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Abstract

We suggest a method for calculating scattering phase shifts and energies and
widths of resonances which utilizes only eigenenergies obtained in variational
calculations with oscillator basis and their dependence on oscillator basis spac-
ing ~Ω. We make use of simple expressions for the S-matrix at eigenstates of
a finite (truncated) Hamiltonian matrix in the oscillator basis obtained in the
HORSE (J-matrix) formalism of quantum scattering theory. The validity of the
suggested approach is verified in calculations with model Woods–Saxon poten-
tials and applied to calculations of nα resonances and non-resonant scattering
using the no-core shell model.
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1 Introduction

To calculate energies of nuclear ground states and other bound states within various
shell model approaches, one conventionally starts by calculating the ~Ω-dependence of
the energy Eν(~Ω) of the bound state ν in some model space. The minimum of Eν(~Ω)
is correlated with the energy of the state ν. The convergence of calculations and
accuracy of the energy prediction is estimated by comparing with the results obtained
in neighboring model spaces. To improve the accuracy of theoretical predictions,
various extrapolation techniques have been suggested recently [1–13] which make it
possible to estimate the binding energies in the complete infinite shell-model basis
space. The studies of extrapolations to the infinite model spaces reveal general trends
of convergence patterns of shell model calculations.

Is it possible to study nuclear states in the continuum, low-energy scattering and
resonant states in particular, in the shell model using bound state techniques? A
conventional belief is that the energies of shell-model states in the continuum should
be associated with the resonance energies. It was shown however in Ref. [14,15] that
the energies of shell-model states may appear well above the energies of resonant
states, especially for broad resonances. Moreover, the analysis of Refs. [14,15] clearly
demonstrated that the shell model should also generate some states in a non-resonant
nuclear continuum. The nuclear resonance properties can be studied in the Gamow
shell model, including the ab initio no-core Gamow shell model (NCGSM) [16, 17].
Another option is to combine the shell model with resonating group method (RGM).
An impressive progress in the description of various nuclear reactions was achieved by
means of the combined no-core shell model/RGM (NCSM/RGM) approach [18–23].
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Both NCGSM and NCSM/RGM complicate essentially the shell model calculations.
Is it possible to get some information about unbound nuclear states directly from
the results of calculations in NCSM or in other versions of the nuclear shell model
without introducing additional Berggren basis states as in NCGSM or additional
RGM calculations as in the NCSM/RGM approach?

The general behaviour of shell model eigenstates at positive energies (or just at the
energies above various thresholds) is not well-studied and there is no well-established
extrapolation technique to the infinite basis space for resonances. Generally, a com-
plete study of the nuclear continuum can be performed by extending the nuclear shell
model with the J-matrix formalism of scattering theory. The J-matrix formalism has
been suggested in atomic physics [24, 25]. Later it was independently rediscovered in
nuclear physics [26,27] and was successfully used in shell-model applications [28]. The
J-matrix approach utilizes diagonalization of the Hamiltonian in one of two bases:
the so-called Laguerre basis that is of a particular interest for atomic physics applica-
tions and the oscillator basis that is appropriate for nuclear physics. The version of
the J-matrix formalism with the oscillator basis is also sometimes referred to as an
Algebraic Version of RGM [26] or as a HORSE (Harmonic Oscillator Representation
of Scattering Equations) method [29] — we shall use the latter nomenclature in what
follows.

We note that a direct implementation of the HORSE formalism in modern large-
scale shell-model calculations is very complicated and unpractical: the HORSE
method requires calculation of a huge number of eigenstates while modern shell-
model codes usually utilize the Lanczos algorithm which provides only the few lowest
Hamiltonian eigenstates. Furthermore, the HORSE method needs also the weight
of the highest component of the wave function of each eigenstate which is usually
obtained with a low precision. On the other hand, the HORSE formalism can be
used for a simple calculation of the scattering phase shift or S-matrix at a single
energy Eν(~Ω) which is an eigenstate of the shell-model Hamiltonian. In this case,
the HORSE phase shift calculation requires only the value of the energy Eν(~Ω) and
the basis parameters (the ~Ω value and the basis truncation). We shall refer to such
a simplified approach as a Single State HORSE (SS-HORSE) method. Varying the
shell-model parameter ~Ω and using results from a set of basis spaces, we generate a
variation of Eν(~Ω) in some energy range and hence we can calculate the phase shifts
in that energy range.

Calculations of scattering phase shifts at the eigenenergies of the Hamiltonian in
the oscillator basis and obtaining the phase shift energy dependence by variation of
basis parameters, was recently performed in Ref. [5] using another (not the HORSE)
technique. A detailed study of scattering phase shifts at eigenenergies of the Hamil-
tonian in arbitrary finite L2 basis was performed in Ref. [30]. This study was based
on the theory of spectral shift functions introduced by I. M. Lifshitz nearly 70 years
ago [31] and later forgotten by physicists though used up to now by mathematicians
(see Ref. [30] and references therein).

Another method to obtain scattering phase shifts from bound state calculations
in a harmonic oscillator basis features the use of an additional harmonic oscillator
potential [32]. The method was demonstrated with nucleon-nucleon scattering where
it reveals a challenge of needing a large basis to access the low-energy scattering
region.

It is worth noting here that approximate resonant widths can be extracted from
bound state approaches to many-body nuclear systems using a relation between the
partial width in a specified breakup channel and an integral over the “interaction
region” where all of the nucleons are close to each other. This method was described
in detail in Ref. [33] where it was used to evaluate widths of resonances in light
nuclei based on the variational Monte Carlo calculations. It has been used before in
combination with other many-body approaches (see Ref. [33] for the list of respective
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references), in particular, it can be utilized within the nuclear shell model. However
this approach is applicable to narrow enough resonances only and is unable to provide
information about non-resonant scattering.

In this contribution, we suggest a simpler and more powerful approach. We
formulate below a method for calculating low-energy phase shifts and for extract-
ing resonant energies Er and widths Γ from the shell model results, or, generally,
from results of any variational calculation with a finite oscillator basis. We apply the
SS-HORSE formalism to calculate the S-matrix in the energy interval of variation of
one of the Hamiltonian eigenenergies Eν(~Ω) due to variation of ~Ω and truncation
boundary of the Hamiltonian matrix. We use either a low-energy expansion of the
S-matrix or express the S-matrix as a pole term plus slowly varying with energy back-
ground terms and fit the expansion parameters to describe the S-matrix behaviour
in the above energy interval. The low-energy phase shifts δℓ, the resonant energy Er

and width Γ appear as a result of this fit. We obtain relations describing the general
behaviour of shell-model states associated with a resonance or with a non-resonant
continuum as functions of ~Ω and truncation boundary of the Hamiltonian matrix.
This approach is tested in calculations of phase shifts and resonance parameters of
two-body scattering with model potential. Next we apply the SS-HORSE method to
the calculation of resonances and of non-resonant continuum in the neutron-α scat-
tering based on No-core Shell Model (NCSM) results obtained with the JISP16 NN
interaction [34, 35]. This paper elaborates on the work presented in Refs. [36, 37].

In our earlier study [38], we evaluated resonant energies Er and widths Γ using the
SS-HORSE and Breit–Wigner formula for the description of resonances. The Breit–
Wigner formula describes the phase shifts and S-matrix only in the case of narrow
resonances and only in a narrow energy interval in the vicinity of the resonance. As a
result, the approach of Ref. [38] can be used only in rare cases when the eigenenergies
of the truncated Hamiltonian are obtained very close to the resonant energy Er and
cannot provide an accurate description of resonant parameters even in these rare
cases. This drawback is eliminated in the current study.

The paper is organized as follows. We present in Section 2 the basic relations
of the HORSE formalism, derive the SS-HORSE method and present all equations
needed to calculate phase shifts, S-matrix and resonant parameters Er and Γ. The
SS-HORSE approach to the calculation of resonant energy and width is verified in
Section 3 using a two-body scattering with a model potential. Section 4 is devoted to
calculations of resonances in nα scattering based on NCSM calculations of 5He with
JISP16 NN interaction. Conclusions are presented in Section 5.

2 SS-HORSE approach to calculation

of low-energy scattering and resonant parameters

2.1 HORSE formalism

The J-matrix approach and HORSE in particular are widely used in various appli-
cations. Some of the recent applications together with pioneering papers where the
J-matrix has been suggested, can be found in the book [39]. We sketch here the
basic relations and ideas of the HORSE formalism for the two-body single-channel
scattering following our papers [29, 40, 41].

The radial wave function uℓ(k, r) describing the relative motion in the partial wave
with orbital momentum ℓ is expanded within the HORSE formalism in an infinite
series of radial oscillator functions RNℓ(r),

uℓ(k, r) =
∑

N=N0,N0+2,...,∞

aNℓ(k)RNℓ(r), (1)
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where

RNℓ(r) = (−1)(N−ℓ)/2

√

2Γ(N/2 − ℓ/2 + 1)

r0Γ(N/2 + ℓ/2 + 3/2)

(

r

r0

)ℓ+1

exp

(

− r2

2r20

)

L
ℓ+ 1

2

(N−ℓ)/2

(

r2

r20

)

.

(2)

Here k is the relative motion momentum, Lα
n(z) are associated Laguerre polynomials,

the oscillator radius r0 =
√

~

mΩ , m is the reduced mass of colliding particles, ~Ω is

the oscillator level spacing, N = 2n+ℓ is the oscillator quanta while n is the oscillator
principal quantum number, the minimal value of oscillator quanta N0 = ℓ. Using the
expansion (1) we transform the radial Schrödinger equation

Hℓ uℓ(k, r) = E uℓ(k, r) (3)

into an infinite set of linear algebraic equations,
∑

N ′=N0,N0+2,...,∞

(Hℓ
NN ′ − δNN ′E) aN ′ℓ(k) = 0, N = N0, N0 + 2, ... , (4)

where Hℓ
NN ′ = T ℓ

NN ′ + V ℓ
NN ′ are matrix elements of the Hamiltonian Hℓ in the

oscillator basis, and T ℓ
NN ′ and V ℓ

NN ′ are kinetic and potential energy matrix elements
respectively.

The kinetic energy matrix elements T ℓ
NN ′ are known to form a tridiagonal matrix,

i. e., the only non-zero matrix elements are

T ℓ
NN =

1

2
~Ω(N + 3/2),

T ℓ
N,N+2 = T ℓ

N+2,N = −1

4
~Ω
√

(N − ℓ + 2)(N + ℓ + 3).

