Computational approaches to many-body dynamics of unstable nuclear systems

Alexander Volya

Florida State University

Physics and mathematics of instability and decay

Zeno paradox of arrow (490–430 BC)

The time is composed of moments therefore the flying arrow is motionless. <u>Zeno of Elea</u>, see also <u>Aristotle</u>, <u>Physics</u> VI:9, 239b5

Quantum Zeno effect. When a watched pot boils? (1983) An unstable particle, if observed continuously, will never decay - Maddox, Nature 306, 111-111, 1983 P. T. Greenland, Nature 387, 548-549, 1997

Power-law decay(1961)

A classical source with energy dispersion will exhibit a power-law decay at remote times. R.G Newton. Ann.Phys., 14(1):333, 1961

Decays cannot be exponential in the quantum world

L. A. Khalfin, JETP 6 (6), 1958; J. Schwinger Ann.Phys., 9, 169 1960; R. G. Winter Phys Rev, 123,1503 1961.

Discussion continues: Is radioactive decay exponential?

The GSI oscillations Mystery (2008)

Periodic modulation of the expected exponential law in EC-decays of different highly charged ions -Litvinov et al: Phys. Lett. B664, 162 (2008)

Carbon dating and non-exponential decay (2012) "If the decay of 14C is indeed non-exponential... this would remove a foundation stone of modern dating methods. Aston EPL 97 (2012) 52001.

Half life 5,730 \pm 40 years mean-life time 8,033 years

$$^{14}_{3}\mathrm{C} \rightarrow ~^{14}_{7}\mathrm{N} + e^- + \bar{\nu}_e$$

3

Quantum mechanics of decay

Why exponential decay?

$$rac{dN(t)}{dt} = -\Gamma N(t) ~~N(t) = N(0) \, e^{-\Gamma t}$$

Time evolution and decay in quantum mechanics

$$\psi(t) = e^{-iHt/\hbar}\psi(0)$$

Survival amplitude and probability

$$A(t) = \langle \psi(0) | e^{-iHt/\hbar} | \psi(0) \rangle \qquad P(t) = |A(t)|^2$$

Resonance wave function

$$\psi_R(t) = \exp\left[-\frac{i}{\hbar}\left(E_0 - i\frac{\Gamma}{2}\right)t\right]\psi_R(0)$$

Why and when decay cannot be exponential

Initial state "memory" time $e^{-iHt/\hbar} \approx 1 - iHt/\hbar \dots t_1 = \hbar/(\Delta E)$ $t < t_1$

Internal motion in quasi-bound state

$$ert \psi_R(E) ert^2 \propto rac{\Gamma/2}{(E-E_0)^2 - \Gamma^2/4},$$
 $t < t_2$

Remote power-law $t > t_3$

There are "free" slow-moving non-resonant particles, they escape slowly

$$N(t) \propto \frac{\Delta x}{vt} = \frac{\hbar}{mv^2 t} = \frac{2\hbar}{E_0 t} \propto |\psi_N(t)|^2 \qquad \Delta x = \frac{\hbar}{mv} \quad t_3 = \frac{\hbar}{\Gamma} \ln\left(\frac{E_0}{\Gamma}\right)$$

Example ¹⁴C decay: E₀=0.157 MeV t₂=10⁻²¹ s $\ln\left(\frac{E_0}{\Gamma}\right)$ =73

Time dependence of decay, Winter's model

Winter, Phys. Rev., 123,1503 1961.

Internal dynamics in decaying system Winter's model

Internal dynamics in decaying system Winter's model

- •Internal dynamics can be very complicated and chaotic.
- •Transitions are driven by continuum coupling.
- •Definitions of survival probability

A note on decay oscillations and neutrino mixing

[1] M. Peshkin, A Volya, and V. Zelevinsky, submitted to EPL

Physics of coupling to continuum

The role of continuum-coupling

$$H'(\epsilon) = \int_0^\infty d\epsilon' A^*(\epsilon') rac{1}{\epsilon - \epsilon' + i0} A(\epsilon') \qquad A(\epsilon') \equiv \langle I_2, \epsilon' | H_{PQ} | I_1
angle$$

