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Preface

The International Conference on Nuclear Theory in the Supercomputing Era — 2014
(NTSE-2014) brought together experts in nuclear theory and high-performance com-
puting in Khabarovsk, Russia, from June 23 to June 27, 2014. This conference series
was started in 2012 by the NTSE-2012 and HITES-2012 conferences which were pro-
ceeded later under the common title NTSE. The NTSE conferences focus on forefront
challenges in physics, namely the fundamentals of nuclear structure and reactions, the
origin of the strong inter-nucleon interactions from QCD, and computational nuclear
physics with leadership class supercomputer facilities to provide forefront simulations
leading to new discoveries.

The conference welcomed many young scientists, including graduate students in
nuclear physics, computational science and applied mathematics. All participants
together made the conference a great success.

The conference topics,

(1) Ab initio nuclear structure;
(2) Microscopic approaches to nuclear reactions;
(3) Origin and properties of the strong interactions; and
(4) Computational science and applied mathematics,

reflect current world-wide research interests and encompass a broad area of funda-
mental physics and high-performance computing.

We would like to express our appreciation to all participants of the NTSE-2014
conference, to all contributors to these proceedings, to all members of the Scientific
Advisory Committee and to the NTSE-2014 sponsors including Pacific National Uni-
versity and the Russian Foundation for Basic Research.

The organizing committee:

Sergey Ivanchenko (Chair), Pacific National University, Russia

Dana Basharymova, Pacific National University, Russia

Leonid Blokhintsev (Vice Chair), Moscow State University, Russia

Sergey Burkov, Pacific National University, Russia

Alexander Mazur (Scientific secretary), Pacific National University, Russia

Evgeny Mazur, Pacific National University, Russia

Pieter Maris, Iowa State University, USA

Andrey Shirokov (Vice Chair), Moscow State University, Russia

James Vary (Vice Chair), Iowa State University, USA

Xingbo Zhao, Iowa State University
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9:30–2:50pm Registration
10:00–10:50am Conference opening

10:50–11:20am Coffee break
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Time-dependent density-functional calculation of nuclear re-
sponse functions
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of Nuclear Response Functions

Takashi Nakatsukasa

Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Japan

RIKEN Nishina Center, Wako 351-0198, Japan

Abstract

Basic issues of the time-dependent density-functional theory are discussed,
especially a real-time calculation of linear response functions. Some remarks on
the derivation of the time-dependent Kohn–Sham equations and on the numer-
ical methods are given.

Keywords: Time-dependent density-functional theory; time-dependent varia-
tional principle; strength function

1 Introduction

The time-dependent density-functional theory (TDDFT) provides us with a practi-
cal tool to study quantum dynamics of many-body systems. It is conceptually very
similar to the one known as the time-dependent Hartree–Fock (TDHF) theory with
a density-dependent effective interaction in nuclear physics [1]. Although it is much
more feasible than directly treating many-body wave functions of many-particle sys-
tems, the studies of full dynamics taking into account both the mean-field and the
pairing correlations are still computationally highly challenging, even at present. In
this paper, for simplicity, I will concentrate the discussion on the time-dependent
Kohn–Sham (TDKS) equations, without the Bogoliubov-type extension including pair
densities.

There is a number of recent developments in the studies of nuclei with the density
functional approaches. For these, there are recent review papers [2–5]. Thus I do not
intend here to review all these developments. Instead I would like to present some
issues which are not well addressed in published articles. The first issue presented
in Sec. 2, is a derivation of the time-dependent Kohn–Sham equations based on the
time-dependent variational principle. Exactly the same argument is applicable to the
variational derivation of the time-dependent Hartree–Fock equations. Especially, I
would like to clarify that the gauge degrees of freedom naturally emerge in the proper
derivation. This may be trivial to some readers, however, I think it is not so for non-
practitioners. It may be also useful for students. Then, in Sec. 3, I will present some
practical issues on numerical calculations such as the choice of the gauge functions,
some speed-up techniques, etc.

Proceedings of the International Conference ‘Nuclear Theory in the Super-
computing Era — 2014’ (NTSE-2014), Khabarovsk, Russia, June 23–27, 2014.
Eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2016, p. 15.

http://www.ntse-2014.khb.ru/Proc/Nakatsukasa.pdf.
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16 Takashi Nakatsukasa

2 Remarks on the time-dependent
Kohn–Sham equations

2.1 Time-dependent variational principle

It is well-known that the time-dependent Kohn–Sham equations can be obtained using
the time-dependent variational principle [6]. In literature, we often find the following
arguments: Starting from the action integral

S ≡
∫ tf

ti

{
〈ΨD(t)|i ∂

∂t
|ΨD(t)〉 − E[ρ(t)]

}
dt (1)

=

∫ tf

ti

{
N∑

i=1

〈ψi(t)|i
∂

∂t
|ψi(t)〉 − E[ρ(t)]

}
dt, (2)

the stationary action principle, δS = 0, leads to the time-dependent Kohn–Sham
(TDKS) equations

i
∂

∂t
|ψi(t)〉 = h[ρ(t)]|ψi(t)〉, i = 1, · · · , N. (3)

Here, E[ρ] is the energy density functional and |ΨD(t)〉 is the time-dependent Slater
determinant,

|ΨD(t)〉 =
1√
N !

det{|ψi(t)〉j}i,j=1,··· ,N . (4)

The Kohn–Sham (single-particle) Hamiltonian is formally defined by

h[ρ]|ψi〉 =
δE

δ〈ψi|
. (5)

In the case of TDHF with an effective Hamiltonian, the energy density functional is
given by the expectation value of the Hamiltonian as E[ρ(t)] = 〈ΨD(t)|H |ΨD(t)〉. In
general, E[ρ] can be a more general functional of one-body density ρ in the TDDFT.

