

From Gogny force to shell-model calculations...

Furong Xu

School of Physics, Peking University, Beijing, China

Nuclear Theory in the Supercomputing Era - 2014 (NTSE-2014) Khabarovsk, June 23-27, 2014

I. Introduction

How to calculate TBMEs is a big issue for shell-model calculations ! Realistic vs empirical potentials

II. SM calculations based on Gogny force

- *a) sd*-shell, no *NNN* force, modify Gogny parameters, calculate spectra...
- b) With NNN, but use existing MF Gogny parameters, calculate spectra... All results are preliminary!

III. From realistic interaction to HF-type calculations with higher order corrections "Many-Body Perturbation Theory (MBPT)"

ab-initio, but our calculations are preliminary yet.

IV. Summary

I. Introduction (our motivations)

From realistic nuclear forces:

Nijmegen; Bonn; Argonne; JISP;

Chiral perturbation theory (ChPT, Chiral EFT), e.g., N²LO, N³LO... others

1) Renormalization from bare to effective form

G-matrix, SRG, V_{low-k}, Okubo-Lee-Suzuki (OLS), UCOM...

- 2) No-core shell-model calculations, but limited to light nuclei
- 3) With-core calculations, further renormalization needed to include excluded space (including core polarization), e.g., folded diagrams (Q-box)... How good quantitatively?

How good quantitatively?

From empirical TBMEs (with-core calculations) p-shell: CK... sd-shell: USD, WBP... pf-shell: KB3, GFPX... sd+pf-shell: SDPF-U...

Well quantitative, BUT too many parameters (TBMEs) needed to be determined by fitting data.

From empirical potentials to calculate TBMEs ?

- Skyrme and Gogny, for example, have been successful in mean-field (MF) calculations.
 - \approx 10 model parameters involved
- > Do these potentials work well also for SM calculations?
- Can we use the same MF parameters for SM calculations? or need readjustment specially for SM calculations?
- Can we find "universal" parameters working for any mass regions, as in MF calculations?

Why do we choose the Gogny force?

1) Somebodies else have tested the Skyrme force (but this is not a reason)

H. Sagawa et al., PLB 159 (1985) 228: sd-shell ¹⁸O and ³⁶Ar

J.M.G. Gomez et al., NPA 551 (1993) 451: p-shell nuclei

Adopted existing parameters and results are sensitive to parameter used!

2) Compared with Skyrme, the Gogny force is finite-range,

which is more reasonable in physics!

3) Only about 5 sets of Gogny parameters existing, while more than 240 sets of Skyrme parameters existing.

Our motivations

Search possibility to use Gogny to calculate TBMEs for with-core

SM calculations of any mass regions!

- Empirical TBMEs, too many parameters needed to be fitted!
- Realistic forces, quantitatively good?

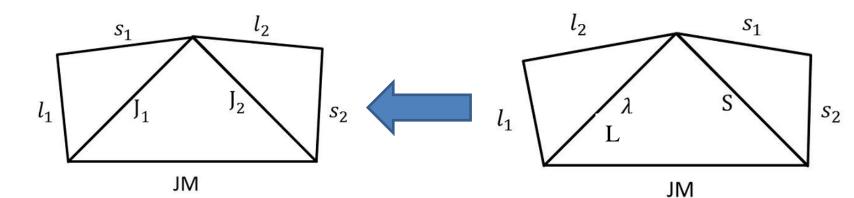
II. Our SM calculations based on Gogny force

$$V(1,2) = \sum_{j=1,2} e^{-\frac{(\vec{r}_1 - \vec{r}_2)^2}{\mu_j^2}} (W_j + B_j P_\sigma - H_j P_\tau - M_j P_\sigma P_\tau)$$

$$+ t_0(1+x_0P_{\sigma})\delta(\vec{r}_1-\vec{r}_2)\left[\rho\left(\frac{\vec{r}_1+\vec{r}_2}{2}\right)\right]^{\alpha}$$
$$+ iW_{LS}\overleftarrow{\nabla}_{12}\delta(\vec{r}_1-\vec{r}_2)\times\vec{\nabla}_{12}.(\vec{\sigma}_1+\vec{\sigma}_2).$$

sd shell

1) We test how important the NNN force is



But in shell mode code (e.g., NushellX), use *l s* coupling

TBMEs calculations:

To calculate Gogny TBMEs, we need to seperate wavefunction into spatial and spin components.

$$\delta(\vec{r}_1 - \vec{r}_2) \quad (\vec{\sigma}_1 + \vec{\sigma}_2)$$
$$iW_{LS}\overleftarrow{\nabla}_{12}\delta(\vec{r}_1 - \vec{r}_2) \times \vec{\nabla}_{12}.(\vec{\sigma}_1 + \vec{\sigma}_2)$$

$$\{ |n_{1}l_{1}j_{1}(1)\rangle \otimes |n_{2}l_{2}j_{2}(2)\rangle \}_{JM}$$

$$= \sum_{\lambda S} \sqrt{2j_{1}+1} \sqrt{2j_{2}+1} \sqrt{2S+1} \sqrt{2\lambda+1} \begin{cases} l_{1} \ 1/2 \ j_{1} \\ l_{2} \ 1/2 \ j_{2} \\ \lambda \ S \ J \end{cases} \cdot \{ |n_{1}l_{1}(1), n_{2}l_{2}(2); \lambda\mu\rangle \otimes |\chi_{S}\rangle \}_{JM}$$

$$= \sum_{\lambda s} \gamma_{\lambda s}^{(I)}(j_{1}l_{1}; j_{2}l_{2}) \ \{ |n_{1}l_{1}(1), n_{2}l_{2}(2); \lambda\mu\rangle \otimes |\chi_{S}\rangle \}_{JM}$$

$$(8)$$

HO basis in the relative coordinate space (for Gaussians finite-range and NNN)

$$\begin{split} |nlm_l\rangle &= R_{nl} \cdot Y_{lm}(\theta, \phi) \\ &= \sqrt{\frac{2^{l-n+2}(2\nu)^{l+1.5}(2l+2n+1)!!}{\sqrt{\pi}[(2l+1)!!]^2 n!}} \cdot r^l e^{-\nu r^2} \\ &\sum_{m=0}^n (-1)^m 2^m \frac{n!(2l+1)!!}{m!(n-m)!(2l+2m+1)!!} (2\nu r^2)^m \cdot Y_{lm}(\theta, \phi) \\ \mathbf{r} &= r_1 - r_2 \qquad \nu_r = \frac{\mu \omega}{2\hbar} \end{split}$$