[1] C. Mahaux and H. Weidenmüller, *Shell-model approach to nuclear reactions*, North-Holland Publishing, Amsterdam 1969

Physics of coupling to continuum

$$H'(\epsilon) = \int_0^\infty d\epsilon' \frac{|A(\epsilon')|^2}{\epsilon - \epsilon' + i0}$$

Integration region involves no poles

$$H'(\epsilon) = \Delta(\epsilon) \qquad \Delta(\epsilon) = \int d\epsilon' \frac{|A(\epsilon')|^2}{\epsilon - \epsilon' + i0}$$

width

$$\frac{1}{x \pm i0} = \text{p.v.} \frac{1}{x} \mp i\pi\delta(x)$$

$$H'(\epsilon) = \Delta(\epsilon) - \frac{i}{2}\Gamma(\epsilon) \quad \Gamma(\epsilon) = 2\pi |A(\epsilon)|^2$$

Form of the wave function and probability

 $|\exp(-iEt)|^2 = 1 \rightarrow |\exp(-iEt - \Gamma t/2)|^2 = \exp(-\Gamma t)$

One-body decay review

Fermi Golden Rule

$$A_{1,2}(\epsilon) = \langle I_2, \epsilon | H_{QP_1} | I_1 \rangle$$

$$d\Gamma_{1,2}(\epsilon) = 2\pi |A_{1,2}(\epsilon)|^2 \delta(E_1 - E_2 - \epsilon) dE$$

$$\Gamma_{1,2}(\epsilon) = 2\pi |A_{1,2}(\epsilon)|^2$$

Typical Amplitude Low energy: phase space

$$A_{1,2}(\epsilon) = \sqrt{\frac{2\mu}{\hbar^2 k \pi}} \int_0^\infty dr \, u_{I_1}(r) \, V(r) \, F_{I_2}(kr)$$

High energy: Born approximation

Self energy, interaction with continuum

0.8

Effective Hamiltonian Formulation

The Hamiltonian in P is:

$$\mathcal{H}(E) = H + \Delta(E) - \frac{i}{2}W(E)$$

Channel-vector:

$$|A^c(E)\rangle = H_{QP}|c;E\rangle$$

 $\Delta(E) = \frac{1}{2\pi} \int dE' \sum_{\alpha} \frac{|A^c(E')\rangle \langle A^c(E')|}{E - E'}$

Self-energy:

Irreversible decay to the excluded space:

 $W(E) = \sum_{c(\text{open})} |A^c(E)\rangle \langle A^c(E)|$

[1] C. Mahaux and H. Weidenmüller, *Shell-model approach to nuclear reactions*, Amsterdam 1969
[2] A. Volya and V. Zelevinsky, Phys. Rev. Lett. **94**, 052501 (2005).
[3] A. Volya, Phys. Rev. C **79**, 044308 (2009).

Scattering matrix and reactions $\mathbf{T}_{cc'}(E) = \langle A^{c}(E) | \left(\frac{1}{E - \mathcal{H}(E)}\right) | A^{c'}(E) \rangle$ $\mathbf{S}_{cc'}(E) = \exp(i\xi_{c}) \left\{ \delta_{cc'} - i \mathbf{T}_{cc'}(E) \right\} \exp(i\xi_{c'})$ Cross section: $\sigma = \frac{\pi}{k'^{2}} \sum_{c} \frac{(2J+1)}{(2s'+1)(2I'+1)} |\mathbf{T}_{cc'}|^{2}$

Additional topics:

Angular (Blatt-Biedenharn) decomposition
Coulomb cross sections, Coulomb phase shifts, and interference
Phase shifts from remote resonances.