(5)

These matrix elements are seen to increase linearly with N for large N . On the other
hand, the potential energy matrix elements V ℓ

NN ′ decrease as N,N ′ → ∞. Hence the
kinetic energy dominates in the Hamiltonian matrix at large enough N and/or N ′.
Therefore a reasonable approximation is to truncate the potential energy matrix at
large N and/or N ′, i. e., to approximate the interaction V by a nonlocal separable

potential Ṽ of the rank N = (N−N0)/2 + 1 with matrix elements

Ṽ ℓ
NN ′ =

{

V ℓ
NN ′ if N ≤ N and N ′ ≤ N;

0 if N > N or N ′ > N.
(6)

The approximation (6) is the only approximation within the HORSE method; for the
separable interaction of the type (6), the HORSE formalism suggests exact solutions.
Note, the kinetic energy matrix is not truncated within the HORSE theory contrary to
conventional variational approaches like the shell model. Hence the HORSE formalism
suggests a natural generalization of the shell model.

The complete infinite harmonic oscillator basis space can be divided into two
subspaces according to truncation (6): an internal subspace spanned by oscillator
functions with N ≤ N where the interaction V is accounted for and an asymptotic
subspace spanned by oscillator functions with N > N associated with the free motion.

Algebraic equations (4) in the asymptotic subspace take the form of a second order
finite-difference equation:

T ℓ
N,N−2 a

ass
N−2,ℓ(E) + (T ℓ

NN − E) aassNℓ (E) + T ℓ
N,N+2 a

ass
N+2,ℓ(E) = 0. (7)

Any solution aassNℓ (E) of Eq. (7) can be expressed as a superposition of regular SNℓ(E)
and irregular CNℓ(E) solutions,

aassNℓ (E) = cos δℓ SNℓ(E) + sin δℓ CNℓ(E), N ≥ N, (8)
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where δℓ is the scattering phase shift. The solutions SNℓ(E) and CNℓ(E) have simple
analytical expressions [25, 27, 29, 40]:

SNℓ(E) =

√

πΓ(N/2 − ℓ/2 + 1)

Γ(N/2 + ℓ/2 + 3/2)
qℓ+1 exp

(

−q2

2

)

L
ℓ+1/2
(N−ℓ)/2(q

2), (9)

CNℓ(E) = (−1)ℓ

√

πΓ(N/2 − ℓ/2 + 1)

Γ(N/2 + ℓ/2 + 3/2)

q−ℓ

Γ(−ℓ + 1/2)

× exp

(

−q2

2

)

Φ(−N/2 − ℓ/2 − 1/2,−ℓ + 1/2; q2), (10)

where Φ(a, b; z) is a confluent hypergeometric function and q is a dimensionless mo-
mentum,

q =

√

2E

~Ω
. (11)

The solutions aNℓ(E) of the algebraic set (4) in the internal subspace N ≤ N are
expressed through the solutions aassNℓ (E) in the asymptotic subspace N ≥ N:

aNℓ(E) = GNN(E)T ℓ
N,N+2 a

ass
N+2, ℓ(E), N = N0, N0 + 2, ... ,N. (12)

Here the matrix elements

GNN ′(E) = −
N−1
∑

ν=0

〈Nℓ|ν〉〈ν|N ′ℓ〉
Eν − E

(13)

are related to the Green’s function of the Hamiltonian HN which is the Hamiltonian Hℓ

truncated to the internal subspace, and are expressed through eigenenergies Eν ,
ν = 0, 1, 2, ... , N − 1 (N is the dimensionality of the basis) and respective eigenvectors
〈Nℓ|ν〉 of the Hamiltonian HN:

∑

N ′=N0,N0+2,...,N

Hℓ
NN ′〈N ′ℓ|ν〉 = Eν〈Nℓ|ν〉, N = N0, N0 + 2, ...,N. (14)

A relation for calculation of the scattering phase shifts δℓ can be obtained through
the matching condition

aNℓ(E) = aass
Nℓ (E). (15)

Using Eqs. (8), (12) and (15) it is easy to obtain [25, 27, 29, 40]

tan δℓ(E) = −
SNℓ(E) − GNN(E)T ℓ

N,N+2 SN+2,ℓ(E)

CNℓ(E) − GNN(E)T ℓ
N,N+2CN+2,ℓ(E)

. (16)

The respective expression for the S-matrix reads

S(E) =
C

(−)
Nℓ (E) − GNN(E)T ℓ

N,N+2 C
(−)
N+2,ℓ(E)

C
(+)
Nℓ (E) − GNN(E)T ℓ

N,N+2 C
(+)
N+2,ℓ(E)

, (17)

where

C
(±)
Nℓ (E) = CNℓ(E) ± SNℓ(E). (18)

We are using here the single-channel version of the HORSE formalism described
above. The multi-channel HORSE formalism is discussed in detail in Refs. [25,29,40].
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2.2 SS-HORSE method

A direct HORSE extension of modern large-scale shell-model calculations is unprac-
tical. Note, Eq. (13) involves a sum over all shell-model eigenstates of a given spin-
parity, i. e., over millions or even billions of states in modern NCSM applications.
These states should be accurately separated from those having center-of-mass excita-
tions. Unfortunately one cannot restrict the sum in Eq. (13) to some small enough
set of eigenstates: even for the energies E close enough to one of the low-lying eigen-
states Eν , the contribution of some high-lying eigenstates to the sum in Eq. (13) can
be essential: in model two-body problems describing, e. g., nα scattering, the growth
of the denominator in the r.h.s. of Eq. (13) is compensated by the growth of the nu-
merator; in NCSM calculations of 5He, the many-body eigenstates concentrate around
the eigenstates of the model two-body Hamiltonian and though the contribution of
each particular NCSM eigenstate is small, the sum of their contributions is large and
close to the contribution of the respective state of the model Hamiltonian. A calcu-
lation of a large number of many-body eigenstates is too computationally expensive.
Note, in many-body applications, one also needs to calculate the components 〈Nℓ|ν〉 of
the wave function which should be projected on the scattering channel of interest; this
projection requires numerous applications of Talmi–Moshinsky transformations which
increase the computational cost and makes it very difficult to achieve a reasonable
accuracy of the final sum in Eq. (13) due to computer noise.

To avoid these difficulties, we propose the SS-HORSE approach which requires
calculations of the S-matrix or phase shifts only at E = Eν , i. e., at the energy equal
to one of the lowest eigenstates lying above the reaction threshold. Equations (16)
and (17) are essentially simplified in this case and reduce to

tan δℓ(Eν) = −SN+2,ℓ(Eν)

CN+2,ℓ(Eν)
(19)

and

S(Eν) =
C

(−)
N+2,ℓ(Eν)

C
(+)
N+2,ℓ(Eν)

. (20)

Varying N and ~Ω we obtain eigenvalues Eν and hence phase shifts and S-matrix
in some energy interval. An accurate parametrization of δℓ(E) and S-matrix in this
energy interval makes it possible to extrapolate them to a larger energy interval and
to calculate the resonance energy and width.

The use of Eqs. (19) and (20) drastically reduces the computational burden in
many-body calculations. Within this SS-HORSE approach we need only one or prob-
ably very few low-lying eigenstates which energies should be calculated relative to the
respective threshold, e. g., in the case of nα scattering we need to subtract from the
5He energies the 4He ground state energy. Another interesting and important feature
of the SS-HORSE technique is that the Eqs. (19) and (20) do not involve any in-
formation regarding the eigenvectors 〈Nℓ|ν〉. This essentially simplifies calculations,
the information about a particular channel under consideration is present only in the
threshold energy used to calculate the eigenenergies Eν and in the channel orbital
momentum ℓ. Equations (19) and (20) establish some correlations between scattering
in different channels when the channel coupling can be neglected, a topic that deserves
further investigation but is outside the scope of the present work.

We use here Eqs. (19) and (20) to obtain phase shifts and S-matrix from Hamilto-
nian diagonalization results. However these equations can be used in inverse manner:
if the phase shifts are known from analysis of experimental scattering data, one can
solve Eq. (19) to obtain eigenenergies Eν which the shell model Hamiltonian should
have to be consistent with scattering data. The direct use of Eq. (19) essentially sim-
plifies the inverse approach to nucleon-nucleus scattering suggested in Refs. [14, 15].
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We see that the scattering phase shifts are determined by the universal function

fNℓ(E) = − arctan

[

SN+2,ℓ(E)

CN+2,ℓ(E)

]

. (21)

This is a smooth monotonically decreasing function which drops down by nπ as
energy E varies from 0 to ∞. At low energies when

E ≪ 1

8
~Ω (N + 2 − ℓ)2, (22)

one can replace the functions SN+2,ℓ(E) and CN+2,ℓ(E) in Eq. (21) by their asymptotic
expressions at large N (see Ref. [40]) to obtain

fNℓ(E) ≈ f l.e.
ℓ (E) = arctan

[

jℓ
(

2
√

E/s
)

nℓ

(

2
√

E/s
)

]

, (23)

where

s =
~Ω

N + 7/2
, (24)

and jl(x) and nl(x) are spherical Bessel and spherical Neumann functions. If addi-
tionally

E ≫ 1

4
s =

~Ω

4(N + 7/2)
, (25)

one can use asymptotic expressions for spherical Bessel and Neumann functions in
Eq. (23) to get a very simple expression for the function fNℓ(E):

fNℓ(E) ≈ −2

√

E

s
+

πℓ

2
. (26)

The universal function fNℓ(E) and its low-energy approximations (23) and (26)
are shown in Fig. 1. The basis space in shell model applications in conventionally
labeled by the maximal oscillator excitation quanta Nmax, and we use Nmax in Fig. 1
to distinguish functions fNℓ(E) corresponding to different basis sizes. Obviously,

N = Nmax + ℓ (27)
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Figure 1: The function fNℓ(E) (symbols) for different N and ℓ and its low-energy
approximations f l.e.

ℓ (E) [see Eq. (23)] and −2
√

E/s + πℓ/2 [see Eq. (26)].
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in the two-body scattering problem. The approximation (23) is seen to be very accu-
rate at low energies even for small Nmax. This low-energy approximation, as expected,
deviates from the function fNℓ(E) as the energy E increases; the energy interval where
the approximation (23) accurately describes fNℓ(E) increases with N or Nmax in accor-
dance with inequality (22). In the case ℓ = 0, the simple expression (26) is equivalent
to the Eq. (23) and therefore describes the function fNℓ(E) with the same accuracy.
For ℓ > 0 the simplified approximation (26) deviates from the approximation (23) and
the function fNℓ(E) at low energies, it can only be used in a relatively small energy
interval defined by inequalities (22) and (25).