Since the TDKS equations (3) are so common in literature, I think, many people
take them for granted. However, it is somewhat strange that we have reached the
equations which can uniquely determine the Kohn–Sham orbitals, because the Slater
determinant |ΨD(t)〉 is invariant under a unitary transformation among the occupied
orbitals. Namely, the same Slater determinant |ΨD(t)〉 can be expressed by different

orbitals, |ψ′
i(t)〉 =

∑N
j=1 Uij(t)|ψj(t)〉, as Eq. (4), where {Uij(t)} is an arbitrary time-

dependent unitary matrix. Thus, the Kohn–Sham orbitals have gauge degrees of
freedom associated with the U(N) transformation.

Apparently, the TDKS equation (3) uniquely determines the time evolution of each
single-particle orbital |ψi(t)〉. Since we have not imposed any gauge fixing condition
when we derived Eq. (3) from the stationary action principle, δS = 0, for Eq. (2), the
Kohn–Sham (single-particle) orbitals should not be unique.

In fact, to my opinion, the derivation above is not satisfactory because we have
used the orthonormal condition among the orbitals, 〈ψi(t)|ψj(t)〉 = δij , to obtain
Eq. (2) from Eq. (1). Therefore, the full variation with respect to each 〈ψi(t)| should
not be taken. I think that the proper derivation is either (i) the orthonormal relations
are not assumed in the first place, or (ii) the variational space is restricted by the
constraints 〈ψi(t)|ψj(t)〉 = δij . In the following, I would like to present these proper
derivations of the TDKS equations and to show that the gauge degrees of freedom
appear naturally.
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2.2 Derivation of TDKS equations (1)

To allow us to take full variation with respect to ψi(t), we should not assume the
orthonormal relation among {|ψi〉}. Let us derive the equations, starting from the
action

S ≡
∫ tf

ti

{
〈ΨD(t)|i ∂

∂t |ΨD(t)〉
〈ΨD(t)|ΨD(t)〉 − E[ρ(t)]

}
dt. (6)

In order to perform calculation of the functional derivatives, some formulae, which
are well-known in the generator coordinate method (GCM) [7], are very helpful. First,
it is useful to define the overlap matrix,

Bij(t) ≡ 〈ψi(t)|ψj(t)〉, i, j = 1, · · · , N, (7)

which leads to the following expressions for the norm and the time derivative.

〈ΨD(t)|ΨD(t)〉 = detB, (8)

〈ΨD(t)|i ∂
∂t
|ΨD(t)〉 = detB

∑

ij

〈ψi(t)|i
∂

∂t
|ψj(t)〉

(
B−1

)
ji
. (9)

Hereafter,
∑

i means the summation with respect to the occupied (hole) orbitals,
i = 1, · · · , N , and the time-dependent overlap matrix B(t) is simply denoted as B
for simplicity. Using the cofactor expansion of the inverse matrix B−1, we can prove
that

δ
(
B−1

)
ij

(t′)

δ〈ψk(t)| = −
(
B−1

)
ik

∑

l

|ψl〉
(
B−1

)
lj
δ(t− t′). (10)

In the same manner, the one-body density matrix can be written as

ρ(t) =
∑

ij

|ψi(t)〉
(
B−1

)
ij
〈ψj(t)|. (11)

Then, the derivative of E[ρ] with respect to the bra state 〈ψk(t)| becomes

δE[ρ]

δ〈ψk(t)| = h[ρ(t)]
∑

j

|ψj(t)〉
(
B−1

)
jk
. (12)

Now it is easy to derive the TDKS equations

(
1−

∑

l

|ψl(t)〉
(
B−1

)
lj
〈ψj(t)|

)(
i
∂

∂t
− h[ρ(t)]

)∑

k

|ψk(t)〉
(
B−1

)
ki

= 0. (13)

This looks different from the well-known form of Eq. (3).

We may simplify Eq. (13) by assuming that the orbitals are orthonormal at a
certain time t, 〈ψi(t)|ψj(t)〉 = δij . In this case, we have Bij(t) = (B−1)ij = δij .
Then, Eq. (13) can be written as


1−

∑

j

|ψj(t)〉〈ψj(t)|



(
i
∂

∂t
− h[ρ(t)]

)
|ψi(t)〉 = 0 (14)

at time t. This means that the states
(
i
∂

∂t
− h[ρ(t)]

)
|ψi(t)〉 (15)
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do not contain the particle (unoccupied) orbitals at time t. In other words, they can
be expanded in terms of the hole (occupied) orbitals only,

i
∂

∂t
|ψi(t)〉 = h[ρ(t)]|ψi(t)〉+

∑

k

λij(t)|ψj(t)〉. (16)

Although λij(t) are in principle arbitrary, choosing the Hermitian matrix λik(t) will
conserve the orthonormal relation among the orbitals 〈ψi(t + ∆t)|ψj(t + ∆t)〉 = δij .
Therefore, provided that λij(t) are Hermitian, Eq. (16) can be true for any time t.
They can be regarded as a general form of the TDKS equations. Here, the time-
dependent Hermitian matrix λij(t) is a kind of gauge function for fixing the Kohn–
Sham orbitals.

