
Electromagnetic deuteron form factors

in point form relativistic quantum mechanics

N. A. Khokhlov

Komsomolsk-na-Amure State Technical University

Abstract

A study of electromagnetic structure of the deuteron in the framework of
relativistic quantum mechanics is presented. The deuteron form factors depen-
dencies on the transferred 4-momentum Q up to 7.5 fm−1 are calculated. We
compare results obtained with different realistic deuteron wave functions stem-
ming from Nijmegen-I, Nijmegen-II, JISP16, CD-Bonn, Paris and Moscow (with
forbidden states) potentials. A nucleon form factor parametrization consistent
with modern experimental analysis was used as an input data.
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1 Introduction

Elastic ed scattering observables are directly expressed within the Born approxima-
tion of one-photon exchange mechanism through electromagnetic (EM) deuteron form
factors (FFs) [1–3]. Therefore this process allows to extract the EM FF dependencies
on the transferred 4-momentum Q in the space-like region. Relativistic effects may
be essential even at low Q [2, 3]. There are different relativistic models of deuteron
EM FFs [4–8].

We apply the point-form (PF) relativistic quantum mechanics (RQM) to the elas-
tic electron-deuteron scattering in a Poincaré-invariant way. The RQM concepts and
an exhaustive bibliography are presented in the review by Keister and Polyzou [9].
The PF is one of the three forms of RQM proposed by Dirac [10]. The other two are
the instant and front forms. These forms are associated with different subgroups of
the Poincaré group which may be free of interactions. A general method of allowing
for interactions in generators of the Poincaré group was derived in Ref. [11]. It was
shown that all the forms are unitary equivalent [12]. Though each form has certain
advantages, there are important simplifying features of the PF [13]. In the PF, all
generators of the homogeneous Lorentz group (space-time rotations) are free of inter-
actions. Therefore the spectator approximation (SA) preserves its spectator character
in any reference frame (r. f.) only in the PF [14–16]. In the case of electromagnetic
NN process, it means that the NN interaction does not affect the photon-nucleon
interaction and therefore the sum of one-particle EM current operators is invariant
under transformations from one r. f. to another. Two equivalent SAs for EM current
operator of a composite system in PF RQM were derived in Refs. [13,15]. The PF SA
was applied to calculation of deuteron, pion and nucleon EM FFs [7,17–21] providing
reasonable results.

The present paper is an extension of our previous investigations where we have
described the elastic NN scattering up to laboratory energy of 3 GeV [22], brems-
strahlung in pp scattering pp → ppγ [23], deuteron photodisintegration γD → np
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[24–26] and exclusive deuteron electrodisintegration [27]. Here we demonstrate that
the developed approach is applicable to the elastic eD scattering.

2 Potential model in PF of RQM

A system of two particles is described within PF RQM by the wave function which
is an eigenfunction of the mass operator M̂ . We may represent this wave function
as a product of external and internal parts. The internal wave function |χ〉 is also
an eigenfunction of the mass operator and for a system of two nucleons with masses
m1 ≈ m2 ≈ m = 2m1m2/(m1 +m2) satisfies the equation

M̂ |χ〉 ≡
[

2
√

q2 +m2 + Vint

]

|χ〉 = M |χ〉, (1)

where Vint is an operator commuting with the full angular momentum operator and
acting on internal variables (spins and relative momentum) only, q is a momentum
operator of one of particles in the center of mass (c. m.) frame (relative momentum),
M̂ is a system mass operator and M is its eigenvalue. Here we adopt a natural system
of units with ~ = c = 1. A rearrangement of Eq. (1) gives

[

q2 +mV
]

|χ〉 = q2|χ〉, (2)

where the operator

mV =
1

4

(

2
√

q2 +m2Vint + 2Vint

√

q2 +m2 + V 2
int

)

, (3)

as well as Vint, acts on internal variables only, and the eigenvalue of the operator
q2 +mV is

q2 =
M2

4
−m2. (4)