Due to Eq. (23), equation (19) at low energies can be reduced to

tan δℓ(Eν) =
jℓ
(

2
√

Eν/s
)

nℓ

(

2
√

Eν/s
) . (28)

This equation reveals the scaling at low energies: the oscillator basis parameters N

and ~Ω are not independent, they are entering equations relating the S-matrix and
phase shifts with the eigenenergies of the Hamiltonian matrix in the oscillator basis
not separately but only through the scaling variable s combining them in a particular
manner. The scaling is useful within our approach for selecting eigenenergies Eν ob-
tained with different N and ~Ω for the further analysis of phase shifts and S-matrix
poles: the convergence of the results obtained by diagonalization of the Hamiltonian
in oscillator basis is achieved within some interval of ~Ω values starting from some N;
the converged results for Eν should describe the same phase shifts with some accuracy,
therefore, due to the scaling (28), these converged Eν plotted as functions of the scal-
ing parameter s should lie approximately on the same curve. By plotting Eν vs s we
can pick up for further analysis only those Eν which form some curve as is illustrated
later.

The scaling in variational oscillator-basis calculations of bound states was proposed
in Refs. [2,3]. We extend here the scaling property of the oscillator-basis calculations
to the continuum states. We prefer to use the scaling parameter s in energy units
rather than the scaling parameter λsc of Refs. [2, 3, 6, 13] in momentum units or the
scaling parameter

L =
√

2(N + 7/2) r0 (29)

in the units of length suggested in Ref. [5]. The parameter L includes a small correc-
tion to the scaling proposed in Refs. [2, 3] which was suggested in Ref. [5] based on
numerical results. We obtain this correction automatically in our approach. Having
this correction in mind, we get

s ∼ λ2
sc ∼ 1/L2; (30)

in other words, we propose generically the same scaling as discussed in Refs. [2–11,13]
but using another scaling parameter and extending the scaling to continuum states.

We derive the scaling property in a very different approach than that utilized in
Refs. [2–5]. Therefore it is interesting to compare these scalings in more detail. One
can analytically continue the Eqs. (19) and (20) to the complex energy or complex
momentum plane, in particular, one can use these expressions at negative energies cor-

responding to bound states. Using asymptotic expressions of the functions C
(+)
N+2,ℓ(E)

and C
(−)
N+2,ℓ(E) at large N and negative energy E (see Ref. [40]), we obtain from

Eq. (20):

S(Eν) = (−1)ℓ exp

(

−4i

√

Eν

s

)

, Eν < 0. (31)



Resonant states in the shell model 191

On the other hand, the S-matrix S(Eν) at negative energies Eν in the vicinity of the
pole associated with the bound state at energy Eb < 0 can be expressed as [42]

S(Eν) =
Dℓ

iκν − ikb
, (32)

where Eν = −~
2
κ

2

ν

2m , Eb = −~
2k2

b

2m , momenta κν and kb are supposed to be positive,
and Dℓ can be expressed through the asymptotic normalization constant Aℓ [42]:

Dℓ = (−1)ℓ+1 i |Aℓ|2. (33)

Combining Eqs. (31)–(33), we obtain:

κν − kb = −|Aℓ|2 exp

(

− 4κν~√
2ms

)

. (34)

This expression can be used for extrapolating the eigenenergies Eν (or respective
momenta κν) obtained in a finite oscillator basis to the infinite basis space supposing
that Eν → Eb as N → ∞.

The respective expression for extrapolating the oscillator basis eigenenergies de-
rived in Refs. [2–5] rewritten in our notations, takes the form:

Eν − Eb = Cℓ exp

(

− 4kb~√
2ms

)

. (35)

There is some similarity, however there is also an essential difference between Eqs. (34)
and (35). Both equations have similar exponents in the right-hand-side, however the
exponent in our Eq. (34) involves momentum κν associated with the eigenenergy Eν

while Eq. (35) involves momentum kb associated with the converged energy Eb in the
limit N → ∞. In the vicinity of the S-matrix pole [see Eq. (32)] κν should not differ
much from kb; we note however that kb is conventionally treated as an additional

fitting parameter (see Refs. [2–11]), i. e., it is supposed that Eb 6= −~
2k2

b

2m , and hence
there may be an essential difference between κν and kb in applications. Even more
important is that the exponent in the right-hand-side controls the difference between
the energies Eν and Eb in Eq. (35) while in our Eq. (34) the exponent controls the
difference between the momenta κν ∼

√

|Eν | and kb ∼
√

|Eb|. We plan to examine in
detail in a separate publication which of the Eqs. (34) and (35) describes better the
results of diagonalizations of realistic Hamiltonians in the oscillator basis for negative
eigenenergies Eν and which of them is more accurate in extrapolating the results for
bound states obtained in finite oscillator bases to the infinite basis space.

Equations (19) and (20) can be used to obtain the phase shifts and S-matrix in
some range of energies covered by eigenenergies Eν obtained with various N and ~Ω.
To interpolate the energy dependences of the phase shifts and S-matrix within and to
extrapolate them outside this interval, we need accurate formulas for the phase shifts
and S-matrix as functions of energy which we discuss in the next subsection.

2.3 Phase shifts and S-matrix at low energies

The scattering S-matrix as a function of the complex momentum k is known [42, 43]
to have the following symmetry properties:

S(−k) =
1

S(k)
, S(k∗) =

1

S∗(k)
, S(−k∗) = S∗(k), (36)

where star is used to denote the complex conjugation. The S-matrix can have poles
either in the lower part of the complex momentum plane or on the imaginary mo-
mentum axis [42, 43]. The poles in the lower part of the complex momentum plane
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at k = κr ≡ kr − iγr (kr, γr > 0) due to the symmetry relations (36) are accompanied
by the poles at k = −κ∗

r ≡ −kr− iγr and are associated with resonances at the energy

Er =
~
2

2m
(k2r − γ2

r ) (37)

and with the width

Γ =
2~2

m
krγr. (38)

Bound states at energy Eb = −~
2k2b/2m are in correspondence with the poles on

the positive imaginary momentum axis at k = ikb (kb > 0), however some positive
imaginary momentum poles can appear to be the so-called false or redundant poles [42]
which do not represent any bound state. The poles at negative imaginary momentum
at k = −ikv (kv < 0) are associated with virtual states at energy Ev = ~

2k2v/2m.
If the S-matrix has a pole close to the origin either in the lower part of the complex

momentum plane or on the imaginary momentum axis, it can be expressed at low
energies as

S(k) = Θ(k)Sp(k), (39)

where Θ(k) is a smooth function of k and the pole term Sp(k) in the case of a bound
state or false pole (p = b), virtual (p = v) or a resonant state (p = r) takes the
form [43]:

Sb(k) = −k + ikb
k − ikb

, (40)

Sv(k) = −k − ikv
k + ikv

, (41)

Sr(k) =
(k + κr)(k − κ∗

r)

(k − κr)(k + κ∗
r)
. (42)

The S-matrix is expressed through the phase shifts δℓ(k) as

S(k) = e2iδℓ(k), (43)

hence the respective phase shifts

δℓ(k) = φ(k) + δp(k), (44)

where the pole contribution δp(k) from the bound state takes the form

δb(E) = π − arctan

√

E

|Eb|
, (45)

where π appears due to the Levinson theorem [43]. The contributions from the false,
virtual and resonant poles are

δf (E) = − arctan

√

E

|Ef |
, (46)

δv(E) = arctan

√

E

Ev
, (47)

δr(E) = − arctan
a
√
E

E − b2
, (48)
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where the resonance energy Er and width Γ can be expressed through the parameters a
and b as

Er = b2 − a2/2, (49)

Γ = a
√

4b2 − a2. (50)

Due to Eq. (43), the S-matrix symmetries (36) require the phase shift δℓ(E) to be
an odd function of k and its expansion in Taylor series of

√
E ∼ k includes only odd

powers of
√
E:

δℓ(E) = c
√
E + d

(
√
E
)3

+ ... (51)

More, since δℓ ∼ k2ℓ+1 in the limit k → 0, c = 0 in the case of p-wave scattering,
c = d = 0 in the case of d-wave scattering, etc.

In applications to the non-resonant nα scattering in the 1
2

+
state (ℓ = 0), we

therefore are using the following parametrization of the phase shifts:

δ0(E) = π − arctan

√

E

|Eb|
+ c

√
E + d

(
√
E
)3

+ f
(
√
E
)5
. (52)

The bound state pole contribution here is associated with the so-called Pauli-forbidden

state. There are resonances in the nα scattering in the 1
2

−
and 3

2

−
states (ℓ = 1);

hence we parametrize these phase shifts as

δ1(E) = − arctan
a
√
E

E − b2
− a

b2

√
E + d

(
√
E
)3
. (53)

This form guarantees that δ1 ∼ k3 in the limit of E → 0.

3 Model problem

To test our SS-HORSE technique, we calculate the phase shifts and resonant param-
eters of nα scattering in a two-body approach treating neutron and α as structureless
particles whose interaction is described by a Woods–Saxon type potential WSB

Vnα =
V0

1 + exp [(r −R0)/α0]
+ (l · s)

1

r

d

dr

Vls

1 + exp [(r −R1)/α1]
, (54)

with parameters fitted in Ref. [44]: V0 = −43 MeV, Vls = −40 MeV · fm2, R0=2.0 fm,
α0=0.70 fm, R1=1.5 fm, α1=0.35 fm. The matrix in the oscillator basis of the relative
motion Hamiltonian with this interaction is diagonalized using ~Ω values ranging

from 2.5 to 50 MeV in steps of 2.5 MeV and Nmax up to 20 for natural parity states 3
2

−

and 1
2

−
and up to 19 for unnatural parity states 1

2

+
.

3.1 Partial wave 3

2

−

The lowest eigenstates E0 obtained by diagonalization of the model Hamiltonian with
the WSB potential are presented in Fig. 2 as a function of the scaling parameter s.
It is seen that the eigenstates obtained with large enough Nmax values form a single
curve in Fig. 2; however the eigenstates obtained with smaller Nmax start deviating
from this curve at smaller ~Ω which correspond to smaller s values reflecting the
convergence patterns of calculations in the finite oscillator basis. This feature is even
more pronounced in the plot of the phase shifts obtained directly from eigenstates E0
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Figure 2: The lowest 3
2

−
eigenstates E0 of the model Hamiltonian with WSB potential

obtained with various Nmax and ~Ω plotted as a function of the scaling parameter s.

using Eq. (19) (see Fig. 3). We need to exclude from the further SS-HORSE analysis
the eigenstates deviating from the common curves in Figs. 2 and 3.

