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Abstract

We overview the recent results on the shift of the spectrum and norm bounds
for variation of spectral subspaces of a Hermitian operator under an additive
Hermitian perturbation. Along with the known results, we present a new sub-
space variation bound for the generic off-diagonal subspace perturbation prob-
lem. We also demonstrate how some of the abstract results may work for few-
body Hamiltonians.
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1 Introduction

In this short survey article, we consider the problem of variation of the spectral
subspace of a Hermitian operator under an additive bounded Hermitian perturbation.
It is assumed that the spectral subspace is associated with an isolated spectral subset
and one is only concerned with the geometric approach originating in the papers by
Davis [1, 2] and Davis and Kahan [3]. In this approach, a bound on the variation
of a spectral subspace usually involves just two quantities: the distance between
the relevant spectral subsets and a norm of the perturbation operator. We discuss
only the a priori bounds, that is, the estimates that involve the distance between
complementary disjoint spectral subsets of the unperturbed operator (and none of
the perturbed spectral sets is involved). In the case where the perturbation is off-
diagonal, we also recall the bounds on the shift of the spectrum.

The paper is organized as follows. In Section 2 we collect the results that hold
for Hermitian operators of any origin. Along with the older results we present a
new bound in the general off-diagonal subspace perturbation problem that was not
published before. In Section 3 we reproduce several examples that illustrate the
meaning of the abstract results in the context of few-body bound-state problems.

In this paper we only use the usual operator norm. For convenience of the reader,
we recall that if V is a bounded linear operator on a Hilbert space H then its norm
may be computed by using the formula

‖V ‖ = sup
f∈H, ‖f‖=1

∥∥V |f〉
∥∥,

where sup denotes the least upper bound. Thus, one has
∥∥V |f〉

∥∥ ≤ ‖V ‖ ‖f‖
for any |f〉 ∈ H. If V is a Hermitian operator with min

(
spec(V )

)
= mV and
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max
(
spec(V )

)
=MV , where spec(V ) denotes the spectrum of V , then ‖V ‖ =

max{|mV |, |MV |}. In particular, if V is separable of rank one, i. e., if V = λ|φ〉〈φ|
with |φ〉 ∈ H, ‖φ‖ = 1, and λ ∈ R, then ‖V ‖ = |λ|. Another simple but important
example is related to the case where H = L2(R

n), n ∈ N, and V is a bounded local
potential, that is, 〈x|V |f〉 = V (x)f(x) for any |f〉 ∈ L2(R

n), with V (·) a bounded
function from Rn to C. In this case ‖V ‖ = sup

x∈Rn

|V (x)|.

2 Abstract results

Let A be a Hermitian (or, equivalently, self-adjoint) operator on a separable Hilbert
space H. It is well known that if V is a bounded Hermitian perturbation of A then the
spectrum of the perturbed operator H = A+ V lies in the closed ‖V ‖-neighborhood
O‖V ‖

(
spec(A)

)
of the spectrum of A (see, e. g., Ref. [4]). Hence, if a subset σ of the

spectrum of A is isolated from the remainder Σ = spec(A) \ σ, then the spectrum
of H also consists of two disjoint components,

ω = spec(H) ∩ O‖V ‖(σ) and Ω = spec(H) ∩O‖V ‖(Σ), (1)

provided that

‖V ‖ < 1

2
d, (2)

where
d := dist(σ,Σ) > 0. (3)

Under condition (2), the separated spectral components ω and Ω of the perturbed
operator H may be viewed as the result of the perturbation of the respective disjoint
spectral subsets σ and Σ of the initial operator A.

