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Abstract

We develop a computational approach superposing a number of Slater de-

terminants to describe cluster-like as well as shell-model-like structures of light

nuclei simultaneously. The Slater determinants are prepared using imaginary-

time method starting with stochastically prepared initial configurations. A mi-

croscopic many-body Hamiltonian of Skyrme interaction is then diagonalized in

the space spanned by Slater determinants with parity and angular momentum

projections. The method is applied to 12C. It is shown that low-lying excited

states of both cluster-like and shell-model-like states are reasonably described.
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1 Introduction

It has been well-known that various cluster structures appear in excited states of light
nuclei [1]. Although shell-model approaches have been successful for low-lying excited
states in a wide mass region, it is difficult to describe cluster states since they require
a number of many-particle and many-hole configurations across the major shell.

To describe both cluster-like and shell-model-like states simultaneously, we have
been developing a new configuration mixing approach [2, 3]. In this approach, we
start with a many-body Hamiltonian with an empirical nucleon-nucleon interaction.
We attempt to calculate low-lying excited states as well as the ground state which
are converged with respect to configurations included in the calculation. To pre-
pare configurations which are sufficient to describe cluster-like states, we employ the
imaginary-time method which is usually employed to obtain self-consistent solutions
in the mean-field calculations. During the iterations before reaching the self-consistent
solution, there often appear various cluster-like configurations in the imaginary-time
calculations. We make use of this fact and employ them as basis functions.

In the following, we describe the outline of the method. Then we show an appli-
cation to the 12C nucleus [2].

2 Formalism

2.1 Preparation of Slater determinants

As a first step of our calculation, we prepare a set of Slater determinants, typically
50, which will be used for the configuration mixing calculation at the next step. The
set of Slater determinants is constructed by the following procedure [2, 3].
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As the Slater determinant which is labeled as no. 1, we choose the self-consistent
solution from the mean field calculation. We obtain it as a final convergent solution in
the imaginary-time method. Other Slater determinants are obtained in the following
recursive procedure. Assuming that we have already N Slater determinants, the next
(N+1)-th Slater determinant is obtained as follows. We prepare a Slater determinant
in which each single-particle orbital is a Gaussian wave packet whose position is
determined by random numbers. We then apply the imaginary-time method with the
Slater determinant composed of Gaussian wave packets as the initial one. During the
iteration before reaching the self-consistent solution, we examine whether the Slater
determinant includes a new configuration which will be useful for configuration mixing
calculations. In practice, if the expectation value of the Hamiltonian with respect to
the Slater determinant is sufficiently close to the energy of the ground state (less than
30 MeV excitation), we calculate the overlap between the present Slater determinant
and all Slater determinants which are already selected. If the maximum absolute value
of the overlaps is sufficiently small, we adopt it as the (N +1)-th Slater determinant.
During one imaginary-time iteration, a few Slater determinants are selected in this
procedure. As the number of selected Slater determinants increases, it becomes more
and more difficult to find a new one which satisfies the overlap criteria.

We note that cluster structures arise often during the imaginary-time iterations.
Figure 1 shows energy expectation values obtained during imaginary-time iterations
starting from different initial Slater determinants. Calculations are performed for the
12C nucleus. At the initial stage of iterations, the energy expectation values decrease
rapidly. In some cases, it is seen that the energy expectation values stay almost
unchanged for a long period of iterations. In these flat regions, we find appearances
of cluster structures. These configurations are not stable, however. Eventually the
Slater determinants converge to the self-consistent ground state solution.

We show in Fig. 2 density distributions of several Slater determinants describing
the 12C nucleus obtained by the above procedure. In all calculations presented in this
paper, we employ Skyrme SLy4 interaction. In the case of the 1st Slater determinant
which is the self-consistent solution, a spherical shape is seen. A triangular shape is
seen in the 3rd one and a linear-chain like structure is seen in the 14th one. In this
way, various structures including both cluster-like and shell-model-like configurations
may be efficiently obtained in this procedure.
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Figure 1: Energy expectation values of the Hamiltonian for 12C nucleus during
imaginary-time iterations are shown. Different curves show energy expectation values
obtained starting from different initial configurations.
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Figure 2: Density distribution in the 12C nucleus corresponding to selected Slater
determinants obtained in the imaginary-time calculations. The distance from the
center of the nucleus is given in fm. Taken from Ref. [2].

2.2 Projection and configuration mixing calculations

We make a configuration mixing calculation in the space spanned by a set of Slater
determinants. Since the microscopic Hamiltonian is invariant under parity and rota-
tional operations, we carry out the projections with respect to the parity and angular
momentum before the configuration mixing calculation.