Equation (2) is identical in form to a Schrödinger equation. Relativistic corrections
affect the deuteron binding energy ε only and may be easily accounted for by replacing
the experimental deuteron binding of 2.2246 MeV by an effective value of 2.2233 MeV.
The origin of this relativistic correction is easy to understand [28–30]. Clearly,

M = 2m− ε, (5)

and hence Eq. (4) can be rewritten as

q2 = −mε
(

1− ε

4m

)

. (6)

Comparing Eq. (6) with the nonrelativistic relation

q2 = −mε, (7)

one identifies the factor
(

1− ε
4m

)

as a relativistic correction to the deuteron binding
energy. It is interesting and important to note that there is no similar correction in
the scattering domain since q2 = mElab/2 is a precise relativistic relationship (Elab

is the laboratory energy) used in the partial wave analysis [28].

The difference between the experimental and effective deuteron binding energies
is negligible for our problem. Therefore, due to the formal identity between Eq. (2)
and Schrödinger equation, we can use non-relativistic deuteron wave functions in our
calculations.
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3 eD elastic scattering

We sketch here some PF RQM results needed for our calculations. We use formalism
and notations of Ref. [15].

We consider the pn system and neglect the difference between neutron and proton
masses. Let pi be the 4-momentum of nucleon i, P ≡ (P 0,P) = p1 + p2 is the system
4-momentum, M is the system mass and G = P/M is the system 4-velocity. The
wave function of two particles with 4-momentum P is expressed through a tensor
product of external and internal parts,

|P, χ〉 = U12 |P 〉 ⊗ |χ〉, (8)

where the internal wave function |χ〉 fits Eqs. (1)–(2). The unitary operator

U12 = U12(G,q) =

2
∏

i=1

D[si;α(pi/m)−1α(G)α(qi/m)] (9)

relates the “internal” Hilbert space with the Hilbert space of two-particle states [15].
D[s;u] is a SU(2) operator corresponding to the element u ∈ SU(2), s are the SU(2)
generators. In our case of spin s = 1/2 particles, we deal with the fundamental rep-
resentation, i. e., si ≡ 1

2
σi [σ = (σx, σy, σz) are the Pauli matrices] and D[s;u] ≡ u.

Matrix α(g) = (g0 + 1 + σ · g)/
√

2(g0 + 1) corresponds to a 4-velocity g. The mo-
menta of particles in their c.m. frame are

qi = L[α(G)]−1pi, (10)

where L[α(G)] is the Lorentz boost to the frame moving with 4-velocity G.
The “external” part of the wave function is defined as

〈G|P ′〉 ≡ 2

M ′
G

′
0 δ3(G−G′). (11)

Its scalar product is

〈P ′′|P ′〉 =
∫

d3G

2G0
〈P ′′|G〉〈G|P ′〉 = 2

√

M ′2 +P
′2 δ3(P′′ −P′), (12)

where G0(G) ≡
√
1 +G2. The internal part |χ〉 is characterized by momentum

q = q1 = −q2 of one of the particles in the c.m. frame.
According to the Bakamjian—Thomas procedure [11], the 4-momentum P̂ = ĜM̂

incorporates the interaction Vint, where M̂ is the sum of the free mass operator Mfree

and interaction, M̂ = Mfree+Vint [see Eq. (1)]. The interaction operator acts only on

internal variables. The operators Vint and V (and therefore M̂ and Mfree) commute

with S, the spin (full angular momentum) operator, and Ĝ, the 4-velocity operator.
The generators of space-time rotations are interaction-free. Most of formal non-
relativistic scattering theory results are valid in the case of two relativistic particles [9].
For example, the relative orbital angular momentum and spins are coupled in the c.m.
frame in the same manner as in the non-relativistic case.