Let P and Q be the spectral projections of the operators A and H associated
with the respective spectral sets σ and ω, that is, P := EA(σ) and Q := EH(ω). The
relative position of the perturbed spectral subspace Q := Ran(Q) with respect to
the unperturbed one, P := Ran(P ), may be studied in terms of the difference P −Q
and, in fact, the case where ‖P − Q‖ < 1 is of particular interest. In this case the
spectral projections P and Q are unitarily equivalent and the transformation from
the subspace P to the subspace Q may be viewed as the direct rotation (see, e. g.,
Sections 3 and 4 in Ref. [3]). Furthermore, one can use the quantity

θ(P,Q) = arcsin(‖P −Q‖),

as a measure of this rotation. This quantity is called the maximal angle between the
subspaces P and Q. For a short but concise discussion of the concept of maximal
angle we refer to Section 2 in Ref. [5]; see also Refs. [3, 6–8]. If

θ(P,Q) <
π

2
(4)

and, thus, ‖P − Q‖ < 1, the subspaces P and Q are said to be in the acute-angle
case.

Among the problems being solved in the subspace perturbation theory, the first
and rather basic problem is to find an answer to the question on whether the require-
ment (2) is sufficient for the unperturbed and perturbed spectral subspaces P and Q

to be in the acute-angle case, or, in order to ensure inequality (4), one has to impose
a stronger condition ‖V ‖ < c d with some c < 1

2
. More precisely, the question is as

follows.

(i) What is the largest possible constant c∗ in the inequality

‖V ‖ < c∗ d (5)

securing the subspace variation bound (4)?
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Another, practically important question is about the largest possible size of the sub-
space variation:

(ii) What function M : [0, c∗) 7→
[
0, π

2

)
is best possible in the bound

θ(P,Q) ≤M

(
‖V ‖
d

)
for ‖V ‖ < c∗ d ? (6)

Both the constant c∗ and the function M are required to be universal in the sense
that they should work simultaneously for all Hermitian operators A and V for which
the conditions (2) and (3) hold.

Until now, the questions (i) and (ii) have been completely answered only for those
particular mutual positions of the unperturbed spectral sets σ and Σ where one of
these sets lies in a finite or infinite gap of the other one, say, σ lies in a gap of Σ. For
such mutual positions,

c∗ =
1

2
and M(x) =

1

2
arcsin(2x). (7)

This result is contained in the Davis–Kahan sin 2θ theorem (see Ref. [3]).
In the general case where no assumptions are done on the mutual position of σ

and Σ, except for condition (2), the best available answers to the questions (i) and
(ii) are based on the bound

θ(P,Q) ≤ 1

2
arcsin

π‖V ‖
d

if ‖V ‖ ≤ 1

π
d (8)

proven in Ref. [5] and called there the generic sin 2θ estimate. The bound (8) remains

the strongest known bound for θ(P,Q) whenever ‖V ‖ ≤ 4

π2 + 4
d (see Remark 4.4 in

Ref. [5]; cf. Corollary 2 in Ref. [8]).
In Ref. [5], it has been shown that the bound (8) can also be used to obtain

estimates of the form (6) for ‖V ‖ > 1
πd. To this end, one introduces the operator

path Ht = A+ tV , t ∈ [0, 1], and chooses a set of points

0 = t0 < t1 < t2 < . . . < tn = 1 (9)

in such a way that
(tj+1 − tj)‖V ‖
dist

(
ωtj ,Ωtj

) ≤ 1

π
, (10)

where ωt and Ωt denote the disjoint spectral components of Ht originating from σ
and Σ, respectively; ωt = spec(Ht)∩Od/2(σ) and Ωt = spec(Ht)∩Od/2(Σ). Applying
the estimate (8) to the maximal angle between the spectral subspaces Ran(EHtj

(ωtj ))

and Ran(EHtj+1
(ωtj+1

)) of the corresponding consecutive operators Htj and Htj+1

and using, step by step, the triangle inequality for the maximal angles (see Ref. [9];
cf. Lemma 2.15 in Ref. [5]) one arrives at the optimization problem

arcsin
(
‖P −Q‖

)
≤ 1

2
inf

n, {ti}n
i=0

n−1∑

j=0

arcsin
π(tj+1 − tj)‖V ‖
dist

(
ωtj ,Ωtj

) (11)

over n ∈ N and {ti}ni=0 chosen accordingly to Eqs. (9) and (10). Taking into account
that

dist
(
ωtj ,Ωtj

)
≥ d− 2‖V ‖tj ,

one then deduces from Eq. (11) the bound

θ(P,Q) ≤Mgen

(
‖V ‖
d

)
(12)
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with the estimating function Mgen(x), x ∈ [0, 1
2
), given by

Mgen(x) =
1

2
inf

n, {κi}n
i=0

n−1∑

j=0

arcsin
π(κj+1 − κj)

1− 2κj
, (13)

where the points
0 = κ0 < κ1 < κ2 < . . . < κn = x (14)

should be such that
κj+1 − κj

1− 2κj
≤ 1

π
.