Equation (16) is also consistent with the well-known form of the equation for the
one-body density matrix. Since the orthonormal relation is kept all the time, the
density matrix of Eq. (11) can be simplified by assuming B−1

ij = δij . Then, the time
derivative of ρ(t) can be calculated as

i
∂ρ

∂t
=
∑

i


h|ψi〉+

∑

j

λij |ψj〉


〈ψi| −

∑

i

|ψi〉


〈ψi|h+

∑

j

〈ψj |λ∗ij


 (17)

=
∑

i

(h|ψi〉〈ψi| − |ψi〉〈ψi|h) (18)

= [h[ρ(t)], ρ(t)]. (19)

2.3 Derivation of TDKS equations (2)

We saw in the previous section that the calculation of the functional derivative of the
action S in Eq. (6) is rather tedious. The use of Lagrange multipliers may greatly
facilitate this calculation. One of the great advantages of the Lagrange multipliers
is that, when we impose the constraints in terms of the Lagrange multipliers, we
may simplify the functionals (functions) by using the constraints before variations.
Now, we can use the action S in the simple form of Eq. (2) but with the Lagrange
multipliers to impose the constraints of the orthonormal relation 〈ψi(t)|ψj(t)〉 = δij ,

δ



S −

∑

ij

λij(t) (〈ψi(t)|ψj(t)〉 − δij)



 = 0. (20)

The variation immediately leads to Eq. (16). The form of Eq. (16) with the Hermitian
matrix λ(t) can be regarded as a general form of the TDKS equations.

Before ending this section, let us show that we can use the constraint condi-
tions to simplify the functions before variation when the Lagrange multipliers are
utilized. We consider here a problem of finding extrema of a function F (~x) with a
constraint g(~x) = 0. Using the Lagrange multiplier λ, it can be given by the following
variational form:

δ {F (~x)− λg(~x)} = 0 → ∇F (~x)− λ∇g(~x) = 0 with g(~x) = 0. (21)

Namely, ∇F (~x) is parallel to ∇g(~x) which is the condition of the extrema under the
constraint of g(~x) = 0. Now let us assume that the functional form of F (~x) can be
modified (simplified) into F̃ (~x) if we use the constraint g(~x) = 0,

F̃ (~x) = f(~x; g = 0), (22)

where f(~x; g(~x)) is a function of ~x and g(~x) satisfying f(~x; g(~x)) = F (~x). From these,
we can rewrite Eq. (21) as

∇F̃ (~x)−
(
λ− ∂f

∂g

)
∇g(~x) = 0 with g(~x) = 0. (23)
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This means that ∇F̃ (~x) is also parallel to ∇g(~x) at the extrema with g(~x) = 0.
Therefore it is identical to the following variation for finding the extrema:

δ
{
F̃ (~x)− λg(~x)

}
= 0 → ∇F̃ (~x)− λ∇g(~x) = 0 with g(~x) = 0. (24)

Thus we can replace F (~x) by F̃ (~x) for the variational calculation with the Lagrange

multiplier λ: F̃ (~x) = F (~x) where g(~x) = 0 is satisfied. An extension of the present
argument to the case of multiple constraints is straightforward.

3 Remarks on the numerical calculations

The Kohn–Sham orbitals are evolved in time according to Eq. (16). As is shown in
the previous section, there are gauge degrees of freedom (λij(t)) which we can choose
arbitrarily. Although the choice of the gauge should not affect the physical quantities,
the feasibility of numerical simulations sometimes depends on it.

3.1 Preparation of the initial state

In most applications, the initial state of the time evolution is prepared by solving the
static Kohn–Sham equations:

h[ρ]|ψi〉 = ǫi|ψi〉, and ρ =
∑

i

|ψi〉〈ψi|. (25)

Of course, this is not the only way of constructing the ground-state Kohn–Sham
orbitals. Again, the U(N) gauge degrees of freedom exist for the ground state. Nev-
ertheless, they are somewhat special in the sense that both the Hamiltonian h[ρ] and
the density ρ are diagonal in these orbitals. They are often called “canonical orbitals”.

To reach the ground state, the imaginary-time method is one of the most preva-
lent methods in nuclear physics [8]. We start from given initial wave functions

for |ψ(0)
i 〉 which are orthonormalized to each other. Then, at the (n+1)-th iteration,

the imaginary-time evolution of a small time step ∆t is calculated as

|ψ(n+1)
i 〉 = exp(−∆t h[ρ(n)])|ψ(n)

i 〉 ≈
(

1−∆t h[ρ(n)]
)
|ψ(n)

i 〉, (26)

where the Kohn–Sham Hamiltonian is constructed at the density of ρ(n) which is
defined by

ρ(n) =
∑

i

|ψ(n)
i 〉〈ψ

(n)
i |. (27)

At each iteration, the Gram-Schmidt orthonormalization must be performed. This
procedure converges to the solutions of Eq. (25) from the eigenstate of the lowest
energy ǫ1 to that of the N -th eigenvalue ǫN . You may also calculate the particle
(unoccupied) states (i > N) if you want.

An advantage of the imaginary-time method is that it is a very stable iteration
procedure to reach the convergence, though it may require a large number of itera-

tions. Diagonalizing h[ρ(n)] in the space spanned by the set of states {|ψ(n)
i 〉}i=1,··· ,N

may speed up the convergence. Sometimes an additional damping factor associated
with the kinetic energy terms, 1/p2, could help to lower the energy quickly, especially
at the beginning stage of the iterations.