HO basis in the relative momentum (k) space (for spin-orbit coupling term)

$$\begin{aligned} |nlm_l\rangle &= R_{nl} \cdot Y_{lm}(\theta, \phi) \\ &= \sqrt{\frac{2^{l-n+2}(2\nu)^{l+1.5}(2l+2n+1)!!}{\sqrt{\pi}[(2l+1)!!]^2 n!}} \cdot k^l e^{-\nu k^2} \\ &= \sum_{m=0}^n (-1)^m 2^m \frac{n!(2l+1)!!}{m!(n-m)!(2l+2m+1)!!} (2\nu k^2)^m (-i)^{2n+l} \cdot Y_{lm}(\theta, \phi) \end{aligned}$$

TBME calculations

 $\langle n_1 l_1 j_1, n_2 l_2 j_2; J M_J T | V_{NN,12} | n_3 l_3 j_3, n_4 l_4 j_4; J M_J T \rangle$ $= \sum_{j=1}^{J+1} \sum_{j=1}^{1} \sum_{j=1}^{j} \sum_{j=1}^{j} \sum_{j=1}^{S} \sum_{j=1}^{l} \sum_{j=1}^{L} \sum_{j=1}^{J+1} \sum_{j=1}^{1} \sum_{j=1}^{j} \sum_{j=1}^{j} \sum_{j=1}^{j} \sum_{j=1}^{l'} \sum_{j=1}^{$ $\lambda = J - 1 \ \overline{S = 0} \ n \overline{lNL} \ \mu = -\lambda \ M_{\overline{S}} = -S \ m_{\overline{l}} = -l \ M_{\overline{L}} = -L \ \lambda' = J - 1 \ S' = 0 \ n' l' N' L' \ \mu' = -\lambda' \ M'_{\overline{S}} = -S' \ m'_{\overline{l}} = -l' \ M'_{\overline{L}} = -L \ \lambda' = J - 1 \ S' = 0 \ n' l' N' L' \ \mu' = -\lambda' \ M'_{\overline{S}} = -S' \ m'_{\overline{L}} = -l' \ M'_{\overline{L}} = -L \ \lambda' = J - 1 \ S' = 0 \ n' l' N' L' \ \mu' = -\lambda' \ M'_{\overline{S}} = -S' \ m'_{\overline{L}} = -l' \ M'_{\overline{L}} = -L \ \lambda' = J - 1 \ S' = 0 \ n' l' N' L' \ \mu' = -\lambda' \ M'_{\overline{S}} = -S' \ m'_{\overline{L}} = -l' \ M'_{\overline{L}} = -L \ \lambda' = J - 1 \ S' = 0 \ n' l' N' L' \ \mu' = -\lambda' \ M'_{\overline{S}} = -S' \ m'_{\overline{L}} = -l' \ M'_{\overline{L}} = -L \ \lambda' = J - 1 \ S' = 0 \ n' l' N' L' \ \mu' = -\lambda' \ M'_{\overline{S}} = -S' \ m'_{\overline{L}} = -l' \ M'_{\overline{L}} = -L \ \lambda' = J - 1 \ S' = 0 \ n' l' N' L' \ \mu' = -\lambda' \ M'_{\overline{S}} = -S' \ m'_{\overline{L}} = -l' \ M'_{\overline{L}} = -L \ \lambda' = J - 1 \ S' = 0 \ n' l' N' L' \ \mu' = -\lambda' \ M'_{\overline{S}} = -S' \ m'_{\overline{L}} = -l' \ M'_{\overline{L}} = -L \ M'_{\overline{S}} = -S' \ m$ $1 - (-1)^{S+T+l} \qquad 1 - (-1)^{S+T+l'}$ $\overline{\sqrt{2(1+\delta_{n_1n_2}\delta_{l_1l_2}\delta_{j_1j_2})}}\,\overline{\sqrt{2(1+\delta_{n_3n_4}\delta_{l_3l_4}\delta_{j_3j_4})}}$ $\sqrt{2j_1+1}\sqrt{2j_2+1}\sqrt{2S+1}\sqrt{2\lambda+1}\sqrt{2j_3+1}\sqrt{2j_4+1}\sqrt{2S'+1}\sqrt{2\lambda'+1}$ $\begin{cases} l_1 \ 1/2 \ j_1 \\ l_2 \ 1/2 \ j_2 \\ \lambda \ S \ J \end{cases} \begin{cases} l_3 \ 1/2 \ j_3 \\ l_4 \ 1/2 \ j_4 \\ \lambda' \ S' \ J' \end{cases} M_{\lambda}(nlNL; n_1l_1n_2l_2)M_{\lambda'}(n'l'N'L'; n_3l_3n_4l_4)$ $\langle \lambda \mu S M_S | J M_J \rangle \langle \lambda' \mu' S' M'_S | J M_J \rangle \langle l m_l L M_L | \lambda \mu \rangle \langle l' m'_l L' M'_L | \lambda' \mu' \rangle$ $\langle nlm_l | \otimes \langle \chi_{SM_S} | \otimes \langle NLM_L | V_{NN,12} | n'l'm_l' \rangle \otimes | \chi_{S'M_S'} \rangle \otimes | N'L'M_L' \rangle$ $= C \cdot \langle nlm_l | \otimes \langle \chi_{SM_S} | \otimes \langle NLM_L | V_{NN,12} | n'l'm_l' \rangle \otimes |\chi_{S'M_S'} \rangle \otimes |N'L'M_L' \rangle$

 $|nlm_l\rangle$ in relative coordinate space; $|NLM_L\rangle$ for the center-of-mass space

We found: the results are not good if we take existing parameters with no *NNN* force included.

- We refit Gogny parameters BUT still no NNN force, to test NNN.
 a) We choose the five nuclei: ¹⁸O, ¹⁸F, ²⁰Ne, ²²Na, ²⁴Mg, fit the lowest level at each given spin, using Monte Carlo simulated annealing algorithm.
- b) Take USDB s.p. energies: d_{5/2}= -3.9257; s_{1/2}= -3.2079;
 d_{3/2}= 2.1117 MeV
- a) Adopt $\hbar \omega \approx 45 A^{-1/3} 25 A^{-2/3}$ (USDB)

Preliminary fitting

TABLE I. The parameters of different Gogny interactions.