As we already mentioned, the scaling property of our SS-HORSE formalism has
much in common with those proposed in Refs. [2, 3]. Using the nomenclature of
Refs. [2,3], we should use only eigenenergies E0 which are not influenced by infra-red
corrections. According to Refs. [2, 3], these eigenenergies are obtained with Nmax

and ~Ω fitting inequality

Λ ≡
√

m~Ω(Nmax + ℓ + 3/2) > Λ0, (55)

where Λ0 depends on the interaction between the particles. The value of Λ0 =
385 MeV/c seems to be adequate for the potential WSB resulting in a reasonable
selection of eigenenergies E0. The selection of eigenenergies according to this crite-
rion is illustrated by the shaded area in Fig. 4 where we plot eigenenergies E0 obtained
with various Nmax as functions of ~Ω. These selected eigenstates plotted as a func-
tion of the scaling parameter s in Fig. 5 and the respective SS-HORSE phase shifts
in Fig. 6 are seen to produce smooth single curves.
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Figure 3: The 3
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−
phase shifts obtained directly from the WSB eigenstates E0 using

Eq. (19).
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Figure 4: The lowest 3
2

−
eigenenergies E0 of the model WSB Hamiltonian obtained

with various Nmax as functions of ~Ω and selection of eigenstates for the SS-HORSE
analysis according to inequality Λ > 385 MeV/c. The shaded area shows the se-
lected E0 values. Solid lines are solutions of Eq. (56) for energies E0 with parame-
ters a, b and d obtained by the fit.

The low-energy resonant nα scattering phase shifts in the 3
2

−
state are described

by Eq. (53). We need to fit the parameters a, b and d of this equation. Combining
Eqs. (19), (27) and (53) we derive the following relation for resonant nα scattering in

the 3
2

−
state which can be also used for the 1

2

−
state (ℓ = 1 in both cases):

−SNmax+3, 1(E0)

CNmax+3, 1(E0)
= tan

(

− arctan
a
√
E0

E0 − b2
− a

b2

√

E0 + d
(

√

E0

)3
)

. (56)

We assign some values to the parameters a, b and d and solve this equation to

find a set of E0 values, E(i)
0 = E0(N i

max, ~Ωi), i = 1, 2, ..., D, for each combination
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Figure 5: The 3
2

−
WSB eigenstates E0 selected according to Λ > 385 MeV/c plotted

as a function of the scaling parameter s. The solid curve depicts solutions of Eq. (56)
for energies E0 with parameters a, b and d obtained by the fit with the respective
selection of eigenstates.
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Figure 6: The 3
2

−
WSB phase shifts obtained using Eq. (19) directly from eigen-

states E0 selected according to Λ > 385 MeV/c (symbols). The solid curve depicts
the phase shifts of Eq. (53) with parameters a, b and d obtained by the fit with
the respective selection of eigenstates; the dashed curve is obtained by a numerical
integration of the Schrödinger equation.

of Nmax and ~Ω [note, ~Ω enters definitions of functions SN,ℓ(E) and CN,ℓ(E), see

Eqs. (9)–(11)]. The resulting set of E(i)
0 is compared with the set of selected eigenval-

ues E
(i)
0 obtained by the Hamiltonian diagonalization with respective Nmax and ~Ω

values, and we minimize the rms deviation,

Ξ =

√

√

√

√

1

D

D
∑

i=1

(

E
(i)
0 − E(i)

0

)2

, (57)

to find the optimal values of the parameters a, b and d. The obtained parameters are
listed in the first row of Table 1. The resonance energy Er and width Γ obtained by
Eqs. (49) and (50) are also presented in Table 1. Note the accuracy of the fit: the
rms deviation of 156 fitted energy eigenvalues is only 37 keV.

The behavior of E0 as functions of ~Ω dictated by Eq. (56) with the fitted optimal
parameters for various Nmax values is depicted by solid curves in Figs. 4 and 5. It is
seen that these curves accurately describe the selected eigenvalues E0 obtained by the
Hamiltonian diagonalization. Note however a small deviation of the curve in Fig. 5
from the diagonalization results at large energies obtained with Nmax = 2 where the
scaling become inaccurate, see Eq. (22). The phase shifts δ1(E) obtained by Eq. (53)
with fitted parameters are shown in the Fig. 6. It is seen that the SS-HORSE phase
shifts are in excellent correspondence with the exact results obtained by numerical

integration of the Schrödinger equation. The 3
2

−
resonance energy and width are also

well reproduced by our SS-HORSE technique (see Table 1).
In the above analysis we used oscillator bases with Nmax values up to Nmax = 20.

Such large Nmax are accessible in two-body problems but are out of reach in modern
many-body shell model applications. Therefore it is very important to check whether
a reasonable accuracy of SS-HORSE phase shift and resonance parameter calculations
can be achieved with significantly smaller Nmax.

We remove from the set of selected 3
2

−
eigenstates E

(i)
0 those obtained with Nmax >

6 and use this new selection illustrated by Figs. 7 and 8 to calculate phase shifts and
resonant parameters. All eigenenergies from this selection lie outside the resonance
region as is seen in Fig. 9 where we plot the phase shifts as a function of energy.
The SS-HORSE fit (see Table 1) nevertheless accurately reproduces the exact phase
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Figure 7: Selection of the lowest 3
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WSB eigenstates E0 obtained with Nmax ≤ 6.

See Fig. 4 for details.
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WSB eigenstates E0 obtained with Nmax ≤ 6 as a func-

tion of the scaling parameter s. See Fig. 5 for details.
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with Nmax ≤ 6. See Fig. 6 for details.
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Table 1: 3
2

−
resonance in nα scattering with model WSB potential: fitting param-

eters a, b, d of Eq. (56), resonance energy Er and width Γ, rms deviation of fitted
energies Ξ and the number of these fitted energies D for different selections of eigen-
values in comparison with exact results for Er and Γ obtained by numerical location
of the S-matrix pole. For the Nmax ≤ 6 selection, Ξ and D for all energies from the
previous selection are shown within brackets.

Selection
a b2 d · 103 Er Γ Ξ

D
(MeV

1

2 ) (MeV) (MeV− 3

2 ) (MeV) (MeV) (keV)

Λ > 385 MeV/c 0.412 0.948 5.41 0.863 0.785 37 156
Nmax ≤ 6 0.411 0.948 5.30 0.863 0.782 70(38) 38(156)

Exact 0.836 0.780

shifts (see Fig. 9) even in the resonance region and the 3
2

−
resonance energy Er

and width Γ (see Table 1). To get such accuracy, it is very important to use the
adequate phase shift parametrization (53) which guarantees the low-energy phase shift
behaviour δℓ ∼ k2ℓ+1 and an accurate description of the resonance region by the pole
term (48): our previous study [38] has clearly demonstrated that it is impossible to
reproduce the resonant parameters and phase shifts in a wide enough energy interval
without paying special attention to the low-energy phase shift description and by using
the less accurate Breit–Wigner resonant phase shifts instead of the pole term (48)
even when large Nmax eigenstates E0 are utilized to say nothing about the selection
of eigenstates obtained with small Nmax.

Solid lines in Figs. 4 and 7 present the eigenenergies E0 for various Nmax values
as functions of ~Ω obtained from the respective phase shift parametrization. It is
seen that we accurately describe not only the eigenenergies from the shaded area
utilized in the fit but also those corresponding to a wider range of ~Ω values. It
is even more interesting that in the case of Fig. 7 where fitted are only the states
with Nmax ≤ 6, we also reproduce the eigenenergies obtained with much larger Nmax

values with nearly the same rms deviation as in the case of the previous selection
(see Table 1) when those larger Nmax eigenenergies were included in the fit. In other
words, our SS-HORSE fit to the diagonalization results in small basis spaces makes it
possible to ‘predict’ the diagonalization results obtained with much larger oscillator
bases. This is very important for many-body shell-model applications and suggests a
very efficient method of extrapolating the shell-model results in continuum to larger
basis spaces.

3.2 Partial wave 1

2

−

The lowest 1
2

−
eigenstates of the model Hamiltonian with the WSB potential are

shown as functions of ~Ω for various Nmax in Fig. 10 and as functions of the scaling
parameter s in Fig. 11. All eigenenergies in this case seem to lie approximately on the
same curve in Fig. 11; however the plot of the SS-HORSE phase shifts corresponding
to these eigenstates (see Fig. 12) clearly indicates deviations from the common curve
for eigenstates obtained with small Nmax values. We have already mentioned that the
phase shifts are more sensitive to the convergence patterns and are somewhat more
instructive for the selection of the eigenenergies.

As in the case of the 3
2

−
partial wave, we start with the Λ > 385 MeV/c selection of

eigenenergies as is illustrated by Fig. 13 and by the shaded area in Fig. 10. The fitting
method described in the previous subsection results in the parameters listed in the first
row of Table 2. We obtain a reasonable fit with a small enough rms deviation of the
156 selected eigenenergies of 80 keV. The obtained phase shifts depicted in Fig. 14 are
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Figure 10: The lowest 1
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WSB eigenstates E0 as functions of ~Ω and their Λ >

385 MeV/c selection. See Fig. 4 for details.
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WSB eigenstates E0 as a function of the scaling parameter s.
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Eq. (19).
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Figure 13: The Λ > 385 MeV/c selected 1
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WSB eigenstates E0 as a function of the

scaling parameter s. See Fig. 5 for details.
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Figure 14: The 1
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−
WSB phase shifts generated by the Λ > 385 MeV/c selected

eigenstates E0. See Fig. 6 for details.

very close to the exact phases from numerical integration of the Schrödinger equation
with the WSB potential up to the energy E of approximately 17 MeV. At higher
energies we see some difference between the exact and SS-HORSE phases shifts which
are completely governed in this energy region by the Nmax = 2 eigenenergies which
are not expected to be close to convergence for the energy extrapolations and S-
matrix description within the HORSE extension of the Hamiltonian. We note also

Table 2: Parameters of the 1
2

−
WSB resonance. See Table 1 for details.

Selection
a b2 d · 103 Er Γ Ξ

D
(MeV

1

2 ) (MeV) (MeV− 3

2 ) (MeV) (MeV) (keV)

Λ > 385 MeV/c 1.780 3.636 3.18 2.05 6.00 80 156
Nmax ≤ 6 1.822 3.818 2.77 2.16 6.30 75(84) 38(156)

Exact 1.66 5.58
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Figure 15: Selection of the lowest 1
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−
WSB eigenstates E0 obtained with Nmax ≤ 6.

See Fig. 4 for details.

that contrary to the 3
2

−
resonance we observe approximately 0.5 MeV differences

between the resonance energy Er and width Γ results obtained by the SS-HORSE
technique and by numerical location of the respective S-matrix pole. We suppose

that these differences originate from the fact that the 1
2

−
resonance pole associated

with this wide resonance is located far enough from the real energy axis; therefore the
phase shifts even in the resonant region can be influenced by other S-matrix poles
not accounted for by our phase shift parametrization (53).