An explicit expression for the functionMgen has been found by Seelmann in Theorem 1
of Ref. [10]. From this Theorem it also follows that the generic optimal constant c∗
in Eq. (5) satisfies inequalities

c
S
≤ c∗ ≤ 1

2
,

where

c
S
=

1

2
− 1

2

(

1−
√
3

π

)3

= 0.454839... (15)

The earlier results from Refs. [5], [11] and [12] concerning the generic bound (6) might
be of interest, too.

The questions like (i) and (ii) have been addressed as well in the case of off-
diagonal perturbations. Recall that a bounded operator V is said to be off-diagonal
with respect to the partition spec(A) = σ ∪ Σ of the spectrum of A with σ ∩ Σ = ∅

if V anticommutes with the difference P −P⊥ of the spectral projections P = EA(σ)
and P⊥ = EA(Σ), that is, if

V (P − P⊥) = −(P − P⊥)V.

When considering an off-diagonal Hermitian perturbation, one should take into
account that conditions ensuring the disjointness of the respective perturbed spectral
components ω and Ω originating from σ and Σ are much weaker than the condition (2).
In particular, if the sets σ and Σ are subordinated, say max(σ) < min(Σ), then
for any (arbitrarily large) ‖V ‖ no spectrum of H = A + V enters the open interval
between max(σ) and min(Σ) (see, e. g., Remark 2.5.19 in Ref. [13]). In such a case the
maximal angle θ(P,Q) between the unperturbed and perturbed spectral subspaces P
and Q admits a sharp bound of the form (6) with

M(x) =
1

2
arctan(2x), x ∈ [0,∞). (16)

This is the consequence of the celebrated Davis–Kahan tan 2θ theorem [3] (also, cf.
the extensions of the tan 2θ theorem in Refs. [6, 7, 14]).

If it is known that the set σ lies in a finite gap of the set Σ then the disjointness
of the perturbed spectral components ω and Ω is guaranteed by the (sharp) condi-
tion ‖V ‖ <

√
2 d. The same condition is optimal for the bound (4) to hold. Both

these results have been established in Ref. [15]. An explicit expression for the best
possible function M in the corresponding estimate (6),

M(x) = arctanx, x ∈ [0,
√
2),

was found in Refs. [7, 16].
As for the generic case — with no restrictions on the mutual position of the spectral

components σ and Σ, the condition

‖V ‖ <
√
3

2
d (17)
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is known to be optimal in order to ensure that the gaps between σ and Σ do not close
under an off-diagonal V . Moreover, under this condition for the perturbed spectral
sets ω and Ω we have the following enclosures:

ω ⊂ OǫV (σ) and Ω ⊂ OǫV (Σ)

with

ǫV = ‖V ‖ tan
(
1

2
arctan

2‖V ‖
d

)
<

d

2
(18)

and, hence,

dist(ω,Ω) ≥ d− 2ǫV > 0. (19)

The corresponding proofs were given initially in Theorem 1 of Ref. [17] for bounded A
and then in Proposition 2.5.22 of Ref. [13] for unbounded A. From the condition (17)
it follows that the optimal constant c∗ in the condition (5) ensuring the strict inequal-
ity (4) in the generic off-diagonal case necessarily satisfies the upper bound

c∗ ≤
√
3

2

(
= 0.866025...