	D1'[1]	D1[1]	D1M[2]	D1N[3]	D1S[4]	FIT
μ_1	0.7000	0.7000	0.5000	0.8000	0.7000	0.6537
μ_2	1.2000	1.2000	1.0000	1.2000	1.2000	0.9837
w_1	-402.40	-402.40	-12797.57	-2047.61	-1720.30	-1951.8104
w_2	-21.30	-21.30	490.95	293.02	103.64	272.4556
b_1	-100.00	-100.00	14048.85	1700.00	1300.00	3280.8417
b_2	-11.77	-11.77	-752.27	-300.78	-163.48	-607.9833
h_1	-496.20	-496.20	-15144.43	-2414.93	-1813.53	-2433.3474
h_2	37.27	37.27	675.12	414.59	162.81	273.1813
m_1	-23.56	-23.56	11963.89	1519.35	1397.60	2562.6194
m_2	-68.81	-68.81	-693.57	-316.84	-223.93	-647.3149
W_0	130.00	115.00	115.36	115.00	-130.00	-460.8928

[1] J. Dechargé and D. Gogny, Phys. Rev. C 21, 1568 (1980).

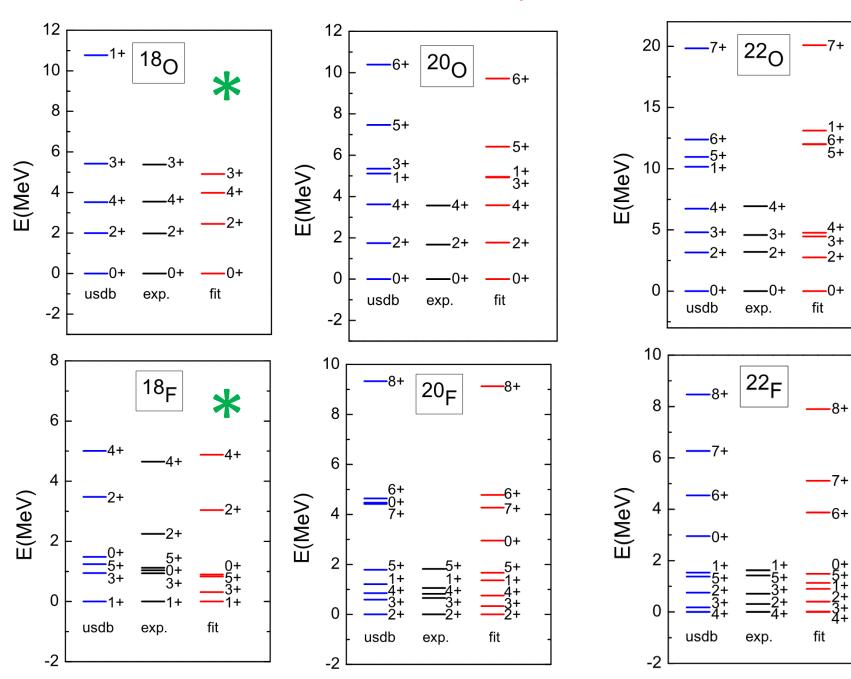
[2] S. Goriely, S. Hilaire, M. Girod, and S. Péru, Phys. Rev. Lett. 102, 242501 (2009).

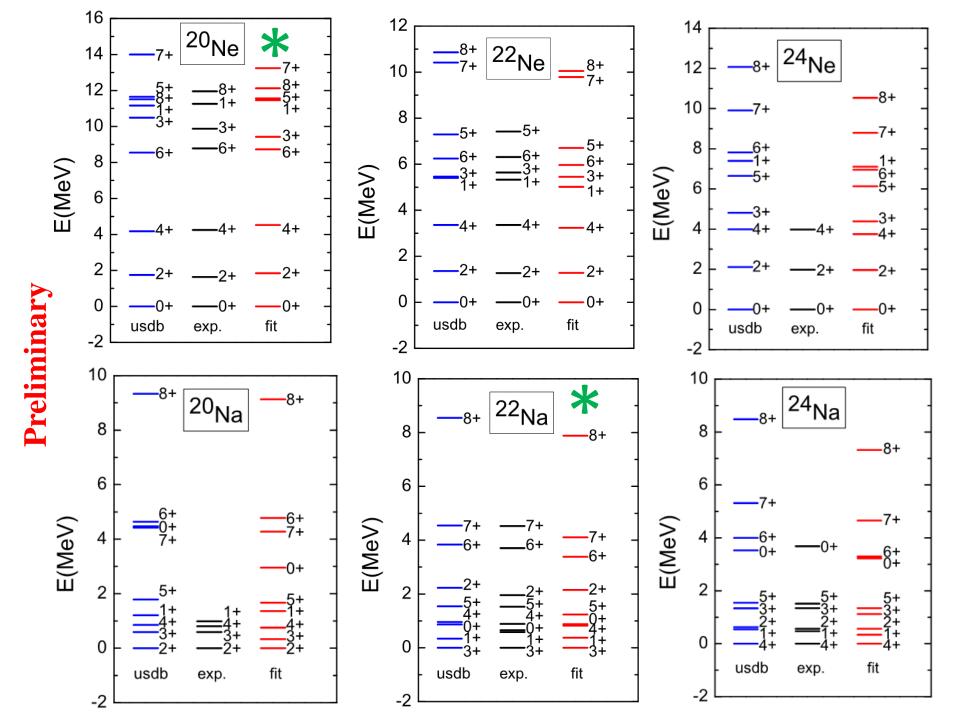
[3] F. Chappert, M. Girod, and S. Hilaire, Physics Letters B 668, 420 (2008).

[4] J. Berger, M. Girod, and D. Gogny, Computer Physics Communications 63, 365 (1991).