We examine also a possibility of describing the 1
2

−
phase shifts and resonance

parameters by using only the eigenstates obtained with Nmax ≤ 6 for our SS-HORSE
analysis. We retain only these eigenstates from our previous selection as is shown by
the shaded area in Fig. 15; this eigenstate selection is also illustrated by Fig. 16. The
energies E0 of all selected eigenstates are larger than the resonance region as is seen
in Fig. 17. Nevertheless we reproduce the phase shifts and resonance parameters (see
Fig. 17 and Table 2) nearly with the same accuracy as with the previous much more
complete eigenstate selection. More, we accurately ‘predict’ eigenenergies in larger
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Figure 16: Selected lowest 1
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WSB eigenstates E0 obtained with Nmax ≤ 6 as a

function of the scaling parameter s. See Fig. 5 for details.
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Figure 17: The 1
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−
WSB phase shifts generated by the selected eigenstates E0 ob-

tained with Nmax ≤ 6. See Fig. 6 for details.

model spaces (see solid lines in Fig. 15) nearly with the same rms deviation as the fit
involving those eigenstates as is indicated in Table 2.

3.3 Partial wave 1

2

+

There are no resonances in the nα scattering in the 1
2

+
partial wave. However, as it has

been indicated in Ref. [14], the nuclear shell model should generate eigenstates in non-
resonant energy intervals in continuum to be consistent with scattering observables.
Therefore it is interesting to test with the WSB potential the ability of the SS-HORSE

approach to describe the 1
2

+
non-resonant nα scattering.

The low-energy nα scattering phase shifts in the 1
2

+
state are described by Eq. (52).

We shall see that to get the same quality fit as in the case of the odd-parity resonant
scattering, we need in this case terms up to the 5th power of

√
E in the Taylor

expansion of the background phase; therefore we preserve in Eq. (52) more terms
than in Eq. (53). c, d and f are fitting parameters in Eq. (52). The WSB potential
supports a bound state at energy Eb which mimics the Pauli-forbidden state in the nα
scattering. We however treat Eb as an additional fitting parameter as a preparation
to many-body NCSM calculations where it is impossible to obtain the energy of the
Pauli-forbidden state. This bound state appears as the lowest state with negative
energy obtained by the Hamiltonian diagonalization and is unneeded for our SS-
HORSE analysis for which we use the first excited state E1 > 0 which is the lowest
state in the continuum.

The excitation quanta Nmax is conventionally used to define the many-body NCSM
basis space while the total oscillator quanta N is entering our SS-HORSE equations.

The 1
2

+
states in 5He are unnatural parity states, hence Nmax takes odd values within

NCSM, the minimal oscillator quanta N0 = 1 in the five-body nα system, and

N = Nmax + N0 (58)

is even. To retain a correspondence with NCSM, we are using Nmax to define the oscil-
lator basis also in our model two-body problem. We note that in this case the Nmax is
formally related to N according to Eq. (27) where ℓ = 0, and Nmax should be even for
even N. To have a closer correspondence with NCSM, we use Eq. (58) with N0 = 1
within our model two-body problem instead of Eq. (27) to relate Nmax to N, i. e.,

due to our NCSM-like definition, the 1
2

+
eigenstates are labelled below by odd Nmax
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values. Note, the definitions (27) and (58) result in the same Nmax in the case of

odd-parity 3
2

−
and 1

2

−
nα partial waves.

Combining Eqs. (19), (52) and (58), we derive for the nα scattering in the 1
2

+

partial wave:

−SNmax+3, 0(Eν)

CNmax+3, 0(Eν)
= tan

(

π − arctan

√

Eν

|Eb|
+ c
√

Eν + d
(

√

Eν

)3
+ f

(

√

Eν

)5

)

, (59)

where ν = 1. We assign some values to the fitting parameters Eb, c, d and f and

solve Eq. (59) to find a set of E1 values, E(i)
1 = E1(N i

max, ~Ωi), i = 1, 2, ..., D, for
each combination of Nmax and ~Ω and minimize the rms deviation from the selected
eigenvalues E

(i)
1 obtained by the Hamiltonian diagonalization, see Eq. (57) where

the subindex 0 should be replaced by 1, to find the optimal values of the fitting
parameters.

The lowest continuum 1
2

+
eigenstates E1 of the model WSB Hamiltonian are

shown as functions of ~Ω for various Nmax in Fig. 18 and as a function of the scaling
parameter s in Fig. 19. All eigenenergies in this case seem to lie approximately on
the same curve in Fig. 19; however, as in the case of odd parity partial waves, the
deviations from the common curve are much more pronounced in the plot of the SS-
HORSE phase shifts corresponding to these eigenstates (see Fig. 20) which clearly
indicates the need to select eigenstates for the SS-HORSE fitting.

As in the case of the odd parity states, we use the Λ > 385 MeV/c selection of
eigenenergies as is illustrated by Fig. 21 and by the shaded area in Fig. 18. The
obtained fitting parameters of Eq. (59) are presented in Table 3. It is interesting that
the fitted energy Eb differs essentially from the exact value which is the energy of the

bound state in the WSB potential. The SS-HORSE 1
2

+
phase shifts nevertheless are

seen in Fig. 22 to be nearly indistinguishable from the exact ones up to the energies of
about 70 MeV where the SS-HORSE phase shifts governed by Nmax = 1 eigenstates
slightly differ from exact. We note that the WSB bound state has a large binding
energy, the respective S-matrix pole is far enough from the real momentum axis and
hence has a minor influence on the phase shifts. This result indicates that one should
not take seriously the energies of bound states obtained by the fit to the scattering
data only, at least for well-bound states.
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Figure 18: The lowest continuum 1
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+
WSB eigenstates E1 as functions of ~Ω and

their Λ > 385 MeV/c selection. Solid lines are solutions of Eq. (59) for energies E1

with parameters Eb, c, d and f obtained by the fit with this selection of eigenstates.
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Figure 19: The lowest continuum 1
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+
WSB eigenstates E1 as a function of the scaling

parameter s.
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Figure 20: The 1
2

+
phase shifts obtained directly from the WSB eigenstates E1 using

Eq. (19).

To examine a possibility of describing the low-energy 1
2

+
phase shifts using only the

diagonalization results in small basis spaces, we remove from the previous selection
the eigenenergies E1 obtained with Nmax > 5 as is illustrated by Figs. 23 and 24.
We obtain nearly the same values of the fitting parameters as is seen from Table 3.

Table 3: 1
2

+
nα scattering with model WSB potential: fitting parameters Eb, c, d

and f of Eq. (59), rms deviation of fitted energies Ξ and the number of these fitted
energies D for different selections of eigenvalues. For the Nmax ≤ 5 selection, Ξ and D
for all energies from the previous selection are shown within brackets.

Selection
Eb c d · 103 f · 105 Ξ

D
(MeV) (MeV− 1

2 ) (MeV− 3

2 ) (MeV− 5

2 ) (keV)

Λ > 385 MeV/c −6.841 −0.157 +1.19 −0.888 163 151
Nmax ≤ 5 −6.853 −0.156 +1.19 −0.888 332(163) 35(151)

Exact −9.85
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Figure 21: The Λ > 385 MeV/c selected 1
2

+
WSB eigenstates E1 as a function of

the scaling parameter s. The solid curve depicts solutions of Eq. (59) for energies E1

with parameters Eb, c, d and f obtained by the fit with this selection of eigenstates.

The largest though still small enough difference is obtained for the fitted Eb values
which, as has been already noted, does not play an essential role in the phase shifts.
Therefore it is not surprising that we get an excellent description of the exact phase
shifts presented in Fig. 25. Figure 23 demonstrates that we describe accurately not
only the eigenstates E1 involved in the fitting procedure but also those obtained in
much larger basis spaces which were not fitted. The rms deviation in the description
of energies of all Λ > 385 MeV/c selected eigenstates is exactly the same as in the
case when all these eigenstates were included in the fit.

As we already noted, the scaling of the eigenstates of finite Hamiltonian matri-
ces in oscillator basis has been proposed by S. Coon and collaborators in Refs. [2, 3]
who studied the convergence patterns of the bound states. They have demonstrated
that the eigenenergies Eν as functions of the scaling parameter λsc ∼ √

s tend to a
constant as λsc approaches 0; this constant is the convergence limit of the respective
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Figure 22: The 1
2

+
WSB phase shifts generated by the Λ > 385 MeV/c selected

eigenstates E1 (symbols). The solid curve depicts the phase shifts of Eq. (52) with
parameters Eb, c, d and f obtained by the fit with this selection of eigenstates; the
dashed curve is obtained by a numerical integration of the Schrödinger equation.
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Figure 23: Selection of the lowest 1
2

+
WSB eigenstates E1 obtained with Nmax ≤ 5.

See Fig. 4 for details.
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Figure 24: Selected lowest 1
2

+
WSB eigenstates E1 obtained with Nmax ≤ 5 as a

function of the scaling parameter s. See Fig. 21 for details.
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+
WSB phase shifts generated by the selected eigenstates E1 ob-

tained with Nmax ≤ 6. See Fig. 22 for details.
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Figure 26: The same as Fig. 5 but in a larger scale. The dashed line corresponds to
the resonance energy Er, the shaded area shows the resonance width.

eigenenergy in the infinite basis. Our study extends the scaling patterns of the har-
monic oscillator eigenstates to the case of states in the continuum. In this case the
eigenenergies should approach 0 as the basis is expanded infinitely. The solid lines
in Figs. 21 and 24 demonstrate the behaviour of eigenenergies in the continuum E1

as a function of the scaling parameter s in the case of a system which has a bound
state and does not have resonances in the low-energy region; the respective low-energy
phase shifts are described by Eq. (52), a general formula for this case. The eigenstates
are seen to be a smooth monotonic function of s (or λsc) which tends, as expected,
to zero as s → 0.

The solid lines in Figs. 5, 8, 13 and 16 demonstrate the behaviour of the eigen-
states E0 as a function of the scaling parameter s when the low-energy phase shifts
are given by Eq. (53) which is a general formula describing a system which does not
have a bound state but has a low-energy resonance. We see again a smooth monoton-
ically increasing function of s with a large enough derivative at large s. At smaller s
when the energy approaches the resonant region, the derivative of E0(s) decreases;
this decrease of the derivative is more pronounced for narrow resonances as can be
seen by comparing Figs. 5 and 13. Figure 26 where the function E0(s) from Fig. 5
is shown in a larger scale together with the resonant region, demonstrates that the
further decrease of s strongly enhances the derivative of this function at the energies
below the resonance energy Er . When the function E0(s) leaves the resonant region
at smaller s values, the next eigenstate E1(s) (not shown in the figure) approaches
the resonant region from above.

These are the general convergence trends of the positive energy eigenstates ob-
tained in the oscillator basis.