In carrying out the configuration mixing calculations, it is essential to employ
configurations which are linearly independent. As mentioned above, we only select
those Slater determinants which have small overlaps with each other. However, after
the projections, it usually happens that there appears a number of configurations
which are not sufficiently independent.

The linear independence of the configurations may be examined using eigenvalues
of the norm matrix. The norm matrix elements after parity and angular momentum
projections are defined as

nJπ
iK,jK′ ≡

∫
dΩDJ∗

KK′(Ω)〈Φi|e
−iαĴx P̂ πe−iβĴye−iγĴx |Φj〉, (1)

where J is the total angular momentum, π is the parity, i and j distinguish Slater
determinants, K and K ′ are angular momentum components along the body-fixed
z-axis, Ω = (αβγ) is the set of Euler angles, DJ

KK′(Ω) is the Winger’s D function.

In Fig. 3, we show the eigenvalues of the norm matrix for 12C, Jπ = 2+. For
45 Slater determinants, there are 225 states in total. As seen from the figure, only
a few eigenvalues have magnitude of order unity. Most of the eigenvalues are small
and some of them are even negative (the eigenvalues starting from the number 212).
From the definition, the eigenvalues of norm matrix are positive definite. The negative
eigenvalues appear due to numerical errors. We need to remove the configurations
associated with small and negative eigenvalues for stability of the configuration mixing
calculations. In Refs. [2, 3], we describe in detail how we remove the configurations
which cause small and even negative eigenvalues.
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Figure 3: Absolute values of eigenvalues of the norm matrix for 12C nucleus after
parity and angular momentum projection.

3 Results for 12C

12C is a nucleus receiving substantial interests in different aspects. It is a key nu-
cleus in nucleosynthesis producing heavy elements. The triple-alpha reaction is a key
process to produce 12C in which the 0+2 state, the so-called Hoyle state, plays a de-
cisive role. Recently, we have reported a microscopic calculation of the triple-alpha
reaction rates [4]. Regarding the structure of the 0+2 state, it has been recognized
that this state can be understood as a Bose-condensed state composed of three alpha
particles [5].

The structure of the 12C nucleus has been extensively investigated within micro-
scopic and semi-microscopic cluster models [1, 6–8]. In Figs. 4 and 5, we show our
results for energy spectra of positive and negative parities, respectively.

In the figures, we show our results (Present), in comparison with measured spectra

Figure 4: Excitation energies of positive parity levels of 12C nucleus. The energies
are obtained by averaging over ten sets of configurations. Taken from Ref. [2].
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Figure 5: Excitation energies of negative parity levels of 12C nucleus. Taken from
Ref. [2].

(Exp) and other theoretical methods including antisymmetrized molecular dynamics
method (AMD) [8], generator coordinate method (GCM) [6], resonating group method
(RGM) [7], and ab-initio no-core shell model (NCSM) [9]. In the spectrum of our
calculation, error bars are attached to the energy. The error bars indicate uncertainly
in our calculated spectrum [2]. We carry out 10 different calculations employing
different sets of Slater determinants. As mentioned in the section describing the
formalism, we prepare 50 Slater determinants in which stochastically prepared initial
Slater determinants of Gaussian wave packets are used. By changing the random
numbers to generate the initial Slater determinants, we may obtain different sets
of Slater determinants. A small error bar indicates that the deviation of energy
eigenvalues among 10 different sets is small and that the results are reliable.

As seen from the figure, we may obtain a few low-lying states reliably for each
parity and angular momentum. For example, for 0+ states, three states, the 0+1
ground state, the 0+2 state which corresponds to the Hoyle state, and the 0+3 state
are calculated with small uncertainties. The calculated energy levels with small error
bars reproduce reasonably the measured spectra. They also coincide well with the
results of the AMD calculation. It has been known that the no-core shell model
calculations fail to describe the Hoyle state and higher 0+ states. The GCM and
RGM calculations underestimate the energies of 2+1 and 4+1 states, primarily due to
insufficient treatments of spin-orbit interactions.

Regarding the negative parity levels, the lowest energy 3−, 1− and 2− states
are reasonably described, although the excitation energies are slightly too high as
compared with measurements.

4 Conclusion

We developed a new method to calculate ground and low-lying excited states starting
from a microscopic Hamiltonian with empirical two-body interactions. Applying the
method to the 12C nucleus, we demonstrate that it is possible to obtain low-lying
spectra which are converged with respect to configurations. Both cluster-like and
shell-model-like states are described simultaneously. There are two possible directions
to extend the present approach. One is to apply the present approach to a wide mass
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region and to neutron/proton-rich unstable nuclei, which are now under progress.
The other is to employ a Hamiltonian with realistic nucleon-nucleon interactions.
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