)
. (20)

Now we employ the approach suggested in Refs. [5] in order to get a lower bound for
the above constant c∗. To this end, we simply apply the optimization estimate (11)
to the off-diagonal perturbations. Due to Eq. (19), for the disjoint spectral compo-
nents ωtj and Ωtj of the operator Htj = A+ tjV we have

dist
(
ωtj ,Ωtj

)
≥ d− 2tj‖V ‖ tan

(
1

2
arctan

2tj‖V ‖
d

)
= 2d−

√
d2 + 4t2j‖V ‖2.

The estimate (11) then yields

θ(P,Q) ≤Moff

(
‖V ‖
d

)
(21)

with the function Moff(x), x ∈ [0,
√
3
2
), given by

Moff(x) =
1

2
inf

n, {κi}n
i=0

n−1∑

j=0

arcsin
π(κj+1 − κj)

2−
√

1 + 4κ2
j

, (22)

where κ0 = 0, κn = x, and the remaining points κj , j = 1, 2, . . . , n−1, should satisfy
inequalities

0 <
κj+1 − κj

2−
√

1 + 4κ2
j

≤ 1

π
.

We have only performed a partial numerical optimization of the r.h.s. term in
Eq. (22) restricting ourselves to the case where the final function is smooth. As a

result, our numerical approximation M̃off for the estimating function Moff for sure
satisfies the bound

M̃off(x) ≥Moff(x) for all x ∈
[
0,

√
3

2

)
. (23)

The numerical function M̃off(x) is plotted in Fig. 1 along with the two previously
known estimating functions

MKMM(x) = arcsin

(
min

{
1,

π x

3−
√
1 + 4x2

})
, x ∈

[
0,

√
3

2

)
,
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Figure 1: Graphs of the functions 2
πMKMM(x), 2

πMMS(x), and the numerical approx-

imation 2
π M̃off(x) for 2

πMoff(x) while its value does not exceed 1. The upper curve

depicts the graph of 2
πMKMM(x), the intermediate curve is the graph of 2

πMMS(x),

and the lower curve represents the graph of 2
π M̃off(x).

from Theorem 2 of Ref. [17] and

MMS(x) = arcsin

(
min

{
1,

π

2

∫ x

0

dτ

2−
√
1 + 4τ2

})
, x ∈

[
0,

√
3

2

)
,

from Theorem 3.3 of Ref. [12] that both serve as M is in the bound (6) for the case
of off-diagonal perturbations. For convenience of the reader, in the plot we divide all
three functions MKMM, MMS, and M̃off by π/2.

For the (unique) numerical solution x = c̃off of the equation M̃off(x) = π/2 within

the interval [0,
√
3
2
), we obtain

c̃off = 0.692834... (24)

Since the function M̃off is monotonous and the inequality (23) holds, the number c̃off is
an approximation to the exact solution x = coff > c̃off of the equation Moff(x) = π/2.
Therefore we arrive at the new lower bound

c∗ > 0.692834 (25)

for the optimal constant c∗ in the condition (5) ensuring the subspace variation esti-
mate (4) in the generic off-diagonal subspace perturbation problem. The bound (25)
is stronger than the corresponding best previously published bound c∗ > 0.67598 from
Ref. [12]. Furthermore, we have inequalities

Moff(x) ≤ M̃off(x) < MMS(x) for any x ∈ (0, c̃off) (26)

which show that already the approximate estimating function M̃off provides a bound
of the form (6) that is stronger than the best known bound (with the function MMS)
from Ref. [12].
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3 Applications to few-body bound-state problems

From now on, we assume that the “unperturbed” Hamiltonian A has the form A =
H0 + V0 where H0 is the kinetic energy operator of an N -particle system in the c. m.
frame and the potential V0 includes only a part of the interactions that are present in
the system (say, only two-body forces). The perturbation V describes the remaining
part of the interactions (say, three-body forces if N = 3; it may also describe the
effect of external fields). We consider the case where V is a bounded operator. Of
course, both A and V are assumed to be Hermitian. In order to apply the abstract
results mentioned in the previous section, one only needs to know the norm of the
perturbation V and a very basic stuff on the spectrum of the operator A.

Examples 3.1 and 3.2 below are borrowed from Ref. [18].