3.2 Strength functions in the linear response

The linear response in real time can be numerically realized if we slightly distort the
ground-state density and start the time evolution. The distortion is made by a weak
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external field, Vext(t). The time profile of the external field determines the frequency
range contained in Vext(t),

Vext(t) =
1

2π

∫
Ṽext(ω)e−iωtdω. (28)

One of the popular choices is the instantaneous field, Vext(t) ∝ δ(t), which correspond
to the constant field in the frequency domain, Ṽext(ω) ∼ V0. An advantage of this
instantaneous external field is that the calculation of a single time evolution provides
information on the whole frequency (energy) range.

The strength functions can be calculated within the real-time method as fol-
lows. Suppose we would like to calculate the strength function associated with the
one-body Hermitian operator F for a system whose energy eigenstates are denoted
by |Φn〉. The initial state is constructed by applying the instantaneous external
field Vext(t) = −ηFδ(t) at t = 0, which leads to |Ψ(t = 0+)〉 = eiηF |Ψ0〉. Here we
adopt a small parameter η to perform numerically the linear approximation. The
time-dependent state |Ψ(t)〉 can be decomposed in terms of |Φn〉 as

|Ψ(t)〉 = e−iHteiηF |Ψ0〉 = e−iE0t|Φ0〉+ iη
∑

n

e−iEnt|Φn〉〈Φn|F |Φ0〉+O(η2). (29)

Therefore, the calculation of the expectation value of F leads to

〈Ψ(t)|F |Ψ(t)〉 = 〈Φ0|F |Φ0〉+ 2η
∑

n

|〈Φn|F |Φ0〉|2 sin{(En − E0)t}. (30)

Then the strength function is obtained by the Fourier transform:

S(E;F ) ≡
∑

n

|〈Φn|F |Φ0〉|2δ(E − (En − E0))

=
1

πη

∫ ∞

0

sin(Et){〈Ψ(t)|F |Ψ(t)〉 − 〈Φ0|F |Φ0〉}. (31)

In practice it is impossible to perform the time evolution up to t = ∞. Usually
we introduce an artificial damping (smearing) factor γ to multiply the integrand of
Eq. (31) by e−γt/2, and stop integration at t = T . The magnitude of the damping
factor γ is related to the time duration T . To obtain a smooth curve as a function of
energy E, we need to have γ & 2π/T .

3.3 Choice of the gauge functions

Canonical orbitals of the ground state defined by Eq. (25) should correspond to sta-
tionary solutions of the TDKS equations (16). However, apparently, off-diagonal parts
of the gauge functions λij(t) make the solution non-stationary since a mixing among
the hole orbitals takes place in time. When we choose the gauge λij(t) = −ǫiδij , the
static canonical orbitals of Eq. (25) become stationary, ∂ψi/∂t = 0.

In the real-time calculation of the linear response, the state stays very close to
the ground state, only a small part of the Kohn–Sham wave functions is fluctuating.
Therefore it is convenient to adopt the same gauge as above, λij(t) = −ǫiδij . Of
course, the choice of the gauge is completely arbitrary and should not affect the
final results. However this choice has some numerical advantage because the time-
dependent phase change of each Kohn–Sham orbital is minimized.

For calculation of nuclear dynamics beyond the linear regime such as a simula-
tion of heavy-ion collisions, the choice of λij(t) = −ǫiδij is no longer advantageous.
Instead, we may adopt λij(t) = −δij〈ψi(t)|h[ρ(t)]|ψi(t)〉, for instance.
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3.4 Numerical applications

In this article we do not show results of numerical calculations. I would like readers
to refer to our previous papers [3, 9–25].
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on Nuclear Matrix Elements
of Neutrinoless Double-Beta Decay

through Overlap Matrix
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Abstract

We show an improvement of the quasiparticle random-phase approximation
(QRPA) approach for calculating the nuclear matrix elements (NMEs) of the
neutrinoless double-beta decay. One of the techniques of obtaining the NME
is to calculate the overlaps of the QRPA excited states obtained from the ini-
tial and final states, and these overlaps should be calculated using the QRPA
ground states defined as the vacuum of the QRPA quasibosons. The significant
difference from the usual method is that a normalization factor arises from this
definition, and this factor is much larger than one.

Keywords: QRPA; nuclear matrix elements; neutrinoless double-beta decay

1 Introduction

The determination of the effective neutrino mass is one of the most important subjects
in physics now due to multiple reasons. The neutrino has been assumed to be massless
in the standard theory, however, the neutrino oscillations showed that the neutrino is
actually massive [1–4]. Mass of elementary particle is a basic physical constant that
we cannot leave unknown. The effective neutrino mass affects the fluctuation of the
mass distribution in the universe [5]. The neutrino also plays an important role in
the energy and momentum transport in the supernova explosion [6].

The neutrino oscillations also provided us with most of the matrix elements of the
transformation matrix between the mass eigen and flavor states. This information
is, however, not sufficient for determining the absolute neutrino masses. One of few
methods which can provide the expectation value of neutrino mass (effective neutrino
mass) is the neutrinoless double-beta (0νββ) decay which occurs if the neutrino is
a Majorana particle. This decay can occur in nuclei if the mass of the nucleus with
(proton number, neutron number) = (Z+2,N−2) (daughter nucleus) is smaller than
that with (Z,N) (parent nucleus). For experiments, other conditions are necessary
to be satisfied: e. g., a suppression of the single-beta decay, a separation of the spec-
trum of the two-neutrino double-beta decay from that of the neutrinoless one, and a
productibility of the parent nucleus. Many experiments are now in preparation for
observing the 0νββ decay, see, e. g., Ref. [7].