Concluding this section, we have demonstrated using the WSB potential as an
example that the proposed SS-HORSE technique is adequate for the description of
low-energy scattering phase shifts and resonance energies Er and widths Γ. A very
encouraging sign for many-body shell-model applications is that the resonance pa-
rameters and phase shifts can be obtained nearly without loosing the accuracy by
using within the SS-HORSE approach only the Hamiltonian eigenstates obtained in
small basis spaces; more, having the low-lying energies from small basis spaces we are
able to ‘predict’ accurately the values of eigenenergies in much larger oscillator bases.
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4 SS-HORSE NCSM calculation

of resonances in nα scattering

We discuss here the application of our SS-HORSE technique to nα scattering phase
shifts and resonance parameters based on ab initio many-body calculations of 5He
within the NCSM with the realistic JISP16 NN interaction. The NCSM calculations
are performed using the code MFDn [45, 46] with 2 ≤ Nmax ≤ 18 for both parities
and with ~Ω values ranging from 10 to 40 MeV in steps of 2.5 MeV.

As it has been already noted above, for the SS-HORSE analysis we need the 5He
energies relative to the n + α threshold. Therefore from each of the 5He NCSM odd
(even) parity eigenenergies we subtract the 4He ground state energy obtained by the
NCSM with the same ~Ω and the same Nmax (with Nmax− 1) excitation quanta, and
in what follows these subtracted energies are called NCSM eigenenergies Eν . Only
these 5He NCSM eigenenergies relatively to the n + α threshold are discussed below.

4.1 Partial wave 3

2

−

We utilize the same Eq. (56) to fit the parameters describing the low-energy 3
2

−

and 1
2

−
phase shifts as in the model problem; the only difference is that the low-

est energy eigenstates E0 are obtained now from the many-body NCSM calculations.

These lowest 3
2

−
NCSM eigenstates are shown in Fig. 27 as functions of ~Ω for vari-

ous Nmax values. Figure 28 presents these eigenstates E0 as a function of the scaling

parameter s while Fig. 29 presents the 3
2

−
phase shifts obtained directly from them

using Eq. (19). Figures 28 and 29 clearly demonstrate the need of the eigenstate
selection since many points in these figures deviate strongly from the common curves
formed by other points. On the other hand, these figures demonstrate the convergence
achieved in large Nmax calculations: the deviation from the common curves occurs at
smaller ~Ω values as Nmax increases and all results from the largest available NCSM
basis spaces seem to lie on the single common curves with the exception of only very
few eigenenergies obtained with ~Ω < 15 MeV.

Our first selection is the eigenstates fitting inequality Λ > 600 MeV/c, the value
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Figure 27: The lowest 5He 3
2

−
eigenstates E0 obtained by the NCSM with vari-

ous Nmax as functions of ~Ω. The shaded area shows the E0 values selected for the
SS-HORSE analysis according to inequality Λ > 600 MeV/c. Solid lines are solutions
of Eq. (56) for energies E0 with parameters a, b and d obtained by the fit.
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Figure 28: The lowest 5He 3
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eigenstates E0 as a function of the scaling parameter s.

recommended in Refs. [2, 3] for the JISP16 NN interaction. This selection is illus-
trated by the shaded area in Fig. 27; common curves are formed by the selected
eigenenergies E0 plotted as a function of the scaling parameter s in Fig. 30 and by
the phase shifts obtained directly from these eigenenergies with the help of Eq. (53)
in Fig. 31. We get an accurate fit of the selected NCSM eigenenergies with the rms
deviation of 31 keV, the obtained values of the fitting parameters a, b, d of Eq. (56)

and the 3
2

−
resonance energy Er and width Γ are presented in Table 4. The fit accu-

racy is also illustrated by solid lines in Figs. 27, 30 and 31 obtained using our fitting
parameters: these curves are seen to reproduce the selected NCSM energies E0 in
Figs. 27 and 30 and the corresponding phase shifts in Fig. 31.

The JISP16 NN interaction generates the 3
2

−
phase shifts reproducing qualita-

tively but not quantitively the results of phase shift analysis of Refs. [47] of nα scat-
tering data as is seen in Fig. 31. We obtain the resonance energy Er slightly above
the experimental value, the difference is about 0.2 MeV (see Table 4). The resonance
width Γ is also overestimated by JISP16, the difference between the JISP16 prediction
and experiment is about 0.4 MeV. We present in Fig. 31 and in the last row of Table 4
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Figure 29: The 3
2

−
nα phase shifts obtained directly from the 5He eigenstates E0

using Eq. (19) and the phase shift analysis of experimental data of Refs. [47] (stars).
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Figure 30: The 5He 3
2

−
eigenstates E0 selected according to Λ > 600 MeV/c plotted

as a function of the scaling parameter s (symbols). See Fig. 5 for other details.

also the fit by Eq. (53) of the phase shift analysis of experimental data of Refs. [47]
obtained by minimizing the rms deviation of the phase shifts (column Ξ in the Ta-
ble). The fit parameters derived from the experimental data are seen to be markedly
different from those derived from JISP16 by the NCSM-SS-HORSE approach.

Returning to the 3
2

− 5He eigenstates depicted in Fig. 27, we see that the solid
curves presenting our fit in this figure describe not only the selected eigenstates from
the shaded area but also many other eigenstates not involved in the fit. This signals
that the Λ > 600 MeV/c selection is too restrictive and we can use for the SS-HORSE
analysis and fits many more NCSM eigenstates. We can use within the SS-HORSE
approach all eigenstates forming with the others a common curve in Fig. 28 and es-
pecially in Fig. 29 which is, as we have noted, more sensitive to convergence patterns.
There is however a restriction: unacceptable for the SS-HORSE are eigenstates Eν
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Figure 31: The 3
2

−
nα phase shifts obtained using Eq. (19) directly from 5He eigen-

states E0 selected according to Λ > 600 MeV/c (symbols). The solid curve depicts
the phase shifts of Eq. (53) with parameters a, b and d obtained by the fit with the
respective selection of eigenstates; stars and the dashed curve depict the phase shift
analysis of experimental data of Refs. [47] and the fit by Eq. (53).
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Table 4: 3
2

−
resonance in nα scattering from the 5He NCSM calculations with JISP16

NN interaction: fitting parameters a, b, d of Eq. (56), resonance energy Er and
width Γ, rms deviation of fitted energies Ξ and the number of these fitted energies D
for different selections of eigenvalues in comparison with the analysis of experimental
data in various approaches of Refs. [48] and [14] and with the fit by Eq. (53) of the
phase shifts δ1 extracted from experimental data in Ref. [47]. For the Nmax ≤ 4 selec-
tion, Ξ and D for all energies from the manual selection are shown within brackets.

Selection
a b2 d · 104 Er Γ Ξ

D
(MeV

1

2 ) (MeV) (MeV− 3

2 ) (MeV) (MeV) (keV)

Λ > 600 MeV/c 0.505 1.135 −0.9 1.008 1.046 31 46
Manual 0.506 1.019 +93.2 0.891 0.989 70 68
Nmax ≤ 4 0.515 1.025 +101 0.892 1.008 106(81) 11(68)

Nature:
R-matrix [48] 0.80 0.65
J-matrix [14] 0.772 0.644

Fit δ1 of Ref. [47] 0.358 0.839 +55.9 0.774 0.643 0.21◦ 26

obtained with any given Nmax from the range of ~Ω values where their energy de-
creases with ~Ω, i. e., we can select only those eigenstates with a given fixed Nmax

which derivative Eν

~Ω > 0 — Eqs. (56) and (59) do not exclude mathematically the pos-

sibility of having Eν

~Ω < 0 but such solutions can arise only with unphysical parameters
of these equations.

We would like to use within the SS-HORSE as many NCSM eigenstates as possible
in order to enlarge the energy interval where the phase shifts are fitted and to improve
the accuracy of the fit parameters. From this point of view, the selection according to
inequality Λ > Λ0 is not favorable. The Λ > Λ0 rule excludes states with ~Ω < ~Ω0

where ~Ω0 depends on Nmax and decreases as Nmax increases. As is seen from our
study of the model problem, in particular, from Figs. 3, 4, 10, 12, 18, 20, we can
utilize for the SS-HORSE the eigenstates obtained with sufficiently large Nmax and
with very small ~Ω; the same conclusion follows from our ab initio many-body study
of the system of four neutrons (tetraneutron) in the continuum [49,50]. According to
the Λ > Λ0 rule we either exclude these large Nmax – small ~Ω eigenstates or include
in the fit some small Nmax states which strongly deviate from common curves on the
plots of Eν vs s or δℓ vs E.

The ultraviolet cutoff Λ0 was introduced in Refs. [2, 3] with an idea that the os-
cillator basis should be able to describe in the many-body system the short-range
(high-momentum) behaviour of the two-nucleon interaction employed in the calcu-
lations; thus the ~Ω cannot be too small since oscillator functions with small ~Ω
have a large radius (correspond to small momentum) and are not able to catch the
short-range (high-momentum) peculiarities of a particular NN potential. We imagine
this concept to be insufficient at least in some cases. In light nuclei where binding
energies are not large, the structure of the wave function can be insensitive to the
short-range NN potential behaviour associated with high relative momentum. Much
more important is the radius of the state under consideration, e. g., we can expect
an adequate description of the ground state only if the highest oscillator function in
the basis has at least one node within the radius of this state, two nodes are required
within the radius of the first excited state, etc. Therefore the minimal acceptable ~Ω
value depends strongly on the state under consideration and may be insensitive to
the inter-nucleon interaction. This is particularly important for loosely-bound nuclear
states or for low-energy scattering states. In the case of scattering, the wave func-
tion at low energies can have a very distant first node and not only permits but just
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Figure 32: Manual selection the lowest 5He 3
2

−
eigenstates E0. See Fig. 27 for details.

requires the use of oscillator functions with very small ~Ω values and large radius.

We cannot formulate a simple rule or formula for selecting eigenstates accept-
able for the SS-HORSE analysis, instead we pick up manually individual states with
eigenenergies E0 lying to the right from the minimum of the ~Ω dependence for
each Nmax in Fig. 27 and lying on or close to the common curve in Figs. 28 and 29.
These manually selected eigenstates and the respective phase shifts are presented in
Figs. 32, 33 and 34. The results of the fit with this selection of eigenstates are pre-
sented in the second line of Table 4. We obtain an accurate fit with the rms deviation
of eigenenergies of 70 keV; this number however depends on the selection criteria like
the acceptable distance from the common curve formed by other points in Figs. 33
and 34. Comparing Figs. 27 and 32 we see that our manual selection makes it possi-
ble to describe eigenenergies with small Nmax which were far from theoretical curves
in Fig. 27. These small Nmax states have large energies, and their inclusion in the
SS-HORSE analysis extends the description of the phase shifts in the high-energy
region in Fig. 34 pushing them closer to the phase shift analysis of the experimental
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Figure 33: Manually selected 5He 3
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−
eigenstates E0 plotted as a function of the

scaling parameter s (symbols). See Fig. 5 for other details.
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Figure 34: The 3
2

−
nα phase shifts generated by the manually selected 5He eigen-

states E0. See Fig. 31 for details.

nα scattering data in this region as compared with Fig. 31. These changes in the
phase shift behavior at larger energies correspond to a drastic change of the fitting
parameter d which is the coefficient of the highest power term in the expansion (53).
At smaller energies including the resonance region, the phase shifts obtained from the
fits with the manual and with the Λ > 600 MeV/c selections are nearly the same,
and we get close values of the respective fitting parameters a and b and hence small
changes of the resonance energy Er and width Γ due to the switch from one selection
to the other.