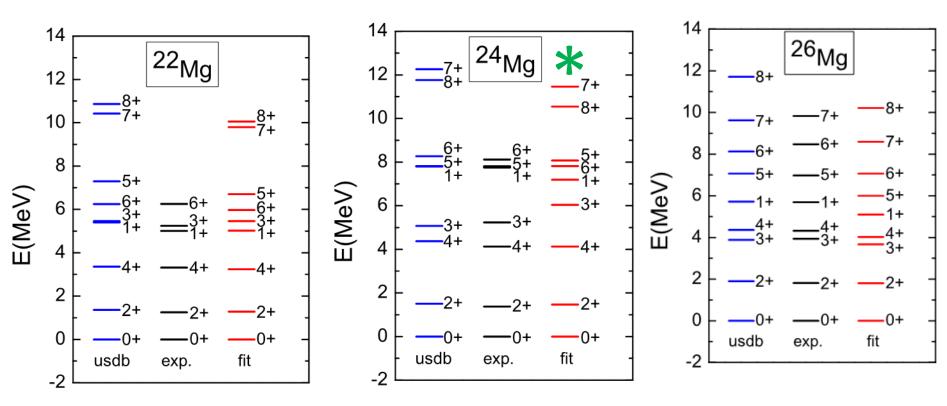
11 Gogny parameters fitted, while in USDB: 63 TBMEs fitted

Preliminary





Preliminary



Indication: one may obtain reasonable results with no *NNN*, BUT one has to refit the Gogny parameters.

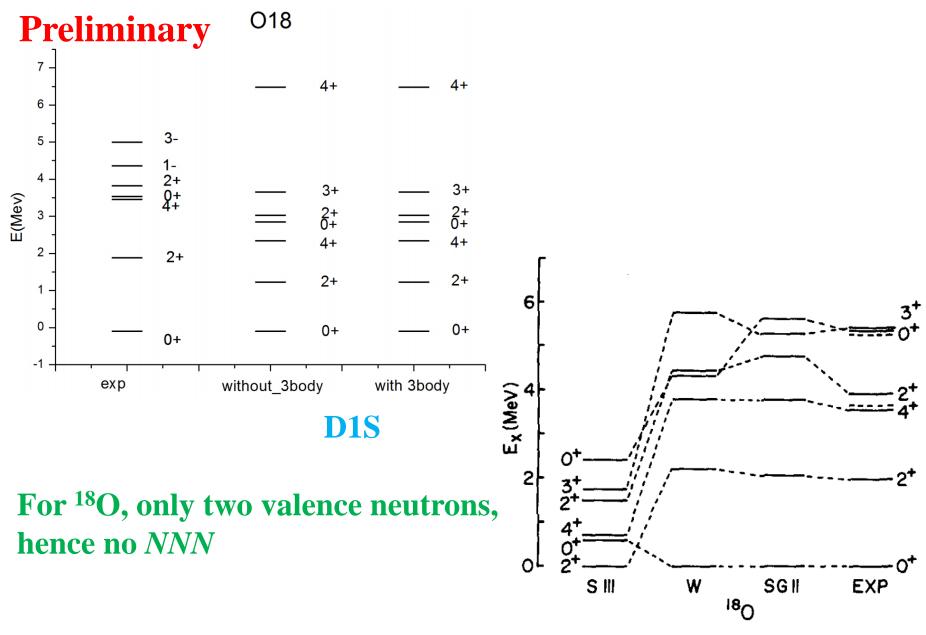
2) *NNN* force included, BUT no parameter modified, i.e., take existing Gogny parameters.

$$t_0(1+x_0P_{\sigma})\delta(\vec{r}_1-\vec{r}_2)\left[\rho\left(\frac{\vec{r}_1+\vec{r}_2}{2}\right)\right]^{\alpha}$$

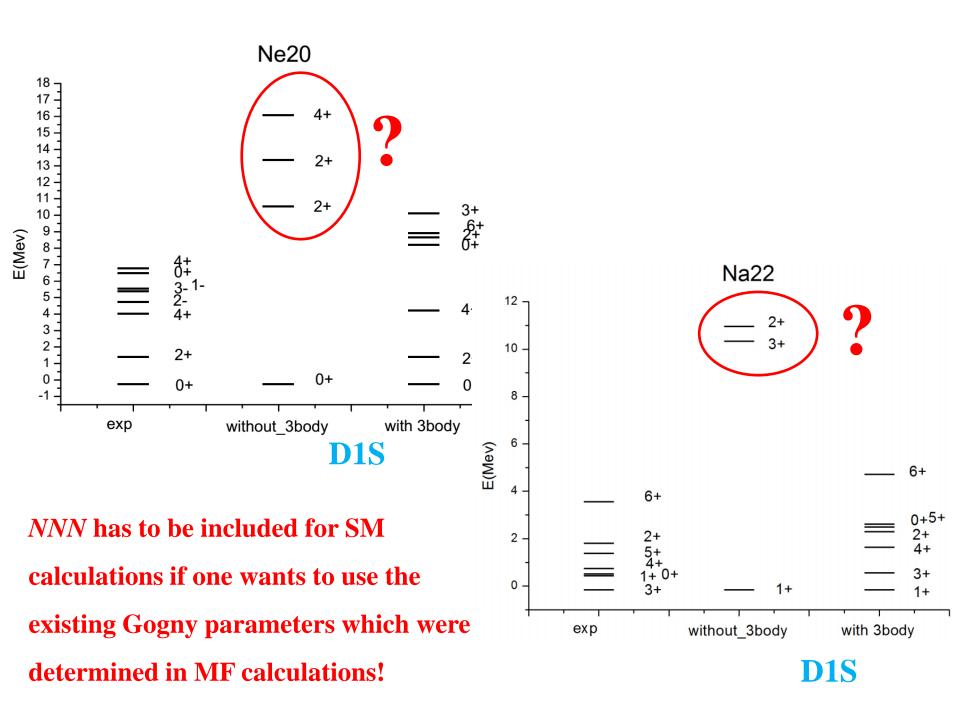
The density is calculated using HO basis wavefunctions, which is mass-dependent.