A challenging problem for nuclear theory is to calculate the respective nuclear ma-
trix elements (NMEs) accurately; these are the transition matrix elements between
the initial and final nuclear states in the 0νββ decay, and the decay probability is
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proportional to the absolute value of the NME squared and the effective neutrino
mass squared. Currently, we are facing a problem that the calculated values signif-
icantly depend on the methods and differ by a factor of 2 approximately [8]. The
decay probability is also proportional to the so-called phase-space factor which is
the electron component of the transition matrix element, and the calculation of this
factor is well-established. Several methods have been used for calculating the NME.
An approach using the quasiparticle random-phase approximation (QRPA) is one of
the oldest methods (see, e. g., Ref. [9]), and many improvements have been made,
e. g., an introduction of the deformation (see, e. g., Ref. [10]), the extension to the
renormalized QRPA (see, e. g., Ref. [11]), an extension of the wave-function space
(see, e. g., Ref. [12]), and an introduction of the effective-operator method in calcu-
lating the matrix elements of the transition operator (see, e. g., Ref. [13]). The above
discrepancy problem is not yet solved in spite of these improvements. In particular,
the QPRA values are larger than the shell-model values by a factor of 2 in more than
several decay instances systematically.

In this paper, we introduce another improvement of the QRPA approach, which
has not been exploited. The NME is obtained as the trace of the product of four
matrices: the matrix of the transition operator (neutrino potential), two transition
matrices from the initial and final states to the intermediate states, and the overlap
matrix of two intermediate states which are obtained by two QRPA calculations based
on the initial and final states. In our new method, the overlap matrix is calculated
using the QRPA ground state defined as the vacuum of the QRPA quasibosons. The
equation of the QRPA ground state has been known since some decades ago (see, e. g.,
Ref. [14]), however, our study is the first application of that formulation to the NME.

2 Two QRPA approaches

The decay probability of the 0νββ decay is given by

1/T0ν(0+→0+) =
∣∣∣M (0ν)

∣∣∣
2

G01 (〈mν〉/me)
2 , (1)

where T0ν(0+→0+) denotes the half-life of the decay, and 0+ indicates the initial and
final states having Jπ = 0+. M (0ν) and G01 are the NME and the phase-space factor,
respectively. 〈mν〉 is the effective neutrino mass, and me is the electron mass. Under
the closure approximation replacing the intermediate-state energy with an average
value Ē, the equation of the NME can be written

M (0ν) ≃
∑

pp′nn′

∑

bf bi

〈pp′|V (Ē)|nn′〉〈0+pn,f |c†p′cn′ |bf 〉〈bf |bi〉〈bi|c†pcn|0+pn,i〉, (2)

where bi and bf denote the proton-neutron QRPA excited states based on the initial
and final states, respectively. V (Ē) is the transition operator of the 0νββ decay. The
symbols pp′ and nn′ denote the proton and neutron single-particle states, respectively,
and cp and c†p denote the annihilation and creation operators, respectively. |0+pn,i〉
(|0+pn,f 〉) is the initial (final) state obtained by the proton-neutron QRPA. Using the
closure relation with respect to the intermediate states, we also have

M (0ν) ≃
∑

pp′nn′

∑

bf bi

〈pp′|V (Ē)|nn′〉〈0+like,f |c
†
p′c

†
p|bf 〉〈bf |bi〉〈bi|cncn′ |0+like,i〉, (3)

where bi and bf denote those obtained by the like-particle QRPA. In our first attempt,
we use this like-particle QRPA version because it is known that this QRPA is a good
approximation in the well-deformed heavy mass (A ∼ 150) region.
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3 Formulation of QRPA ground state
and overlap of QRPA states

Hereafter, we omit the subscript “like” in the symbols that we use. The QRPA ground
state as the vacuum of the QRPA quasibosons is written as

|0+i 〉 =
∏

Kπ

1

NKπ
i

exp
[
v
(Kπ)
i

]
|0+HFB,i〉, (4)

where Kπ denotes the combination of the K quantum number and parity of the
nuclear state, and |0+HFB,i〉 is the Hartree–Fock–Bogoliubov (HFB) (initial) ground

state. NKπ
i is the normalization factor. In the quasiboson approximation ignoring

exchange terms, we get

v
(Kπ)
i =

∑

µνµ′ν′

1

1 + δK0

(
Y i,Kπ 1

X i,Kπ

)†

µν,µ′ν′

ai†µ a
i†
ν a

i†
µ′a

i†
ν′ , (5)

X i,Kπ and Y i,Kπ are matrices consisting of forward and backward amplitudes of the
QRPA state,

|bi〉 = Oi†
b |0+i 〉

=
∑

µνµ′ν′

(
X i,Kπ

µν,b a
i†
µ a

i†
ν − Y i,Kπ

−µ−ν,ba
i
−νa

i
−µ

)
|0+i 〉, (6)

and quasiparticle creation and annihilation operators are a†µ and aµ, respectively.