The first of the examples represents a simple illustration of the Davis–Kahan sin 2θ
and tan 2θ theorems [3].

Example 3.1 Suppose that E0 is the ground-state (g. s.) energy of the Hamilto-
nian A. Also assume that the eigenvalue E0 is simple and let |ψ0〉 be the g. s. wave
function, i. e., A|ψ0〉 = E0|ψ0〉, ‖ψ0‖ = 1. Set σ = {E0}, Σ = spec(A) \ {E0}
and d = dist(σ,Σ) = min(Σ) − E0 (we notice that the set Σ is not empty since it
should contain at least the essential spectrum of A). If V is such that the condi-
tion (2) holds, then the g. s. energy E′

0 of the total Hamiltonian H = A+ V is again
a simple eigenvalue, with a g. s. wave function |ψ′

0〉, ‖ψ′
0‖ = 1. The eigenvalue E′

0 lies
in the closed ‖V ‖-neighborhood of the g. s. energy E0, i. e., |E0 − E′

0| ≤ ‖V ‖. The
corresponding spectral projections P = EA(σ) and Q = EH(ω) of A and H associ-
ated with the one-point spectral sets σ = {E0} and ω = {E′

0} read as P = |ψ0〉〈ψ0|
and Q = |ψ′

0〉〈ψ′
0|. One verifies by inspection that

arcsin
(
‖P −Q‖

)
= arccos |〈ψ0|ψ′

0〉|.

Surely, this means that the maximal angle θ(P,Q) between the one-dimensional
spectral subspaces P = Ran(P ) = span(|ψ0〉) and Q = Ran(Q) = span(|ψ′

0〉) is
nothing but the angle between the g. s. vectors |ψ0〉 and |ψ′

0〉. Then the Davis–
Kahan sin 2θ theorem implies [see Eqs. (6) and (7)] that

arccos |〈ψ0|ψ′
0〉| ≤

1

2
arcsin

2‖V ‖
d

.

This bound on the rotation of the ground state means, in particular, that, under the
condition (2), the angle between |ψ0〉 and |ψ′

0〉 can never exceed 45◦.
If, in addition, the perturbation V is off-diagonal with respect to the partition

spec(A) = σ ∪ Σ then for any (arbitrarily large) ‖V ‖ no spectrum of H is present in
the gap between the g. s. energy E0 and the remaining spectrum Σ of A. Moreover,
there are the following sharp universal bounds for the perturbed g. s. energy E′

0:

E0 − ǫV ≤ E′
0 ≤ E0,

(see Lemma 1.1 of Ref. [17] and Proposition 2.5.21 of Ref. [13]). In this case, the
Davis–Kahan tan 2θ theorem [3] implies [see Eqs. (6) and (16)] that

arccos |〈ψ0|ψ′
0〉| ≤

1

2
arctan

2‖V ‖
d

<
π

4
.

With a minimal change, the same consideration may be extended to the case
where the initial spectral set σ consists of the n + 1 lowest binding energies E0 <
E1 < . . . < En, n ≥ 1, of A. We only underline that if V is off-diagonal than for
any ‖V ‖ the perturbed spectral set ω of H = A+V originating from σ will necessarily
be confined in the interval [E0 − ǫV , En] where the shift ǫV is given by Eq. (18); the
interval

(
En,min(Σ)

)
will contain no spectrum of H . Furthermore, the tan 2θ-like
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estimates for the maximal angle between the spectral subspaces P = Ran
(
EA(σ)

)

and Q = Ran
(
EH(ω)

)
may be done even for some unbounded V (but, instead of d

and ‖V ‖, those estimates involve quadratic forms of A and V ), see Refs. [7, 14].

Along with the sin 2θ theorem, the next example illustrates the tan θ bound from
Refs. [7, 16].