In existing Gogny parameters: $\chi_0 = 1$ and $\alpha = 1/3$

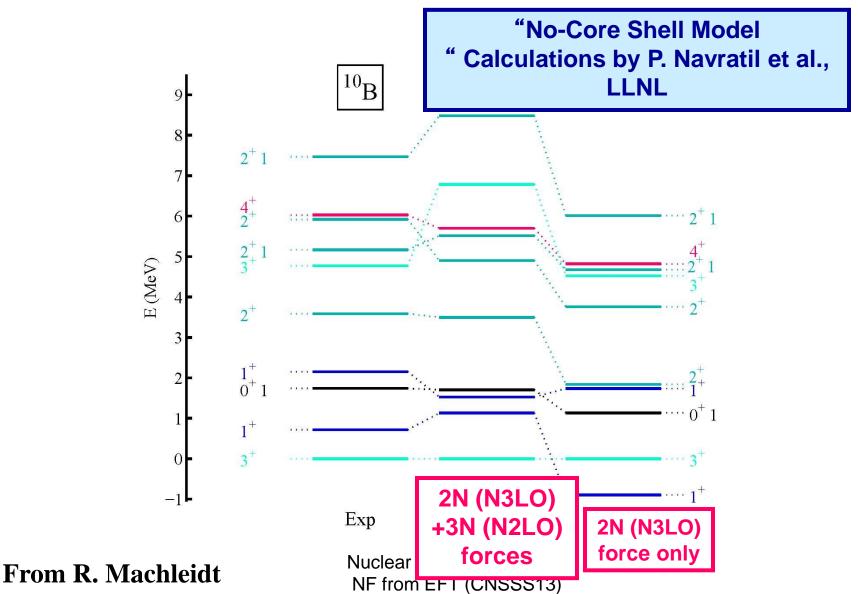
We take D1S Gogny: for sd-shell



H. Sagawa et al., PLB 159 (1985) 228



Calculating the properties of light nuclei using chiral 2N and 3N forces



III. Realistic force for HF-type calculations with higher-order

corrections using Many-Body Perturbation Theory (MBPT)

Renormalization of realistic nuclear force G- matrix, SRG, V_{low-k}, OLS, UCOM

M.A. Hasan, J.P. Vary, P. Navratil (2004), PRC 69, 034332

CD-Bonn, OLS: "HF + MBPT", corrections to 2nd order

TABLE I. Experimental and calculated observables for the ground state of ⁴He with an N_{max} =10 effective Hamiltonian based on the 1996 CD-Bonn [25] and using $\hbar\Omega$ =22 MeV. Experimental and calculated ground state energy (in MeV) and rms radii (in fm). The (negative) correction for spurious center-of-mass motion [Δ spur(c.m.)] is described in the text. For the experimental rms radius, we take the measured charge radius and correct for the contribution of the proton charge rms radius (0.8 fm).

TABLE IV. Experimental and calculated observables for the ground state of ¹⁶O with an N_{max} =6 effective Hamiltonian based on the 2000 CD-Bonn [26] and using $\hbar\Omega$ =15 MeV. Experimental and calculated ground state energy (in MeV) and rms radii (in fm). The (negative) correction for spurious center-of-mass motion [Δ spur(c.m.)] is described in the text. For the experimental rms radius, we take the measured charge radius and correct for the contribution of the proton charge rms radius (0.8 fm). SHF results are presented for four-shell-, five-shell-, and six-shell-model spaces.

Observable	Experiment	SHF Δ SHF Δ spur(c.m.)	SHF+ Δ SHF + Δ spur(c.m.)	NCSM	Observable [Experiment]	four-shell SHF Δ SHF Δ spur(c.m.) Total	five-shell SHF Δ SHF Δ spur(c.m.) Total	six-shell SHF Δ SHF Δ spur(c.m.) Total	NCSM
E _{g.s.} <i>n</i> -rms <i>p</i> -rms rms	-28.296 1.450	-14.156 -10.835 1.584 1.590 1.587 0.118 -0.145	-24.991 1.560	-27.913 1.411 1.416 1.413	E _{g.s.} [-127.62] <i>n</i> -rms <i>p</i> -rms [2.58]	-107.46 -31.46 -138.92 2.093 2.101	-109.83 -49.88 -159.71 2.071 2.080	-126.00 -38.21 -164.21 1.954 1.968	-132.87 2.209 2.223
					= rms	2.097 0.072 -0.040 2.129	2.076 0.112 -0.040 2.148	1.961 0.117 -0.042 2.036	2.216

L. Coraggio et al. (2003) PRC 68, 034320

N³LO, V_{low-k}: corrections to 3rd order

TABLE I. Comparison of the calculated binding energy per nucleon (MeV/nucleon) and rms charge radius (fm) with the experimental data for 16 O and 40 Ca.

Nucleus		HF	HF+2nd	HF+2nd +3rd	Expt.
¹⁶ O					
	B/A	3.23	7.22	7.52	7.98
	$\langle r_c \rangle$	2.30	2.52	2.65	2.73 ± 0.02
⁴⁰ Ca					
	B/A	6.19	9.10	9.19	8.55
	$\langle r_c \rangle$	2.610	3.302	3.444	3.485 ± 0.003

R. Roth *et al.* (2006) PRC 73, 044312 AV18, UCOM: corrections to 3rd order for energy, 2nd order to radius

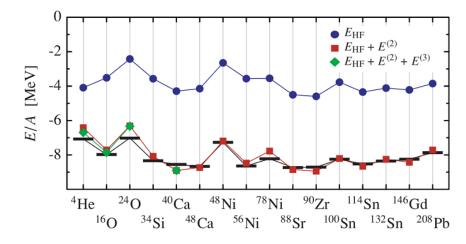


FIG. 5. (Color online) Ground-state energies for selected closedshell nuclei in HF approximation and with added second- and third-order MBPT corrections. The correlated AV18 potential with $I_{\vartheta} = 0.09 \text{ fm}^3$ was used. The bars indicate the experimental binding energies [31].

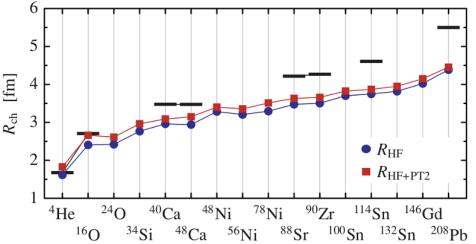


FIG. 8. (Color online) Charge radii for selected closed-shell nuclei in the HF approximation and with added second-order MBPT corrections. The correlated AV18 potential with $I_{\vartheta} = 0.09 \text{ fm}^3$ was used. The bars indicate experimental charge radii [32].

