excitation  
from j< to j> 

0f5/2 

0f7/2 

Contrary to the conventional potential picture, the spherical mean 

field can be different inside a nucleus. In 68Ni, neutron-excited 

configurations give a reduced spin-orbit splitting, enhancing the Jahn-

Teller effect and thus more stabilizing deformation. 

 

deformation 



Summary 

• Shell evolution is investigated with large-scale shell-model 

calculations. 

• Neutron-rich N=28 region 

– Direct evidence for the change of spin-orbit splitting due to the tensor force 

– Disappearance of the N=28 magic number in 42Si 

• Tensor-force driven Jahn-Teller effect 

– Appearance of the N=34 magic number at Ca and its possible persistence 

toward smaller Z 

• Monte Carlo shell-model calculations for exotic Ni isotopes 

– Triple shape coexistence in 68Ni 

• Need for a large model space 

• Analysis of shape from the MCSM wave function 

• Configuration-dependent (which we call Type II) shell evolution 