The deuteron wave function |Pi, χi〉 is normalized,

〈Pf , χf |Pi, χi〉 = 2P 0
i δ3(Pi −Pf )〈χf |χi〉. (13)

There is a convenient r. f. for calculation of current operator matrix elements [15]
(it coincides with the Breit r. f. in the case of elastic ed scattering). This r. f. is defined
by the following condition for all EM reactions with two nucleons:

Gf +Gi = 0, (14)
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whereGf = Pf/MD, Gi = Pi/MD are the final and initial 4-velocities of the deuteron
and MD is its mass. The matrix element of the current operator is [15]

〈Pf , χf |Ĵµ(x)|Pi, χi〉 = 2(MfMi)
1/2 exp(ı(Pf − Pi)x)〈χf |ĵµ(h)|χi〉, (15)

where ĵµ(h) defines action of current operator in the internal space of the NN system,

h =
2(MiMf )

1/2

(Mi +Mf )2
k =

k

2MD
(16)

is the vector-parameter [15] (0 ≤ h ≤ 1), k is the momentum of photon in the r. f.
defined by Eq. (14), Mi = Mf = MD are the masses of the initial and final NN
system (deuteron).

The internal deuteron wave function is

|χi〉 =
1

r

∑

l=0,2

ul(r)|l, 1; J = 1MJ〉r; (17)

it is normalized: 〈χi|χi〉 = 1. We use the momentum space wave function

|χi〉 =
1

q

∑

l=0,2

ul(q) |l, 1; 1MJ〉q, (18)

where

u(q) ≡ u0(q) =

√

2

π

∫

dr sin(qr)u(r), (19)

w(q) ≡ u2(q) =

√

2

π

∫

dr

[(

3

(qr)2
− 1

)

sin(qr) − 3

qr
cos(qr)

]

w(r). (20)

Transformations from the Breit r. f. (14) to the initial and final c. m. frame of the
NN system are the boosts along vector h (axis z). Projection of the total deuteron
angular momentum onto z axis are unaffected by these boosts. The initial deuteron
moves in the Breit r. f. in the direction opposite to h. Its internal wave function with
the spirality Λi is

|Λi〉 =
1

q

∑

l=0,2

ul(q) |l, 1; 1,MJ = −Λi〉. (21)

The wave function of the final deuteron with the spirality Λf is

|Λf〉 =
1

q

∑

l=0,2

ul(q) |l, 1; 1,MJ = Λf 〉. (22)

A conventional parametrization of the deuteron (spin-1 particle) EM current op-
erator (CO) matrix element is [2, 3, 31]:

(4P 0
i P

0
f )

1/2〈Pf , χf |Jµ|Pi, χi〉

= −
{

G1(Q
2) (ξ∗f · ξi)−G3(Q

2)
(ξ∗f ·∆P )(ξi ·∆P )

2M2
D

}

(Pµ
i + Pµ

f )

−G2(Q
2) [ξµi (ξ∗f ·∆ P)− ξ∗µf (ξi ·∆P)], (23)

where (a · b) = a0b0 − (a · b), form factors Gi(Q
2), i = 1, 2, 3, are the functions

of Q2 = −∆P 2, ∆P = Pf − Pi.
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In the Breit r. f. Pf = −Pi, P
0
i = P 0

f ≡ P 0 = MD/
√
1− h2, ∆P = (0, 2Pf ),

Pµ
i + Pµ

f = (2P 0,0), Pf/P
0 = h, Pf = hMD/

√
1− h2, ∆P 2 = −4h2M2

D/(1− h2),

Q2 ≡ −∆P 2, h2 = (h · h),

〈χf |j0(h)|χi〉 = −G1(Q
2)(ξ′∗ · ξ) + 2G3(Q

2)
(ξ∗f · h)(ξi · h)

1− h2

+G2(Q
2)[ξ0i (ξ

∗

f · h)− ξ0∗f (ξi · h)], (24)

〈χf |j(h)|χi〉 = G2(Q
2)[ξi(ξ

∗

f · h)− ξ∗f (ξi · h)] = G2(Q
2)[h× [ξi × ξ∗f ]]. (25)

It has been shown [15] that these expressions are equivalent to choosing jν as

j0(h) = GC(Q
2) +

2

(1− h2)
GQ(Q

2)

[

2

3
h2 − (h · J)2

]

, (26)

j(h) = − ı√
1− h2

GM (Q2) (h× J), (27)

where J is the total angular momentum (spin) of the deuteron; GC , GQ and GM are
its charge monopole, charge quadruple and magnetic dipole FFs.