Our calculations

- 1. From realistic nuclear force (N³LO, JISP16)
- 2. SRG renormalization
- **3.** Spherical Hartree-Fock firstly (which leads to the 1st order term) for closed-shell nuclei
- 4. Using MBPT to make higher-order corrections: 2nd and 3rd orders to energy, and 2nd order to radius.

$$\hat{\mathsf{H}}_{int} = \sum_{i < j}^{A} \frac{(\vec{p}_i - \vec{p}_j)^2}{2mA} + \sum_{i < j}^{A} V_{NN,ij}$$

We can separate the A-nucleon Hamiltonian into a zero-order part and a perturbation,

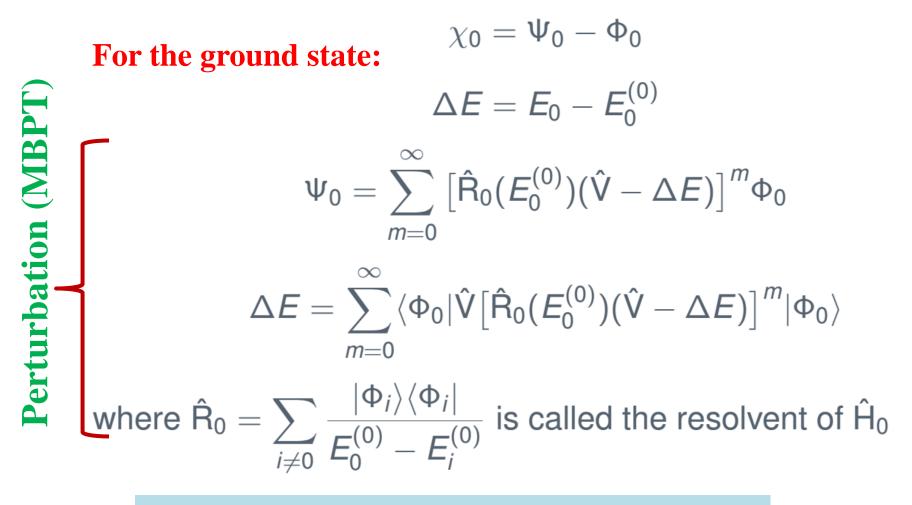
$$\hat{H}=\hat{H}_0+(\hat{H}-\hat{H}_0)=\hat{H}_0+\hat{V}$$

The exact solutions of the A-nucleon system are,

$$\hat{H}\Psi_n = E_n\Psi_n, \qquad n = 0, 1, 2, ...$$

The zero-order part is,

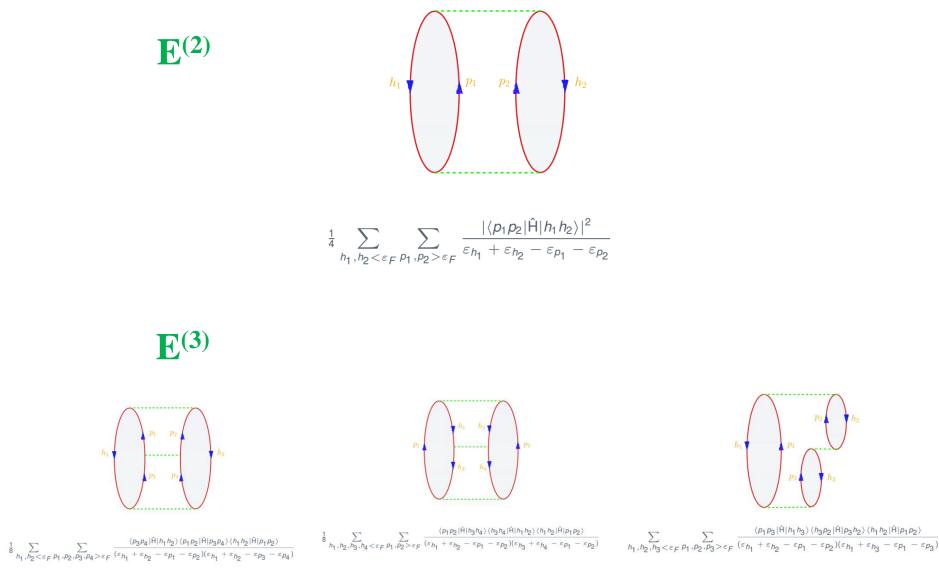
$$\hat{H}_0 \Phi_n = E_n^{(0)} \Phi_n, \qquad n = 0, 1, 2, ...$$

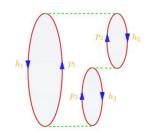


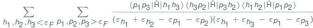
Rayleigh-Schrodinger perturbation theory

$$\begin{split} E_0 &= E_0^{(0)} + E_0^{(1)} + E_0^{(2)} + E_0^{(3)} + \dots \\ & E_0^{(1)} = \langle \Phi_0 | \hat{V} | \Phi_0 \rangle \\ & E_0^{(2)} = \langle \Phi_0 | \hat{V} \hat{R}_0 \hat{V} | \Phi_0 \rangle \\ E_0^{(3)} &= \langle \Phi_0 | \hat{V} \hat{R}_0 (\hat{V} - \langle \Phi_0 | \hat{V} | \Phi_0 \rangle) \hat{R}_0 \hat{V} | \Phi_0 \rangle \\ & \Psi_0 &= \Phi_0 + \Psi_0^{(1)} + \Psi_0^{(2)} + \dots \\ & \Psi_0^{(1)} &= \hat{R}_0 \hat{V} | \Phi_0 \rangle \\ & \Psi_0^{(2)} &= \hat{R}_0 (\hat{V} - E_0^{(1)}) \hat{R}_0 \hat{V} | \Phi_0 \rangle \end{split}$$

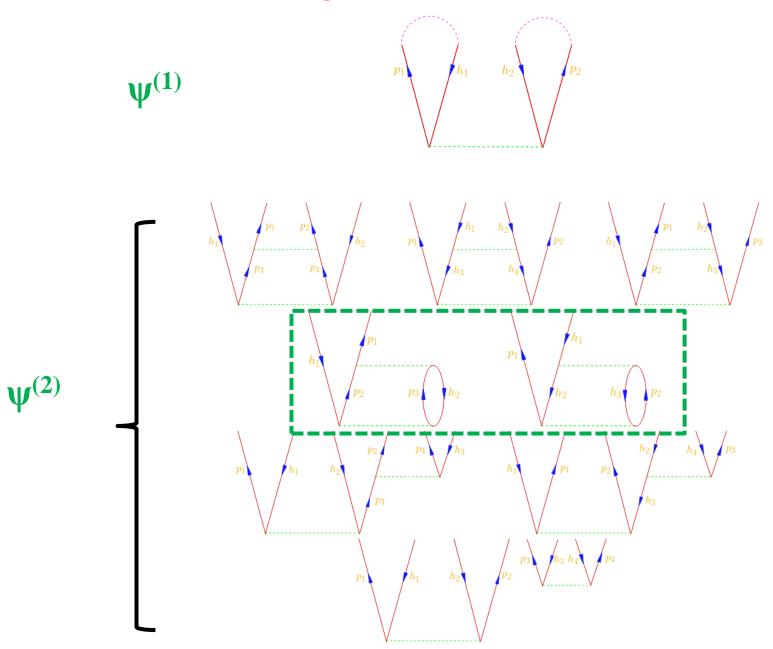
Anti-Symmetrized Goldstone (ASG) diagram expansion:







ASG diagrams for wave functions



Density

$$\rho(\vec{r}) = \sum_{k=1}^{A} \delta^{3} \left(\vec{r} - \vec{r}_{k} \right) = \sum_{k=1}^{A} \frac{\delta \left(r - r_{k} \right)}{r^{2}} \sum_{lm} Y_{lm}^{*}(\hat{r}_{k}) Y_{lm}(\hat{r})$$

For spherically symmetric system(K=0), we can get a more simple form,

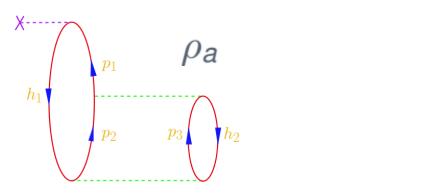
$$\rho(\vec{r}) = \sum_{n_1, n_2} \sum_{l, j, m_j} \left[\frac{R_{n_1, l}(r) R_{n_2, l}(r)}{4\pi} \right] a_{n_1, l, j, m_j}^{\dagger} a_{n_2, l, j, m_j}$$

For ground state, the 2nd order to density includes only the 4th and 5th ASG diagrams of the 2nd-order wavefunction, others belong to higher order corrections, i.e.,

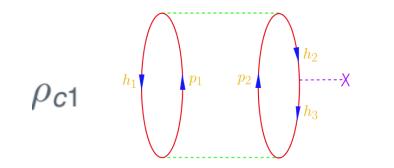
$$\Psi_0' = \Phi_0 + \Psi_0^{(1)} + \Psi_{0,4}^{(2)} + \Psi_{0,5}^{(2)}$$

 $\rho(\vec{r}) = \langle \Phi_0 | \rho(\vec{r}) | \Phi_0 \rangle + \langle \Phi_0 | \rho(\vec{r}) | \Phi_0 \rangle \langle \Psi_0^{(1)} | \Psi_0^{(1)} \rangle + 2\rho_a + 2\rho_b + \rho_{c1} + \rho_{c2} + \dots$

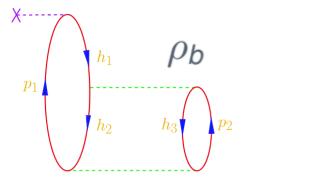
2nd order terms



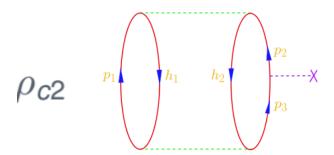
$$\frac{1}{2} \sum_{h_1,h_2 < \varepsilon_F} \sum_{p_1,p_2,p_3 > \varepsilon_F} \frac{\langle h_1 h_2 | \hat{H} | p_2 p_3 \rangle \langle p_2 p_3 | \hat{H} | p_1 h_2 \rangle \langle h_1 | \rho | p_1 \rangle}{(\varepsilon_{h_1} - \varepsilon_{p_1})(\varepsilon_{h_1} + \varepsilon_{h_2} - \varepsilon_{p_2} - \varepsilon_{p_3})}$$



$$-\frac{1}{2}\sum_{h_1,h_2,h_3<\varepsilon_F}\sum_{p_1,p_2>\varepsilon_F}\frac{\langle h_1h_2|\hat{H}|p_1p_2\rangle\langle p_1p_2|\hat{H}|h_1h_3\rangle\langle h_3|\rho|h_2\rangle}{(\varepsilon_{h_1}+\varepsilon_{h_2}-\varepsilon_{p_1}-\varepsilon_{p_2})(\varepsilon_{h_1}+\varepsilon_{h_3}-\varepsilon_{p_1}-\varepsilon_{p_2})}$$



$$-\frac{1}{2}\sum_{h_1,h_2,h_3<\varepsilon_F}\sum_{p_1,p_2>\varepsilon_F}\frac{\langle p_1p_2|\hat{H}|h_2h_3\rangle\langle h_2h_3|\hat{H}|h_1p_2\rangle\langle h_1|\rho|p_1\rangle}{(\varepsilon_{h_1}-\varepsilon_{p_1})(\varepsilon_{h_2}+\varepsilon_{h_3}-\varepsilon_{p_1}-\varepsilon_{p_2})}$$



$$\frac{1}{2} \sum_{h_1,h_2 < \varepsilon_F} \sum_{p_1,p_2,p_3 > \varepsilon_F} \frac{\langle p_1 p_3 | \hat{\mathbf{h}} | h_1 h_2 \rangle \langle h_1 h_2 | \hat{\mathbf{h}} | p_1 p_2 \rangle \langle p_2 | \rho | p_3 \rangle}{(\varepsilon_{h_1} + \varepsilon_{h_2} - \varepsilon_{p_1} - \varepsilon_{p_3})(\varepsilon_{h_1} + \varepsilon_{h_2} - \varepsilon_{p_1} - \varepsilon_{p_2})}$$

$$\langle r_{pp}{}^2 \rangle = \frac{\int r^2 \rho_p(\vec{r}) d^3 r}{\int \rho_p(\vec{r}) d^3 r} \qquad \langle r_{nn}{}^2 \rangle = \frac{\int r^2 \rho_n(\vec{r}) d^3 r}{\int \rho_n(\vec{r}) d^3 r}$$

The correction for the spurious center-of-mass motion

$$r_{COM} = [r_{SHF}^2 - \frac{b^2}{A}]^{1/2} \qquad b^2 = \frac{\hbar}{m\Omega}$$

$$\langle r_{ch}^2 \rangle = \langle r_{pp}^2 \rangle + \langle R \rangle_p^2 \qquad (\langle R \rangle_p = 0.8 fm)$$

NCSM with N³LO+SRG S.K. Bogner *et al.*, arXiv0708.3754v2 (2007)