This quasiparticle basis is obtained by the HFB calculation determining |0+HFB,i〉.
The index “−µ” indicates that the K quantum number of this quasiparticle state is
opposite to that of the state µ. Oi†

b is the creation operator of the QRPA state.
The overlap of the two QRPA states based on the initial and final states can be

calculated by the expansion and truncation with respect to v
(Kπ)
i and v

(Kπ)†
f ,

〈bf |bi〉 ≃
1

NfNi

∏

Kπ

〈0+HFB,f | exp
[
v
(Kπ)†
f

]
Of

bO
i†
b exp

[
v
(Kπ)
i

]
|0+HFB,i〉

≃ 1

NfNi

{
〈0+HFB,f |O

f
bO

i†
b |0+HFB,i〉

+
∑

Kπ

(
〈0+HFB,f |v

(Kπ)†
f Of

bO
i†
b |0+HFB,i〉+ 〈0+HFB,f |O

f
bO

i†
b v

(Kπ)
i |0+HFB,i〉

)}
. (7)

It has been checked that the next-order terms are negligible in test calculations us-
ing 26Mg and 25Si [15]. This truncation can be applied because many high-energy
excitations over the Fermi surface region do not contribute to the overlap in which
two ground states are states of different nuclei. Thus we can assume that this trun-
cation is also applicable to those heavier nuclei which are interesting for the 0νββ
decay studies. Note that the normalization factors need higher-order truncations; we
calculate up to the fourth order in the expansion of N 2

i and N 2
f with the quasiboson

approximation.

4 Calculation of QRPA ground state

We performed the QRPA and overlap calculations for 150Nd → 150Sm. The input is
the Skyrme energy-density functional with the parameter set SkM∗ [16] and the vol-
ume pairing energy density functional [17]. The strength of the latter was determined
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so as to reproduce the pairing gaps of these nuclei obtained from the experimen-
tal mass differences. The HFB calculations were performed using a cylindrical box
of the height (z > 0) and radius of 20 fm assuming the axial symmetry of nuclear
states [18–20]. The cutoff energy of 60 MeV was introduced for the quasiparticle
energy. The quasiparticle states of lower energies are used for calculating the density
and pairing tensor. The calculated axial quadrupole deformation β is 0.279 for 150Nd
and 0.209 for 150Sm.

We use K = 0−8 for getting the convergence of NME. The QRPA equation is
solved by the so-called matrix formulation [21]. The size of the QRPA Hamiltonian
matrix is near 58, 000 for K = 0, 1 and ≃10, 000−25, 000 for other K values. The size
for K = 0, 1 is much larger than the others because it is necessary to separate the
spurious states associated with symmetries of the Hamiltonian broken in the HFB
states. We do not use the proton-neutron pairing energy density functional (see, e. g.,
Ref. [12]) because these nuclei are far from the N = Z line.

There is a problem that we have to solve before proceeding to the calculation
of NME. The QRPA correlation energy diverges because of the contact-interaction
nature of the Skyrme and volume-pairing energy-density functionals. Since the nor-
malization factors of the QRPA ground states are strongly correlated with the QRPA
correlation energies through the backward amplitudes, the normalization factors also
diverge or are too large. In order to avoid this problem, we first define the backward
norm of the QRPA solution a,

N a
back =

∑

µν

∣∣Y a
−µ−ν

∣∣2 . (8)

Then we pick up the QRPA solutions with the largest backward norms so as to
reproduce the semi-experimental correlation energy

Eexp
cor = Eexp − EHFB, (9)

where Eexp and EHFB are the experimental energy (mass) and the HFB energy of
the ground state, respectively. The QRPA correlation energy is calculated using the
formula [22]

EQRPA
cor ≃ 1

2

∑

a

(Ea − ETDA
a ), (10)

where Ea and ETDA
a are the eigenenergies of the QPRA and Tamm–Dancoff approxi-

mation [21], respectively. We picked up 10 (18) QRPA solutions for 150Nd (150Sm) and
obtained the QRPA correlation energies of −1.721 MeV for 150Nd and −3.688 MeV
for 150Sm. The corresponding Eexp

cor values are−1.696 MeV for 150Nd and −3.661 MeV
for 150Sm (for the experimental masses, see Ref. [23]). Using this prescription, we ob-
tained the product of the normalization factors of the initial and final QRPA ground
states NINF = 1.860; this implies that the NME is reduced significantly compared
to the value obtained without the QRPA correlations in the ground states included
in the overlaps. The calculation of the NME is now in progress.

5 Summary and future works

A new QRPA approach for calculating the NME has been presented; the QRPA
ground state as the vacuum of the QRPA quasiboson is used in the overlaps of the
intermediate QRPA states. The significant outcome of this approach is that the
normalization factors are much larger than unity, and these normalization factors
have an effect of reducing the NME. This calculation is a step toward obtaining the
reliable NME.

We have many calculations to perform. First of all, the NME is necessary to cal-
culate. One of the important tasks after the NME is to show that the two approaches
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using the proton-neutron and like-particle QRPAs provide us with the same NME,
as indicated by Eqs. (2) and (3). The extension of the QRPA ground state to the
product wave function of the proton-neutron and like-particle QRPA ground states
will be necessary for showing this equivalence. It is also an important task to inves-
tigate whether the NMEs of the two-neutrino double-beta decay are reproduced by
our new approach. The explicit QRPA ground-state wave function is also entering
this NME, therefore the reduction effect by the normalization factors also applies. It
is also an important question whether the new NME values are close to the shell-
model ones. For this comparison, we need to calculate the decay instances other than
150Nd→ 150Sm.
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Abstract

We report on recent advances in large-scale shell-model calculations for ex-
otic nuclei, focusing on how shell evolution is probed from strongly correlated
nuclei. We choose the N ∼ 28 region as a typical case. The effective inter-
action is constructed on the basis of the monopole-based universal interaction
which consists of a phenomenological central force and the bare tensor force. It
is demonstrated that the proton spin-orbit splitting is significantly reduced in
going from N = 20 to N = 28 due to the tensor force by comparing spectro-
scopic factors for the one-proton removal from 48Ca. This narrowing spin-orbit
splitting causes large deformation in 42Si, as a consequence of the tensor-force-
driven Jahn–Teller effect. It is predicted that the new N = 34 magic number
found recently in 54Ca enhances toward lower-Z isotopes and produces a new
doubly-magic nucleus 48Si.