The nuclear many-body problem

Traditional

- Single-particles state (particle in the well)
- Many-body states (slater determinants)
- Hamiltonian and Hamiltonian matrix
- Matrix diagonalization

Continuum physics

- Effective non-hermitian energy-dependent Hamiltonian
- Channels (parent-daughter structure)
- Bound states and resonances
- Matrix inversion at all energies (time dependent approach)

Formally exact approach Limit of the traditional shell model Unitarity of the scattering matrix

Structure of channel vectors and traditional shell model limit

$$|A^{c}(E)\rangle = a^{c}(E) |c\rangle$$

Channel amplitude
Energy-independent
channel vector: structure
of spectator components

Perturbative limit in traditional Shell Model: $H|\alpha\rangle = E_{\alpha}|\alpha\rangle$

$$\Gamma_{\alpha} = \langle \alpha | W(E_{\alpha}) | \alpha \rangle \quad \Gamma_{\alpha} = \sum \Gamma_{\alpha}^{c} \quad \Gamma_{\alpha}^{c} = \gamma_{c}(E_{\alpha}) | \langle c | \alpha \rangle |^{2}$$

c

Single-particle decay width

$$\gamma_c(E) = |a^c(E)|^2$$

Spectroscopic factor or transition rate

$$C^2S=|\langle c|\alpha\rangle|^2$$

 $B(\mathrm{EM}) = |\langle c | \alpha \rangle|^2$

Single s-wave resonance in CSM

$$\mathcal{G} = \frac{1}{E - E_o + i/2\,\Gamma(E)}$$

$$\Gamma(E) \propto \sqrt{E}$$

Two-level system

Time-dependent Continuum Shell Model Approach

- Reflects time-dependent physics of unstable systems
- Direct relation to observables
- Linearity of QM equations maintained
- No matrix diagonalization
- Powerful many-body numerical techniques
- Stability for broad and narrow resonances
- Ability to work with experimental data

Propagator and Strength Function

$$G(E) = \frac{1}{E - H} = -i \int_0^\infty dt \, \exp(iEt) \exp(-iHt)$$

Scale Hamiltonian so that eigenvalues are in [-1 1]Expand Using evolution operator in Chebyshev polynomials

$$\exp(-iHt) = \sum_{n=0}^{\infty} (-i)^n (2 - \delta_{n0}) J_n(t) T_n(H)$$

•Chebyshev polynomial $T_n[\cos(\theta)] = \cos(n\theta)$

•Use iterative relation and matrix-vector multiplication to generate

$$\begin{aligned} |\lambda_n\rangle &= T_n(H)|\lambda\rangle \\ |\lambda_0\rangle &= |\lambda\rangle, \quad |\lambda_1\rangle &= H|\lambda\rangle \quad |\lambda_{n+1}\rangle &= 2H|\lambda_n\rangle - |\lambda_{n-1}\rangle \\ \langle\lambda'|T_{n+m}(H)|\lambda\rangle &= 2\langle\lambda'_m|\lambda_n\rangle - \langle\lambda'|\lambda_{n-m}\rangle, \quad n \ge m \end{aligned}$$

•Use FFT to find return to energy representation

T. Ikegami and S. Iwata, J. of Comp. Chem. **23** (2002) 310-318 A. Volya, Phys. Rev. C 79, 044308 (2009).

Chebyshev expansion Green's function calculation

Advantages of the method

- No need for full diagonalization or inversion at different E
- Only matrix-vector multiplications
- Numerical stability
- Controlled energy resolution

Center-of-mass problem The strength-function example

Figure: Strength function for E1 and CM excitation in ²⁰O example, spsdfp –shell model WBP interaction.

CM spurious states are moved to high energy •Top plot-isoscalar dipole E1 T=0 excitation

•Center- E1 excitation with incorrect effective charges

•Bottom-E1 with $e_p=0.6$ and $e_n=-0.4$

$$F_{\lambda}(E) = \langle \lambda | \delta(E - H) | \lambda \rangle = -\frac{1}{\pi} \operatorname{Im} \langle \lambda | G(E) | \lambda \rangle$$
$$|D\rangle = D | 0^{+}_{g.s.} \rangle \quad \vec{D} = \sum_{a} e_{a} \vec{r}_{a}$$