Spiral deuteron polarizations in the initial and final states are

ξΛi =

{

(0,±1,−ı, 0)/
√
2 (Λ = ±),

(−Q/2, 0, 0, P0)/MD = (−h, 0, 0, 1)/
√
1− h2 (Λ = 0),

(28)

ξΛf =

{

(0,∓1,−ı, 0)/
√
2 (Λ = ±),

(Q/2, 0, 0, P0)/MD = (h, 0, 0, 1)/
√
1− h2 (Λ = 0).

(29)

A virtual photon polarization is

ǫλ =

{

(0,∓1,−ı, 0)/
√
2 (λ = ±),

(1, 0, 0, 0) (λ = 0).
(30)

FFs Gi are expressed as

GC = G1 +
2

3
ηGQ,

GQ = G1 −GM + (1 + η)G3,

G1 = GC − 2h2

3(1− h2)
GQ,

G3 = GQ

(

1− h2

3

)

−GC(1− h2) +GM (1− h2),

(31)

where η = Q2/4M2
D = h2/(1−h2). Supposing Q2 = 0, we have GQ = G1 −GM +G3

and GC = G1. Form factors GC(0) = e, GM (0) = µDe/2MD and GQ = QDe/M2
D

provide deuteron charge, magnetic and quadruple momenta respectively.
Denoting helicity amplitudes as jλΛfΛi

≡ 〈Λf |
(

ǫλµ · jµ(h)
)

|Λi〉, we arrive at

j000(Q
2) = GC +

4

3

h2

1− h2
GQ, (32)

j0+−(Q
2) = j0−+(Q

2) = GC − 2

3

h2

1− h2
GQ, (33)

j++0(Q
2) + j+0−(Q

2)

2
= − h√

1− h2
GM (34)

and
j++0(Q

2) = j−
−0(Q

2) ≈ j+0−(Q
2) = j−0+(Q

2). (35)
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The deuteron FFs are associated with unpolarized structure functions [32]:

A(Q2) = G2
C(Q

2) +
2

3
η G2

M (Q2), (36)

B(Q2) =
4

3
η (1 + η)G2

M (Q2). (37)

These quantities are extracted from the elastic eD scattering with unpolarized par-
ticles. A tensor polarization observable t20(Q

2, θ) is conventionally used as an addi-
tional quantity needed for definition of all three FFs.

In the present paper, we use the EM CO obtained within SA in Ref. [15] without
expanding it in powers of h and calculate its matrix elements in the momentum
space. Therefore we use the following expansion of ĵµ(h) ≈ ĵµSA(h) [27] for the
matrix element calculations:

ĵµSA(h) =
(

1 + (A2 · s2)
)(

Bµ
1 + (Cµ

1 · s1)
)

I1(h)

+
(

1 + (A1 · s1)
)(

Bµ
2 + (Cµ

2 · s2)
)

I2(h), (38)

where Ai, B
µ
i and C

µ
i are some vector functions of h and q(q, θ, φ). In the spherical

coordinate system (q, θ, φ), the dependence of these functions on φ appears as e±imφ

(m = 0, 1, 2). The angle φ is analytically integrated out giving trivial equalities (35).