Example 3.2 Suppose that σ = {En+1, En+2, . . . , En+k}, n ≥ 0, k ≥ 1, is a set
formed by the consecutive binding energies of A and Σ = spec(A) \ σ = Σ− ∪ Σ+,
where Σ− is the increasing sequence of the energy levels E0, E1, . . . , En of A
that lie below min(σ); Σ+ denotes the remainder of the spectrum of A, that is,
Σ+ = spec(A) \ (σ ∪ Σ−). Under condition (3), this assumption means that the set σ
lies in the finite gap

(
max(Σ−),min(Σ+)

)
of the set Σ. If one only assumes for V the

norm bound (2) and makes no assumptions on the structure of V , then not much can
be said about the location of the perturbed spectral sets ω and Ω, except for Eq. (1).
However the Davis–Kahan sin 2θ theorem [3] still well applies and, thus, one has the
bound

θ(P,Q) ≤ 1

2
arcsin

2‖V ‖
d

<
π

4
.

Much stronger conclusions are done if V is off-diagonal with respect to the par-
tition spec(A) = σ ∪ Σ. In the Section 2 it was already mentioned that for off-
diagonal V the gap-non-closing condition is of the form ‖V ‖ <

√
2d (and even a weaker

but somewhat more detailed condition ‖V ‖ <
√
dD with D = min(Σ+)−max(Σ−)

is admitted, see Refs. [7, 15]). In this case the lower bound for the spectrum of
H = A+ V reads as E0 − ǫV where the maximal possible energy shift ǫV , ǫV < d,
is given again by Eq. (18). Furthermore, the perturbed spectral set ω is confined
in the interval [En+1 − ǫV , En+k + ǫV ], while the open intervals (En, En+1 − ǫV )
and

(
En+k + ǫV ,min(Σ+)

)
contain no spectrum of H . For tighter enclosures for

the perturbed spectral sets ω and Ω involving the the gap length D, we refer to
Refs. [13, 15, 17]. In the case under consideration, the sharp bound for the
size of rotation of the spectral subspace P = Ran

(
EA(σ)

)
to the spectral sub-

spaces Q = Ran
(
EH(ω)

)
is given by the a priori tan θ theorem (see Theorem 1 of

Ref. [16]; cf. Theorem 2 of Ref. [7]):

θ(P,Q) ≤ arctan
‖V ‖
d

< arctan
√
2.

If the gap length D is known and ‖V ‖ <
√
dD, then a stronger but more detailed

estimate for θ(P,Q) is available (see Theorem 4.1 of Ref. [16]).

Example 3.3 models the generic spectral disposition. Assume that the binding
energies of A are numbered in the increasing order, E0 < E1 < . . . < En < . . .,
and σ = {E0, E2, . . . , E2k} is formed of the first k + 1, k ≥ 1, binding energies with
even numbers. Let Σ = spec(A) \ σ and, thus, Σ contains the first k binding ener-
gies E1, E3, . . . , E2k−1 with the odd numbers, as well as the remaining point spectrum
and the essential spectrum of A. If d = dist(σ,Σ) > 0 and ‖V ‖ < c

S
d with c

S
given by

Eq. (15), then for the maximal angle θ(P,Q) between the corresponding unperturbed
and perturbed spectral subspaces P = Ran

(
EA(σ)

)
and Q = Ran

(
EH(ω)

)
we have

the bound (12).
If, in addition, the perturbation V is off-diagonal with respect to the partition

spec(A) = σ ∪Σ then the disjointness of the perturbed spectral components ω and Ω

is guaranteed by the weaker requirement ‖V ‖ <
√
3
2
d. In this case ω ⊂ OǫV (σ)

and Ω ⊂ OǫV (Σ) where ǫV is given by Eq. (18). Furthermore, if ‖V ‖ < c̃off d where c̃off
is the solution (24) of the equation M̃off(x) = π/2, then one can apply the bound (22).

Examples 3.1–3.3 show how one may obtain a bound on variation of the spectral
subspace prior to any real calculations for the total Hamiltonian H . In order to get
such a bound, only the knowledge of the values of d and ‖V ‖ is needed. Furthermore,
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if V is off-diagonal, by using just these two quantities one can also provide the stronger
estimates (via ǫV ) for the binding energy shifts.
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