It is very interesting to investigate whether we can get reasonable phase shifts
and resonance parameters using only the NCSM eigenstates from small basis spaces.
From our manually selected eigenstates we select only those obtained with Nmax = 2
and 4. This selection and the results obtained by the fit are depicted in Figs. 35, 36
and 37. All eigenenergies E0 involved in this fit are significantly above the resonant
region (see Fig. 37). Nevertheless we obtain from these 11 small-Nmax eigenstates
nearly the same phase shifts as those from all 68 manually selected eigenstates and
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Figure 35: Selection of the lowest 5He 3
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eigenstates E0 obtained in NCSM with

Nmax ≤ 4. See Fig. 27 for details.



214 A. I. Mazur, A. M. Shirokov, I. A. Mazur and J. P. Vary

0 1 2 3 4 5 6
s [MeV]

0

5

10

15

E
 [

M
eV

]

N
max

= 2
           4
SS-HORSE

nα, 3/2
-

JISP16

Nmax ≤ 4

Figure 36: Selected lowest 5He 3
2

−
eigenstates E0 obtained in NCSM with Nmax ≤ 4

as a function of the scaling parameter s. See Fig. 5 for other details.
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Figure 37: The 3
2

−
nα phase shifts generated by the selected 5He eigenstates E0

obtained in NCSM with Nmax ≤ 4. See Fig. 31 for details.

very close values of fit parameters and of the resonance energy and width presented in
Table 4. Figure 35 demonstrates that, as in the case of the model problem, with these
eigenstates E0 from many-body NCSM calculations with Nmax ≤ 4 we can accurately
‘predict’ the 5He eigenstates obtained in much larger basis spaces and in a wider range
of ~Ω. The rms deviation Ξ of all manually selected eigenstates by this Nmax ≤ 4 fit
is only 81 keV as compared with 70 keV from the fit to all those eigenstates.

4.2 Partial wave 1

2

−

The lowest 1
2

−
eigenstates of 5He from the NCSM calculations with JISP16 NN

interaction are presented in Fig. 38 as functions of ~Ω and in Fig. 39 as a function
of the scaling parameter s, Fig. 40 presents the respective nα phase shifts. The
eigenenergies in Figs. 39 and 40 tend to form single common curves demonstrating the
convergence of many-body NCSM calculations, however we see that many eigenstates
diverge from the common curves and lie far from them thus demonstrating the need
to select the states for the SS-HORSE analysis.
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Figure 38: The lowest 5He 1
2

−
eigenstates E0 as functions of ~Ω and their Λ >

600 MeV/c selection. See Fig. 27 for details.
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Figure 39: The lowest 5He 1
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−
eigenstates E0 as a function of the scaling parameter s.
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−
nα phase shifts obtained directly from the 5He eigenstates E0

using Eq. (19). See Fig. 29 for other details.
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Figure 41: The 5He 1
2

−
eigenstates E0 selected according to Λ > 600 MeV/c as a

function of the scaling parameter s. See Fig. 5 for other details.

As in the case of the 3
2

−
partial wave, we start from the Λ > 600 MeV/c eigen-

state selection recommended for the JISP16 NN interaction in Refs. [2, 3] which is
illustrated in Figs. 38 and 41, the respective phase shifts are shown in Fig. 42. The
selected states form reasonably smooth common curves in Figs. 41 and 42 making
possible an accurate fit of parameters in Eq. (53); the obtained fitted parameters

can be found in Table 5. We get a good description of the 1
2

−
resonance energy

and width however the phase shift behaviour extracted from the experimental nα
scattering data is reproduced qualitatively but not quantitatively (see Fig. 42). Note
however that the fit parameters derived from the experimental data and JISP16 re-
sults (Table 5) are close with the exception of the parameter d which contribution is
very small at energies below 20 MeV. Figure 38 shows that we reproduce not only
the eigenstate energies from the shaded area that were fitted but also many other
eigenstates not included in the fit, especially small-Nmax eigenstates, thus suggesting
to perform a manual eigenstate selection which will involve many more eigenenergies
in the SS-HORSE analysis.
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Figure 42: The 1
2

−
nα phase shifts generated by the Λ > 600 MeV/c selected 5He

eigenstates E0. See Fig. 31 for details.
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Table 5: Parameters of the 1
2

−
resonance in nα scattering from the 5He NCSM

calculations with JISP16 NN interaction. See Table 4 for details.

Selection
a b2 d · 104 Er Γ Ξ

D
(MeV

1

2 ) (MeV) (MeV− 3

2 ) (MeV) (MeV) (keV)

Λ > 600 MeV/c 1.680 3.443 −3.6 2.031 5.559 61 46
Manual 1.699 3.299 21.3 1.856 5.456 11 60
Nmax ≤ 4 2.460 6.734 −0.15 3.710 11.24 109(893) 9(60)

4 ≤ Nmax ≤ 6 1.718 3.310 25.0 1.834 5.511 25(92) 10(60)

Nature:
R-matrix [48] 2.07 5.57
J-matrix [14] 1.97 5.20

Fit δ1 of Ref. [47] 1.622 3.276 +46.3 1.960 5.249 0.038◦ 26

Our manual selection of the lowest 1
2

−
eigenstates in 5He is shown in Figs. 43

and 44 while the respective nα phase shifts are presented in Fig. 45, the results of the

fit are given in Table 5. As in the case of the 3
2

−
nα partial wave, the inclusion of

the additional eigenstates in the fit does not affect the phase shifts at smaller energies
including the resonance region. However, including the additional eigenstates pushes
the phase shifts up in the direction of the phase shift analysis at larger energies. The
1
2

−
resonance energy and width and the parameters of the phase shift fit by Eq. (53)

are seen from Table 5 to change only slightly with the exception of the parameter d
responsible for the phase shift behaviour at higher energies.

It is very interesting and important to examine whether it is possible to get a

reasonable description of the resonance and phase shifts in the 1
2

−
nα scattering

using only eigenstates obtained in many-body NCSM calculations in small bases. In

the case of the 3
2

−
nα scattering we manage to derive very good phase shifts from

the Nmax ≤ 4 NCSM eigenstates. Therefore we try the Nmax ≤ 4 eigenstate selection

also in the 1
2

−
partial wave, see Figs. 46, 47 and 48. This selection clearly fails to

reproduce the phase shifts and resonance parameters which differ essentially from the

converged results obtained with the manual selection of the 1
2

− 5He eigenstates (see
Fig. 31 and Table 5); we see also in Fig. 46 that the fit to the Nmax ≤ 4 eigenstates
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Figure 43: Manual selection the lowest 5He 1
2

−
eigenstates E0. See Fig. 27 for details.



218 A. I. Mazur, A. M. Shirokov, I. A. Mazur and J. P. Vary

0 1 2 3 4 5 6
hΩ [MeV]

0

5

10

15

20

25

E
 [

M
eV

]

N
max

= 4
           6
           8
         10
         12
         14
         16
         18
SS-HORSE

nα, 1/2
-

JISP16
Manual selection

Figure 44: Manually selected 5He 1
2

−
eigenstates E0 plotted as a function of the

scaling parameter s (symbols). See Fig. 5 for other details.
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Figure 45: The 1
2

−
nα phase shifts generated by the manually selected 5He eigen-

states E0. See Fig. 31 for details.
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eigenstates E0 obtained in NCSM with

Nmax ≤ 4. See Fig. 27 for details.
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Figure 47: Selected lowest 5He 1
2

−
eigenstates E0 obtained in NCSM with Nmax ≤ 4

as a function of the scaling parameter s. See Fig. 5 for other details.

from the shaded area fails to ‘predict’ the eigenenergies E0 obtained with larger Nmax

values. That is not surprising because the plots of the Nmax ≤ 4 eigenenergies as a
function of the scaling parameter s (Fig. 47) and of the respective phase shifts as a
function of energy (Fig. 48) do not form smooth common curves.

However an entirely different result is obtained by selecting for the SS-HORSE

analysis the 5He 1
2

−
NCSM results from basis spaces with 4 ≤ Nmax ≤ 6. For the

4 ≤ Nmax ≤ 6 selection we pick up 10 eigenstates with the smallest Nmax values out

of 60 manually selected before 1
2

−
eigenstates. This eigenstate selection and the re-

spective results are illustrated by Figs. 49, 50 and 51. The selected eigenenergies
are seen to form sufficiently smooth curves in Figs. 50 and 51. The parameter fit
results in nearly the same phase shifts (Fig. 51) as in the case of the manual eigen-
state selection, we get also very close values of the resonance energy and width and
fitting parameters listed in Table 5. Figure 49 demonstrates that by using only 10

0 10 20
E

cm
 [MeV]

0

30

60

δ 1 [
de

gr
ee

s]

Exp.
Fit exp.
N

max
 = 2

            4
SS-HORSE
Manual sel.

nα, 1/2
-

JISP16
Nmax ≤ 4

Figure 48: The 1
2

−
nα phase shifts generated by the selected 5He eigenstates E0

obtained in NCSM with Nmax ≤ 4. The dash-dotted curve depicts the phase shifts
obtained by the fit to all manually selected eigenstates. See Fig. 31 for other details.
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Figure 49: Selection of the lowest 5He 1
2

−
eigenstates E0 obtained in NCSM with

4 ≤ Nmax ≤ 6. See Fig. 27 for details.
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Figure 50: Selected lowest 5He 1
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−
eigenstates E0 obtained in NCSM with

4 ≤ Nmax ≤ 6 as a function of the scaling parameter s. See Fig. 5 for other details.
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nα phase shifts generated by the selected 5He eigenstates E0

obtained in NCSM with 4 ≤ Nmax ≤ 6. See Fig. 31 for details.
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small-Nmax eigenstates from the shaded area we accurately ‘predict’ the energies of
many higher-Nmax eigenstates: the rms deviation Ξ of energies of all 60 manually
selected eigenstates is 92 keV (see Table 5). Of course, 92 keV is much larger than
the Ξ value of 11 keV obtained in the full fit to all these 60 eigenenergies, but it is still
an indication of a good quality ‘prediction’ of many-body eigenenergies E0 obtained
with much larger bases in a wide range of ~Ω values.