4 Results

In our calculations, we use as an input momentum space deuteron wave functions
and nucleon EM FFs. The momentum space deuteron wave functions stemming from
Nijmegen-I (NijmI), Nijmegen-I (NijmII) [33], JISP16 [34], CD-Bonn [29], Paris [35],
Argonne18 [30] (the momentum space deuteron wave function is grabbed from
Ref. [36]) and Moscow (with forbidden states) [22] potentials are shown in Figs. 1. We
use two versions of Moscow type potential: Moscow06 [22] and Moscow14. The latter
one was obtained by the author in the same manner outlined in Ref. [22] but with
deuteron asymptotic constants fitted to describe static deuteron form factors. Pa-
rameters of both Moscow potentials may be obtained upon request from the author
(e-mail: nikolakhokhlov@yandex.ru). The S wave functions of all potentials but
JISP16 change sign at q ≈ 2 fm−1, andD wave functions change sign at q ≈ 6−8 fm−1.
The S and D wave functions of Argonne18, Paris and NijmII are close at q . 5 fm−1.
The S wave functions of CD-Bonn and NijmI are close at q . 5 fm−1. The JISP16
wave functions decrease rapidly at q larger than approximately 2 fm−1 without chang-
ing sign.

Our results for deuteron EM FFs are presented in Table 1 and in Figs. 2, 3, 4. The
results for Argonne18, Paris and NijmII are close manifesting the closeness of their
wave functions at q . 5 fm−1. NijmI and CD-Bonn provide more distinct results.
Our calculations demonstrate that GM obtained with all potentials changes sign at
rather low Q that is not seen experimentally. Nevertheless CD-Bonn and NijmI result
in a reasonable description of GM at Q < 7 fm. Moscow potentials provide the best
description of charge form factor GC .

An essential factor affecting our calculations is the nucleon FF dependency on the
momentum transferred to the individual nucleon, Q2

p ≈ Q2
n 6= Q2. These FFs have

been measured at discrete values of Q2
i=p,n while we need a continuous dependency

on Qi. In our calculations, we utilize phenomenological nucleon FF dependencies
on Q2

i of Ref. [54]. It should be noted that the neutron EM FFs are extracted from

experimental data on 2~H(~e, e′n)p and other processes with deuteron and triton using
various models of mechanism of these possesses and nuclei. Therefore these FFs are
model dependent.
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Figure 1: Momentum space deuteron wave functions used in calculations.

Table 1: Static deuteron form factors. The results of relativistic (nonrelativistic)
calculations are given before (after) slash.

GM (0) = Md

mp
µd GQ(0) = M2

dQd

Exp 1.7148 25.83
NijmI 1.697/1.695 24.8/24.6
NijmII 1.700/1.695 24.7/24.5
Paris 1.696/1.694 25.6/25.2

CD-Bonn 1.708/1.704 24.8/24.4
Argonne18 1.696/1.694 24.7/24.4
JISP16 1.720/1.714 26.3/26.1

Moscow06 1.711/1.699 24.5/24.2
Moscow14 1.716/1.700 26.0/25.8
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Figure 2: Deuteron form factor GC as a function of Q. Experimental points are from
compilation [3] where they were calculated using data for A, B and t20 obtained in
Refs. [37–53].

We see a good overall agreement between the theory and experiment atQ < 5 fm−1.
Discrepancies at larger Q are comparable with differences of results for different po-
tentials. Model calculations [55] show that meson exchange currents may provide
a significant contribution to EM processes in the np-system. We do not take into
account these currents. However it is not clear how these currents can be derived
consistently with the short-range NN interaction of the QCD origin. In addition, the
EM FFs of nucleons are not described by meson degrees of freedom at intermediate
and high energies [56].

To complete this line of our investigation, we plan to calculate neutron EM FFs
compatible with Moscow potential model which has not been used for the extraction
of these FFs.

Figure 3: Deuteron form factor GQ as a function of Q. See Fig. 2 for details.
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Figure 4: Deuteron form factor GM as a function of Q. See Fig. 2 for details.
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Phys. Lett. B 101, 139 (1981).

[36] S. Veerasamy and W. N. Polyzou, Phys. Rev. C 84, 034003 (2011).

[37] J. E. Elias, J. I. Friedman, G. C. Hartmann, H. W. Kendall, P. N. Kirk,
M. R. Sogard, L. P. Van Speybroeck and J. K. De Pagter, Phys. Rev. 177,
2075 (1969).

[38] R. G. Arnold, B. T. Chertok, E. B. Dally, A. Grigorian, C. L. Jordan,
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