Both calculations without NNN

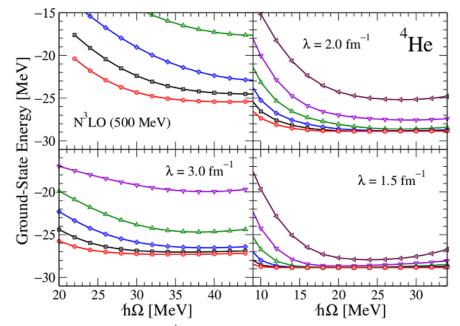
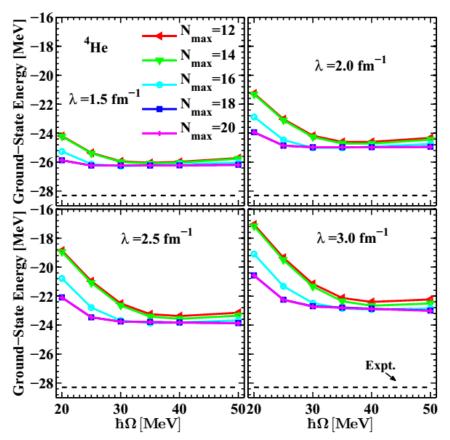


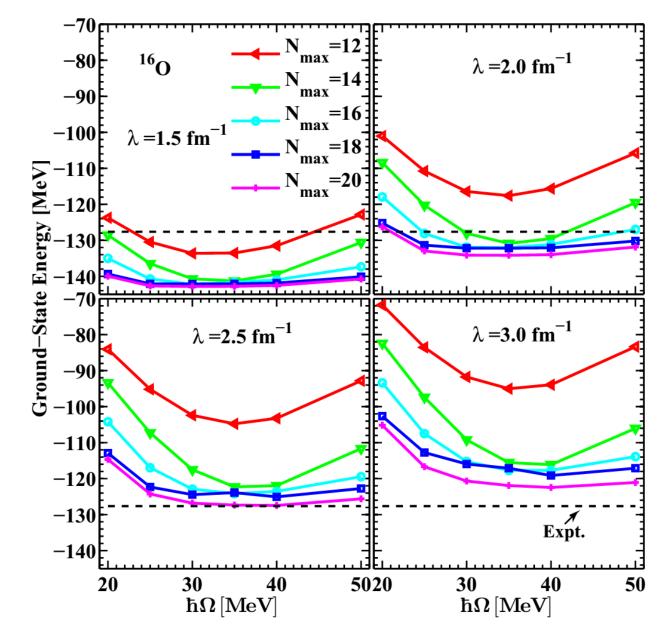
Fig. 3. Ground-state energy of ⁴He as a function of $\hbar\Omega$ at four different values of λ (∞ , 3, 2, 1.5 fm⁻¹). The initial potential is the 500 MeV N³LO NN-only potential from Ref. [13]. The legend from Fig. [1] applies here.

⁴He

Our MBPT with N³LO+SRG



Our calculations



160

Our calculations and compared to data

 $N^{3}LO[4]$ with SRG for ${}^{4}He$ $(N_{max} = 20, \hbar\Omega = 35MeV$ and $\lambda = 2.0 fm^{-1})$

Observable	p-rms(fm)	$E_{g.s.}(MeV)$	
Expreiment	1.450	-28.296	[4] Entem and Machleidt,
SHF	1.8380	-9.1657	/
Second-order correction	-0.0622	-13.7430	(2003) PRC 68, 041001
Third-order correction	—	-2.0587	
C.M. motion correction	-0.0854	_	⁴ He
MBPT	1.6903	-24.9675	

JISP16 is better, because it reduces NNN effects, while our present calculations do not include NNN. NNN makes MBPT to be much complicated and much computing time consuming!

Shirokov, Vary, Mazur, Weber, PLB 644 (2007) 33 Bare JISP16[10–12] for ⁴He ($N_{max} = 14$ and $\hbar\Omega = 10MeV$)

p-rms(fm)	$E_{g.s.}(\text{MeV})$
1.450	-28.296
_	-28.297
1.5714	-22.4143
0.0160	-4.3126
_	-0.8031
-0.3695	_
1.2179	-27.5301
	1.450 - 1.5714 0.0160 - - -0.3695

$N^3 LO[4]$ with SRG for ¹⁶ O	$(N_{max} = 20, \hbar\Omega = 35 MeV)$	and $\lambda = 2.0 fm^{-1}$)
--	---	-------------------------------

Observable	p-rms(fm)	$E_{g.s.}(\mathrm{MeV})$	
Expreiment	2.58	-127.62	
SHF	2.3874	-36.6856	
Second-order correction	-0.0504	-90.0375	16
Third-order correction	—	-7.4287	10
C.M. motion correction	-0.0158		
MBPT	2.3211	-134.1518	

Bare JISP16[10–12] for ¹⁶O ($N_{max} = 10$ and $\hbar\Omega = 15MeV$)

	Observable	p-rms(fm)	$E_{g.s.}(\text{MeV})$)
JISP 16 vs N3LO:	Expreiment	2.58	-127.62	\mathbf{b}
better in energy,	$\mathrm{NCSH}(N_{max} = 6)$	_	-126.2	
worse in radius.	SHF	1.8693	-70.8461	HCD16 mana
USD16 circa amallar	Second-order correction	0.0618	-51.7671	JISP16 more reasonable?
JISP16 gives smaller radii at least in ⁴ He	Third-order correction	_	-3.2451	reasonable.
and ¹⁶ O	C.M. motion correction	-0.0453		
	MBPT	1.8858	-125.8583)

IV. Summary

1. Apply Gogny to SM calculations

- i) Without NNN, one has to refit Gogny parameters, indicating NNN may be largely included by readjusting NN parameters in empirical calculations?
 ii) With NNN, existing Gogny parameters work roughly for SM calculations, giving chance to calculate shell-model TBMEs using Gogny.
 NNN is important in Gogny, which has been well approved in MF models.
- 2. ab-initio MBPT calculations with realistic interactions in spherical HF basis
- i) 2nd and 3rd order corrections for energy; 2nd order for radius.

We have calculated ⁴He and ¹⁶O with quite reasonable results obtained.

ii) Open questions: NNN in MBPT? Open-shell nuclei (much challenging)?

Group members involved B.H. Hu, W.G. Jiang, W.J. Chen, Z.H. Sun, L.F. Jiao, Z.X. Xu, J.C. Pei

Thanks for collaboration

James Vary

Thank you for your attention

Peking University Campus

Khabarovsk, June 23-27, 2014