Keywords: Shell model; magic number; shell evolution; tensor force

1 Introduction

Since a nucleus is a strongly correlated system, large-scale structure calculations are
required to describe it accurately. The nuclear shell model is regarded as one of the
most popular approaches for this purpose, including every possible correlation within
the single-particle model space assumed. The usual shell model typically takes full one
major shell for the single-particle space. Minor effects from the outside of the model
space are taken into account by renormalizing the Hamiltonian and operators used
in the calculation. The renormalized nuclear force and operators are called effective
interaction and effective operators, respectively.

Constructing a good effective interaction is crucial for the descriptive power of
the shell model. Microscopic effective interactions derived from the bare nucleon-
nucleon forces are usually subject to empirical modification for better description.
In particular, the monopole interaction is known to be critical [1, 2]. The monopole

Proceedings of the International Conference ‘Nuclear Theory in the Super-
computing Era — 2014’ (NTSE-2014), Khabarovsk, Russia, June 23–27, 2014.
Eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2016, p. 29.

http://www.ntse-2014.khb.ru/Proc/Utsuno.pdf.

29



30 Y. Utsuno et al.

interaction vmij works to change the single-particle energy of the orbit i with the orbit j
occupied. Hence, the monopole interaction is responsible for the evolution of shell
structure, often referred to as shell evolution [3]. Recently, shell evolution has received
much attention in the study of exotic nuclei, because a number of phenomena that
indicate the modification of shell structure have been observed. The breakdown of the
conventional magic numbers is a good example. While the normal magic numbers
N = 8, 20, 28 are known to disappear in very neutron-rich nuclei [4–6], new magic
numbers N = 16, 34 have been discovered quite recently [7, 8].

An understanding of the source of the monopole interaction that causes the shell
evolution is thus very important. Almost ignored over the years, the tensor force has
been revisited for a decade as an essential ingredient of the effective interaction since
Otsuka et al. pointed out that the tensor force produces significant changes of the
spin-orbit splitting (Otsuka effect) [9]. Later, taking into account a phenomenological
central force, the monopole-based universal interaction (VMU) has been proposed [10]
to describe the shell evolution in a unified manner. Although the VMU seems to give
a rather reasonable evolution through a simple mean-field estimate, the experimental
energy levels are not the pure single-particle states obtained from this approach.

The shell evolution thus should be probed with reliable many-body calculations
such as the shell model. In this conference, we survey recent advances in the under-
standing of the shell evolution for exotic nuclei via large-scale shell-model calculations.
We covered two major topics: the shell evolution in the N ∼ 28 region based on the
conventional shell-model calculation and the shape coexistence in Ni isotopes based
on the advanced Monte Carlo shell-model calculation. Since the methodology of the
advanced Monte Carlo shell model was also introduced in Abe’s talk [11] in this con-
ference and part of the results for Ni isotopes were reported in the proceedings of
NTSE-2013 by Otsuka et al. [12], here we concentrate on the first subject.

2 Structure of exotic nuclei in the N ∼ 28 region

Recently many intriguing phenomena concerning shell evolution has been observed in
the neutron-rich N ∼ 28 region. While N = 28 is known to be a good magic number
for pf -shell nuclei, this magicity breaks down in 42Si [6]. On the other hand, a new
magic number N = 34 has been found very recently [8], more than a decade after
its prediction [13]. Here we present our shell-model results for this region using an
effective interaction based on VMU.

2.1 Shell evolution from N = 20 to N = 28

In this section, we perform shell-model calculations in the valence orbits consisting
of the sd and pf shells. Since it is impossible to carry out shell-model calculations
in the full sd + pf model space, we introduce the truncation of the model space by
not allowing nucleon excitation across the N(Z) = 20 shell gap. This truncation is
valid except the “island of inversion” region [5] around 32Mg, where the ground state
is dominated by 2p−2h excitation across the N = 20 shell gap. Since the present
study concentrates on neutron-rich nuclei having Z ≤ 20 and N ≃ 28, the truncation
should work well.

The cross-shell interaction, i. e. two-body matrix elements connecting the sd shell
and the pf shell, plays a key role in the structure of neutron-rich nuclei evolving from
the 40Ca core. We use a refined VMU interaction for this part. The refinement aims
(1) to include the two-body spin-orbit force and (2) to better fit the semi-empirical
GXPF1 interaction [14] than the original VMU interaction. More details about the
refinement can be found in Ref. [15].

We discuss the shell evolution in going from N = 20 to N = 28. Since the
neutron 0f7/2 orbit is occupied, the monopole interaction concerning the 0f7/2 orbit
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Figure 1: (a) Proton effective single-particle energies of the 1s1/2 and 0d3/2 orbits
relative to the 0d5/2 in Si isotopes calculated with the present shell-model interaction.
(b) Neutron effective single-particle energies of the 1p3/2, 1p1/2 and 0f5/2 relative to
the 0f7/2 orbit in N = 28 isotones calculated with the present shell-model interaction.
For both figures, the solid and dashed lines correspond to the Hamiltonian with and
without the tensor force, respectively.

is relevant. Since the 0f7/2 orbit is a j> (j = l + 1/2) orbit, the tensor force works
to pull down the 0d3/2 orbit and to push up the 0d5/2 orbit according to the Otsuka
effect [9]. As a result, the spin-orbit splitting for protons decreases as shown in
Fig. 1(a). The change of the spin-orbit splitting can be probed from the distribution
of proton spectroscopic factors. As presented in Ref. [16], the proton-hole strengths
measured from the (e, e′p) reaction clearly support the reduction of the spin-orbit
splitting obtained in the shell-model calculation including the tensor force. Thus, the
present shell-model interaction describes the shell evolution quite well.