4.3 Partial wave 1

2

+

In this subsection we examine a possibility to describe neutron-nucleus non-resonant
scattering using as input for the SS-HORSE analysis the results of many-body shell
model calculations. The SS-HORSE fit is done in the same manner as in the case of
resonant scattering. The difference is that the non-resonant low-energy nα scattering

phase shifts in the 1
2

+
state are described by Eq. (52) instead of Eq. (53) which

parameters are fitted using Eq. (59) instead of Eq. (56). The parameter Eb of this
equation mimics the Pauli-forbidden state in the nα scattering. As compared with

the discussion of the 1
2

+
scattering by the model WSB potential which supports the

Pauli-forbidden state, this bound state does not appear as a result of the NCSM
5He calculations. Therefore we should use for the SS-HORSE fit the lowest 1

2

+
state

obtained by the NCSM with the eigenenergy E0 and set ν = 0 in Eq. (59).

These lowest 1
2

+ 5He eigenstates E0 are shown as functions of ~Ω for various Nmax

in Fig. 52 and as a function of the scaling parameter s in Fig. 53. We see a tendency of
eigenstates to approach the common curve at smaller ~Ω values with increasing Nmax

which signals that the convergence is achieved at smaller energies in larger basis
spaces. This tendency is much more pronounced in the plot of the SS-HORSE phase
shifts corresponding to the NCSM eigenstates in Fig. 54. This figure however also
clearly indicates the need to select eigenstates for the SS-HORSE fitting.

We start with selecting eigenstates according to the inequality Λ > 600 MeV/c
as is illustrated by Figs. 52 and 55, the respective phase shifts are shown in Fig. 56,
and the obtained fitting parameters are presented in Table 6. We obtain a reason-
able accuracy of the fit with the rms deviation of the fitted energies of 85 keV. We
reproduce reasonably the phase shift behaviour by the JISP16 NN interaction. We
note that at energies Ecm > 25 MeV the fit by Eq. (52) of the results of the phase

shift analysis start going up with the energy. This seems unphysical, however the 1
2

+
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Figure 52: The lowest 5He 1
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+
eigenstates E0 as functions of ~Ω and their Λ >

600 MeV/c selection. See Fig. 18 for details.
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Figure 53: The lowest 5He 1
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eigenstates E0 as a function of the scaling parameter s.

0 10 20 30 40
E

cm
 [MeV]

60

90

120

150

180

δ 0 [
de

gr
ee

s]

Exp.
N

max
= 3

           5
           7
           9
         11
         13
         15
         17

nα, 1/2
+

Figure 54: The 1
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nα phase shifts obtained directly from the 5He eigenstates E0

using Eq. (19). See Fig. 29 for other details.

Table 6: 1
2

+
nα scattering from the 5He NCSM calculations with JISP16 NN interac-

tion: fitting parameters Eb, c, d and f of Eq. (59), rms deviation of fitted energies Ξ
and the number of these fitted energies D for different selections of eigenvalues in
comparison with the fit by Eq. (52) of the phase shifts δ0 extracted from experimen-
tal data in Ref. [47]. For the 5 ≤ Nmax ≤ 7 selection, Ξ and D for all energies from
the manual selection are shown within brackets.

Selection
Eb c d · 103 f · 105 Ξ

D
(MeV) (MeV− 1

2 ) (MeV− 3

2 ) (MeV− 5

2 ) (keV)

Λ > 600 MeV/c −5.996 −0.171 −8.02 6.48 85 41
Manual −6.733 −0.183 −13.0 30.8 120 53

5 ≤ Nmax ≤ 7 −3.347 −0.151 63.0 −86.7 168(259) 13(53)

Fit δ0 of Ref. [47] −13.75 −0.156 −429 220 0.018◦ 26
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Figure 55: The 5He 1
2

+
eigenstates E0 selected according to Λ > 600 MeV/c as a

function of the scaling parameter s. See Fig. 21 for other details.

phases extracted from the nα scattering data are available only up to Ecm = 20 MeV;
the phase shift analysis at higher energies is needed to obtain a more realistic fit in
this energy interval where the NCSM-SS-HORSE phase shifts look more realistic.

Figure 52 demonstrates that it would be reasonable to perform a manual selection
and to include in the fit more eigenstates thus extending the energy interval of the

fitted phase shifts. Our manual selection of the lowest 1
2

+ 5He eigenstates and the
respective phase shifts are presented in Figs. 57, 58, 59 and Table 6. Some of the
fitting parameters are profoundly altered due to the inclusion of additional eigenstates
in the fit, however the resulting phase shifts are nearly the same with an exception
of the energies Ecm > 30 MeV where these additional eigenstates push the phase
shifts slightly up. The phase shift analysis is unavailable at these energies, therefore
it is impossible to judge whether this adjustment of the phase shifts improves the
description of the experiment.
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Figure 56: The 1
2

+
nα phase shifts generated by the Λ > 600 MeV/c selected 5He

eigenstates E0 (symbols). The solid curve depicts the phase shifts of Eq. (52) with
parameters Eb, c, d and f obtained by the fit with this selection of eigenstates; stars
and the dashed curve depict the phase shift analysis of experimental data of Refs. [47]
and the fit by Eq. (52).
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Figure 57: Manual selection the lowest 5He 1
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eigenstates E0. See Fig. 18 for details.
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Figure 58: Manually selected 5He 1
2

+
eigenstates E0 plotted as a function of the

scaling parameter s (symbols). See Fig. 21 for details.
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Figure 59: The 1
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+
nα phase shifts generated by the manually selected 5He eigen-

states E0. See Fig. 56 for details.
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Figure 60: Selection of the lowest 5He 1
2

+
eigenstates E0 obtained in NCSM with

5 ≤ Nmax ≤ 7. See Fig. 18 for details.

It is interesting and important to examine the possibility of describing the eigenen-
ergies and non-resonant phase shifts obtained in many-body calculations in large basis
spaces by SS-HORSE fits based on results in much smaller basis spaces. As in the

case of 1
2

−
states, we do not succeed by choosing the eigenstates from the smallest

available NCSM basis spaces with Nmax = 3 and 5: note, in both cases the results

from the smallest basis space with Nmax = 2 for 1
2

−
and Nmax = 3 for 1

2

+
states

are not included in our respective manual selections. However picking up eigenstates

obtained with 5 ≤ Nmax ≤ 7 from the manual selection of the 5He 1
2

+
eigenstates, we

obtain reasonable phase shifts and ‘predictions’ for the eigenstates with larger Nmax,
see Figs. 60, 61 and 62. It is interesting that we get similar phase shifts with three dif-

ferent selections of the 1
2

+
eigenstates while the respective fitting parameters shown in

Table 6 differ essentially. The rms deviation of all 53 manually selected 1
2

+
eigenstates

resulting from the fit to 13 eigenstates from the 5 ≤ Nmax ≤ 7 selection is 259 keV
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Figure 61: Selected lowest 5He 1
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+
eigenstates E0 obtained in NCSM with

5 ≤ Nmax ≤ 7 as a function of the scaling parameter s. See Fig. 21 for details.
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Figure 62: The 1
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+
nα phase shifts generated by the selected 5He eigenstates E0

obtained in NCSM with 5 ≤ Nmax ≤ 7. See Fig. 56 for details.

that is much worse than the ‘predictions’ of the odd parity eigenstates. We suppose

that this is related to the fact that the 1
2

+
eigenstates lie higher in energy than the

3
2

−
and 1

2

−
eigenstates and the SS-HORSE fits, especially those to the small-Nmax

eigenstates, involve the phase shifts at higher energies where our low-energy phase
shift expansions become less accurate and require higher order terms in Taylor series
and more fitting parameters.

5 Conclusions

We develop a SS-HORSE approach allowing us to obtain low-energy scattering phase
shifts and resonance energy and width in variational calculations with the oscillator
basis, in the nuclear shell model in particular. The SS-HORSE technique is based on
the general properties of the oscillator basis and on the HORSE (J-matrix) formalism
in scattering theory, it utilizes general low-energy expansions of the S-matrix including
the poles associated with the bound and resonant states.

The SS-HORSE approach is carefully verified using a model two-body problem
with a Woods–Saxon type potential and is shown to be able to obtain accurate scat-
tering phase shifts and resonance energy and width even with small oscillator bases.
Next the SS-HORSE method is successfully applied to the study of the nα scatter-
ing phases and resonance based on the NCSM calculations of 5He with the realistic
JISP16 NN interaction.

Within the SS-HORSE approach we obtain and generalize to the states lying above
nuclear disintegration thresholds the scaling property of variational calculations with
oscillator basis suggested in Refs. [2, 3] which states that the eigenenergies do not
depend separately on ~Ω and the maximal oscillator quanta N of the states included
in the basis but only on their combination s (or the scaling parameter λsc as sug-
gested in Refs. [2, 3], s ∼ λ2

sc). We demonstrate a typical behavior of eigenstates
in the continuum as functions of s in cases when the system has or does not have
a low-energy resonance. The scaling property is useful for extrapolating the results
obtained in smaller basis spaces to larger bases, and we demonstrate using both the
model problem and many-body NCSM calculations that we are able to ‘predict’ ac-
curately the eigenenergies obtained in large bases using the results from much smaller
calculations.
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We anticipate that the suggested SS-HORSE method will be useful in numerous
shell model studies of low-energy nuclear resonances.

We plan to extend the SS-HORSE approach to the case of scattering of charged
particles in future publications. We intend also to examine an application of the SS-
HORSE method to the study of S-matrix poles corresponding to bound states and to
develop the SS-HORSE extrapolation of the variational bound state energies to the
infinite basis space.
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061301(R) (2015).

[13] S. A. Coon and M. K. G. Kruse, Int. J. Mod. Phys. E 25, 1641011 (2016).



228 A. I. Mazur, A. M. Shirokov, I. A. Mazur and J. P. Vary

[14] A. M. Shirokov, A. I. Mazur, J. P. Vary and E. A. Mazur, Phys. Rev. C 79,
014610 (2009).

[15] A. M. Shirokov, A. I. Mazur, E. A. Mazur and J. P. Vary, Appl. Math. Inf. Sci.
3, 245 (2009).

[16] J. Rotureau, in Proc. Int. Conf. Nucl. Theor. Supercomputing Era (NTSE-
2013), Ames, IA, USA, May 13–17, 2013. eds. A. M. Shirokov and
A. I. Mazur. Pacific National University, Khabarovsk, 2014, p. 236,
http://www.ntse-2013.khb.ru/Proc/Rotureau.pdf.

[17] G. Papadimitriou, J. Rotureau, N. Michel, M. P loszajczak and B. R. Barrett,
Phys. Rev. C 88, 044318 (2013).
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