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Abstract

During the past two decades, chiral effective field theory has become a pop-
ular tool to derive nuclear forces from first principles. Two-, three-, and four-
nucleon forces have been calculated up to next-to-next-to-next-to-leading order
(N3LO) and (partially) applied in nuclear few- and many-body systems — with,
in general, a good deal of success. But in spite of these achievements, we are
still faced with some great challenges. Among them is the issue of a proper
renormalization of the two-nucleon potential, which is highly controversial in
the community. Another issue are the subleading many-body forces, where we
are faced with an “explosion” of the number of terms with increasing order that
no practitioner can ever handle. I will comment on the current status and will
provide hints for how to deal with it.
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1 Introduction

The problem of a proper derivation of nuclear forces is as old as nuclear physics itself,
namely, almost 80 years [1]. The modern view is that, since the nuclear force is a
manifestation of strong interactions, any serious derivation has to start from quantum
chromodynamics (QCD). However, the well-known problem with QCD is that it is
non-perturbative in the low-energy regime characteristic for nuclear physics. For
many years this fact was perceived as the great obstacle for a derivation of nuclear
forces from QCD — impossible to overcome except by lattice QCD.

The effective field theory (EFT) concept has shown the way out of this dilemma.
For the development of an EFT, it is crucial to identify a separation of scales. In the
hadron spectrum, a large gap between the masses of the pions and the masses of the
vector mesons, like ρ(770) and ω(782), can clearly be identified. Thus, it is natural
to assume that the pion mass sets the soft scale, Q ∼ mπ, and the rho mass the hard
scale, Λχ ∼ mρ ∼ 1 GeV, also known as the chiral-symmetry breaking scale. This is
suggestive of considering a low-energy expansion arranged in terms of the soft scale
over the hard scale, (Q/Λχ)ν , where Q is generic for an external momentum (nucleon
three-momentum or pion four-momentum) or a pion mass. The appropriate degrees of
freedom are, obviously, pions and nucleons, and not quarks and gluons. To make sure
that this EFT is not just another phenomenology, it must have a firm link with QCD.
The link is established by having the EFT to observe all relevant symmetries of the
underlying theory, in particular, the broken chiral symmetry of low-energy QCD [2].

The early applications of chiral perturbation theory (ChPT) focused on systems
like ππ and πN , where the Goldstone-boson character of the pion guarantees that the
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expansion converges. But the past 20 years have also seen great progress in applying
ChPT to nuclear forces (see Refs. [3,4] for recent reviews and find comprehensive lists
of references therein). As a result, nucleon-nucleon (NN) potentials of high precision
have been constructed, which are based upon ChPT carried to next-to-next-to-next-
to-leading order (N3LO) [5,6], and applied in nuclear structure calculations with great
success.

However, in spite of this progress, we are not done. Due to the complexity of the
nuclear force issue, there are still many subtle and not so subtle open problems. We
will not list and discuss all of them, but just mention two, which we perceive as the
most important ones:

• The proper renormalization of chiral nuclear potentials and

• Subleading chiral few-nucleon forces.

I discussed the renormalization issue in my contribution to the NTSE-2013 [7], where
the interested reader will also find a broad introduction into the topic of nuclear
interactions. In this contribution, I will focus on nuclear many-body forces.

2 The chiral NN potential

In terms of naive dimensional analysis or “Weinberg counting”, the various orders of
the low-energy expansion which define the chiral NN potential, are given by:
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(0)
ct + V

(0)
1π , (1)

VNLO = VLO + V
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(2)
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(4)
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where the superscript denotes the order ν of the expansion. LO stands for leading
order, NLO for next-to-leading order, etc. Contact potentials carry the subscript “ct”
and pion-exchange potentials can be identified by an obvious subscript.

NN potentials have been constructed at all of the above orders, and it has been
shown [5] that at N3LO the precision is finally achieved, which is necessary and
sufficient for reliable applications in ab initio nuclear structure calculations. Thus,
the NN problem appears to be under control, at least for the time being.

3 Nuclear many-body forces

The chiral two-nucleon force (2NF) at N3LO has been applied in microscopic cal-
culations of nuclear structure with, in general, a great deal of success. However,
from high-precision studies conducted in the 1990s, it is well-known that certain few-
nucleon reactions and nuclear structure issues require three-nucleon forces (3NFs) for
their microscopic explanation. Outstanding examples are the Ay puzzle of N -d scat-
tering and the ground state of 10B. An important advantage of the EFT approach to
nuclear forces is that it creates two- and many-nucleon forces on an equal footing. In
this section, I will now explain in some detail those chiral three- and four-nucleon
forces.