Dysion's equation, including other interaction terms

$$\mathcal{H}(E) = H + \Delta(E) - \frac{i}{2}W(E)$$

$$\mathcal{H}(E) = H + V(E) \qquad V(E) = \sum_{ab} |a\rangle \mathbf{V}_{ab}(E) \langle b|$$
$$G(E) = \frac{1}{E - H} \qquad \mathcal{G}(E) = \frac{1}{E - \mathcal{H}(E)}$$

Propagators in channel space

Include non-Hermitian terms with Dyson's equation

$$\mathcal{G}(E) = G(E) + G(E)V(E)\mathcal{G}(E)$$
$$\mathbb{G} = \mathbf{G} \left[\mathbf{1} - \mathbf{V}\mathbf{G}\right]^{-1} = \left[\mathbf{1} - \mathbf{G}\mathbf{V}\right]^{-1}\mathbf{G}$$

Strength function and decay in ²²0

Time-dependent approach

• Ability to work with experimental data A. Volya, *Time-dependent approach to the continuum shell model*, Phys. Rev. C **79**, 044308 (2009).

Predictive power of theory

Continuum Shell Model prediction 2003-2006

C. R. Hoffman et al., Phys. Lett. B 672, 17 (2009); Phys.Rev.Lett.102,152501(2009); Phys.Rev.C 83,031303(R)(2011); E. Lunderberg et al., Phys. Rev. Lett. 108, 142503 (2012).
 A. Volya and V. Zelevinsky, Phys. Rev. Lett. 94, 052501 (2005); Phys. Rev. C 67, 054322 (2003); 74, 064314 (2006).
 G. Hagen et.al Phys. Rev. Lett. 108, 242501 (2012)

http://www.nscl.msu.edu/general-public/news/2012/O26

Interference of resonances, ⁸B study

Example of overlapping resonances

Physics of overlapping resonances: ⁸B example

Trying to find missing states

Ab-initio and no core theoretical models predict low-lying 2⁺, 0⁺, and 1⁺ states
Recoil-Corrected CSM suggests low-lying states

- Traditional SM mixed results
- •These states were not seen in ⁸B and in ⁸Li

J. P. Mitchell, G. V. Rogachev, E. D. Johnson, L. T. Baby, K. W. Kemper, A. M. Moro, P. N. Peplowski, A. Volya, and I. Wiedenhoever, Phys. Rev. C **82**, 011601 (2010); **87**, 054617 (2013).

Observation of 2⁺, 0^{+} , and 1^{+} states

TDCSM: WBP interaction +WS potential, threshold energy adjustment. R-Matrix: WBP spectroscopic factors, R_c =4.5 fm, only 1⁺ 1⁺ 0⁺ 3⁺ and 2⁺ I=1 channels

Observation of 2⁺, 0^{+} , and 1^{+} states

Position of the 2+ and its role in ⁷Be(p,p')⁷Be

- Theoretical calculations predict two 2⁺ states
- Predictions are higher in energy
- Only one state is observed

Position of the 2+ and its role in ⁷Be(p,p')⁷Be

Resonances and their positions inelastic ⁷Be(p,p')⁷Be reaction in TDCSM

CKI+WS Hamiltonian

See animation at www.volya.net

R-matrix fit and TDCSM for ⁷Be(p,p)⁷Be^{*}

From cross section to manybody structure ⁷Be(p,p)⁷Be

identical energies, identical widths, identical spectroscopic factors but different cross section

J^{π}	E(MeV)	$\mathrm{p}_{3/2}(\mathrm{g.s.})$	$p_{1/2}(gs)$	$p_{3/2}$	$p_{1/2}$
1_{1}^{+}	0.7693	-0.563	0.303	0.867	-0.138
1_{2}^{+}	1.947	0.597	0.826	0.284	0.240
0_{1}^{+}	1.967	0.693	0	0	-0.918
3_{1}^{+}	2.2098	0.612	0	0	0
2^{+}_{2}	2.628	0.149	0.326	-0.632	0

Phase changed

Acknowledgements:

N. Ahsan, M. Lingle, M. Peshkin, G. Rogachev, V. Zelevinsky

Funding support:

U.S. Department of Energy, Florida State University.