3.1 Three-nucleon forces

The order of a 3NF is given by

ν = 2 + 2L +
∑

i

∆i , (5)
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Figure 1: The three-nucleon force at NNLO. From left to right: 2PE, 1PE, and
contact diagrams. Solid lines represent nucleons and dashed lines pions. Small solid
dots denote vertices of index ∆i = 0 and large solid dots are ∆i = 1.

where L denotes the number of loops and ∆i is the vertex index. We will use this
formula to analyze 3NF contributions order by order.

3.1.1 Next-to-leading order.

The lowest possible power is obviously ν = 2 (NLO), which is obtained for no loops
(L = 0) and only leading vertices (

∑
i ∆i = 0). As it turns out, the contribution from

these NLO diagrams vanishes. So, the bottom line is that there is no genuine 3NF at
NLO. The first non-vanishing 3NF appears at NNLO.

3.1.2 Next-to-next-to-leading order.

The power ν = 3 (NNLO) is obtained when there are no loops (L = 0) and
∑

i ∆i = 1;
i.e., ∆i = 1 for one vertex while ∆i = 0 for all other vertices. There are three
topologies which fulfill this condition, known as the two-pion exchange (2PE), one-
pion exchange (1PE), and contact graphs (Fig. 1).

The 1PE and contact 3NF terms involve each a new parameter, which are com-
monly denoted by D and E and which do not appear in the 2N problem. There are
many ways to pin these two parameters down. The triton binding energy and the nd
doublet scattering length 2and have been used for this purpose. But one may also
choose the binding energies of 3H and 4He, an optimal over-all fit of the properties
of light nuclei, or electroweak processes like the tritium β decay. Once D and E are
fixed, the results for other 3N, 4N, etc. observables are predictions.

The 3NF at NNLO has been applied in calculations of few-nucleon reactions, struc-
ture of light- and medium-mass nuclei [8,9], and nuclear and neutron matter [10–12]
with a good deal of success. Yet, the famous ‘Ay puzzle’ of nucleon-deuteron scattering
is not resolved. When only 2NFs are applied, the analyzing power in p-3He scattering
is even more underpredicted than in p-d. However, when the NNLO 3NF is added,
the p-3He Ay substantially improves (more than in p-d) [13] — but a discrepancy
remains. Furthermore, the spectra of light nuclei leave room for improvement.

To summarize, the 3NF at NNLO is a remarkable contribution: It represents
the leading many-body force within the scheme of ChPT; it includes terms that were
advocated already some 50 years ago; and it produces noticeable improvements in few-
nucleon reactions and the structure of light nuclei. But unresolved problems remain.
Moreover, in the case of the 2NF, we have pointed out that one has to proceed to N3LO
to achieve sufficient accuracy. Therefore, the 3NF at subleading order is needed for at
least two reasons: for consistency with the 2NF and to hopefully resolve outstanding
problems in microscopic nuclear structure and reactions.

3.1.3 Next-to-next-to-next-to-leading order.

At N3LO, there are loop and tree diagrams. For the loops (Fig. 2), we have L = 1 and,
therefore, all ∆i have to be zero to ensure ν = 4. Thus, these one-loop 3NF diagrams
can include only leading order vertices, the parameters of which are fixed from πN
and NN analysis. The long-range part of the chiral N3LO 3NF has been tested in
the triton [14] and in three-nucleon scattering [15] yielding only moderate effects and
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(a) (b) (c) (d) (e)

Figure 2: Leading one-loop 3NF diagrams at N3LO. We show one representative
example for each of five topologies, which are: (a) 2PE, (b) 1PE-2PE, (c) ring,
(d) contact-1PE, (e) contact-2PE. Notation as in Fig. 1.

no improvement of the Ay puzzle. The long- and short-range parts of this force have
been used in neutron matter calculations (together with the N3LO 4NF) producing
surprisingly large contributions from the 3NF [16]. Thus, the ultimate assessment
of the N3LO 3NF is still outstanding and will require more few- and many-body
applications. But we expect that, overall, the 3NF at N3LO is small and will most
likely not solve the outstanding problems.

3.1.4 The 3NF at N4LO.

Because the 3NF at N3LO is presumably small, it is necessary to move on to the
next order of 3NFs, which is N4LO or ν = 5 (of the ∆-less theory which we have
silently assumed so far). The loop contributions that occur at this order are obtained
by replacing in the N3LO loops one vertex by a ∆i = 1 vertex (with LEC ci), Fig. 3,
which is why these loops may be more sizable than the N3LO loops. The 2PE, 1PE-
2PE, and ring topologies have been evaluated [17]. Note that each diagram in Fig. 3
stands symbolically for a group of diagrams. We demonstrate this for the 1PE-2PE
topology, for which we display in Fig. 4 all diagrams for that topology. This applies
to each topology and, thus, provides an idea of the “explosion” of 3NF contributions
at subleading orders.

In addition to the loops, we have at N4LO three ‘tree’ topologies (Fig. 5), which
include a new set of 3N contact interactions, which have recently been derived by the
Pisa group [18]. Contact terms are typically simple (as compared to loop diagrams)
and their coefficients are essentially free. Therefore, it would be an attractive project
to test some terms (in particular, the spin-orbit terms) of the N4LO contact 3NF [18]
in calculations of few-body reactions (specifically, the p-d and p-3He Ay) and spectra
of light nuclei.

3.2 Four-nucleon forces

For four-nucleon forces (4NFs), the power is given by

ν = 4 + 2L +
∑

i

∆i . (6)

(a) (b) (c) (d) (e)

Figure 3: Sub-leading one-loop 3NF diagrams which appear at N4LO. We show one
representative example for each of five topologies, which are: (a) 2PE, (b) 1PE-2PE,
(c) ring, (d) contact-1PE, (e) contact-2PE. Notation as in Fig. 1.
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Figure 4: The topology (b) of Fig. 3 (1PE-2PE) in detail. Notation as in Fig. 1.

Therefore, a 4NF appears for the first time at ν = 4 (N3LO), with no loops and
only leading vertices, Fig. 6. This 4NF includes no new parameters and does not
vanish [19]. It has been applied in a calculation of the 4He binding energy, where it
was found to contribute a few 100 keV [20]. It should be noted that this preliminary
calculation involves many approximations, but it provides an idea of the order of
magnitude of the 4NF, which is indeed small as compared to the full 4He binding
energy of 28.3 MeV.

(a) (b) (c)

Figure 5: 3NF tree graphs at N4LO (ν = 5) denoted by: (a) 2PE, (b) 1PE-contact,
and (c) contact. Solid triangles represent vertices of index ∆i = 3. Other notation as
in Fig. 1.
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Figure 6: Leading four-nucleon force at N3LO.

4 Conclusions

The past 20 years have seen great progress in our understanding of nuclear forces in
terms of low-energy QCD. Key to this development was the realization that low-energy
QCD is equivalent to an effective field theory (EFT) which allows for a perturbative
expansion that has become known as chiral perturbation theory (ChPT). In this
framework, two- and many-body forces emerge on an equal footing and the empirical
fact that nuclear many-body forces are substantially weaker than the two-nucleon
force is explained naturally.

In this contribution, I have focused mainly on nuclear many-body forces based
upon chiral EFT. The 3NF at NNLO has been known for a while and applied in few-
nucleon reactions, structure of light- and medium-mass nuclei, and nuclear and neu-
tron matter with some success. However, the famous ‘Ay puzzle’ of nucleon-deuteron
scattering is not resolved by the 3NF at NNLO. Thus, one important open issue are
the few-nucleon forces beyond NNLO (“sub-leading few-nucleon forces”) which, be-
sides the Ay puzzle, may also resolve some important outstanding nuclear structure
problems. As explained, this may require going even beyond N3LO. However, as
demonstrated, with each higher order, the number of diagrams increases enormously.
Thus, practitioners are faced with the problem of how to deal with this explosion of
3NF contributions. My advice is that, for a while, one should not aim at complete
calculations at given higher orders. Rather one will have to be selective and try to
identify the more important 3NF terms in the “forrest” of diagrams. The N4LO 3NF
contact terms [Fig. 5(c)] [18] are a promising and manageable starting point.

Finally, let me note that, because of lack of space, I have discussed here only the
so-called ∆-less version of ChPT. There is also the ∆-full version (see Ref. [3] for
details), in which the number of diagrams is even larger.

This work was supported by the US Department of Energy under Grant No. DE-
FG02-03ER41270.
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