2.2 Disappearance of the N = 28 magic number
and tensor-force-driven Jahn–Teller effect

It is very interesting to investigate how the shell evolution affects the nuclear collec-
tivity such as deformation. The N = 28 nucleus 42Si provides a good example in this
context. In Fig. 2, the 2+1 and 4+1 energies in neutron-rich Si isotopes are compared
with experiment. The shell-model calculation incorporating the tensor force success-
fully reproduces these energies including those measured after our calculation [17].
Two shell-model calculations, with and without the tensor force, give quite different
results for 42Si. The calculation with the tensor force reproduces the measured 2+1
level which is located very low, whereas the calculation without it leads to much
higher energy. This means that the disappearance of the N = 28 magic number in
42Si is caused by the tensor force. The calculated B(E2) value and potential energy
surface indicate that the very low 2+1 energy in 42Si is due to a large deformation.

The reason why the tensor force induces the large deformation in 42Si, is discussed
in Ref. [16] in detail. As presented in Fig. 1, the tensor force reduces the spin-orbit
splitting in j−j closed nuclei such as 42Si. The neighboring orbits belonging to the
same major shell, such as 0d5/2 and 1s1/2, are then located closer. These neighboring
orbits are easily mixed, and the resulting mixed orbit has a freedom of deformation.
Since the residual interaction is dominated by the Q · Q term, a deformed state is
favored in order to minimize the Hamiltonian. This mechanism is the Jahn–Teller
effect [18, 19] which is triggered by the shell evolution due to the tensor force, which
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Figure 2: Comparison of theoretical predictions for the 2+1 and 4+1 energy levels in
neutron-rich Si isotopes with experiment. The solid and dashed lines depict the shell-
model calculations with and without the tensor force, respectively. The closed and
open circles are the experimental data measured before and after our calculations.

we refer to as tensor-force-drive Jahn–Teller effect [16]. Since this is a general effect,
it is very interesting to search for other cases in forthcoming experiments.

2.3 Evolution of the new N = 34 magic number

In 2001, the N = 34 magic number has been predicted to emerge around 54Ca [13]
in analogy with the appearance of the N = 16 magic number. According to the
up-to-date shell-evolution mechanism, the N = 34 magic number appears due to a
large attraction between the proton 0f7/2 and neutron 0f5/2 orbits that is favored by
both central and tensor forces. Hence, the 0f5/2 orbit rises sharply with decreasing
protons from the 0f7/2 orbit, positioning much higher than the 1p1/2 orbit in Ca
isotopes. The N = 34 magic number is thus predicted to appear as a large sub-
shell gap between 1p1/2 and 0f5/2. Much experimental effort has been devoted to
detecting the predicted N = 34 magic number. Since it was extremely difficult to
sufficiently produce the 54Ca nucleus, the prediction has not been confirmed until the
measurement of the 2+1 energy in 54Ca was carried out in RIKEN in 2013 [8]. The
measured 2+1 energy is much higher than those in singly-closed-shell nuclei such as
42−46,50Ca, demonstrating the occurrence of a new neutron magic number 34 in 54Ca.
What is amazing in this finding is that there is no a fingerprint of the N = 34 magic
number in Ti (Z = 22) and Cr (Z = 24) isotopes, in a sharp contrast to the evolution
of the N = 32 sub-shell closure [20–22]. This abrupt appearance of the N = 34 magic
number is caused by a sharp evolution of the 0f5/2 orbit as a function of the proton
number. Thus, the occurrence of the N = 34 magic number strongly validates the
concept of shell evolution. The strength of the N = 34 shell gap is estimated to
be ∼2.5 MeV from the shell-model calculations based on the GXPF1B semi-empirical
interaction [23].

It is a very interesting issue how the N = 34 magic number behaves in more
proton-deficient isotopes, Ar (Z = 18), S (Z = 16), and Si (Z = 14). Since the present
interaction successfully describes the shell evolution without any direct adjustment to
experimental data, it is considered to have a predictive power. Introducing a minor
modification to the interaction aimed to almost exactly reproduce the proton single-
hole-like spectra in K isotopes, we calculate the evolution of the N = 34 shell gap in
Ar, S and Si isotopes. The resulting N = 34 gap is predicted to enhance at smaller
proton numbers. For 48Si, it becomes 3.9 MeV. This enlargement is mainly attributed
to a large attraction of the central force between π0d3/2 and ν0f5/2 compared to a
repulsion of the tensor force. The effect of the enhanced N = 34 gap can be detected
from experiment. Figure 3 shows the 2+1 energy levels in Ti, Ca, Ar, S, and Si isotopes
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Figure 3: Comparison of theoretical predictions (lines) with experiment (circles) for
the 2+1 levels in neutron-rich Ti, Ca, Ar, S and Si isotopes with N = 26−34.

with N = 26−34. The calculation predicts that the 2+1 level in theN = 34 nucleus 48Si
is located very high. As shown in Fig. 1 (a), the Z = 14 gap is also large in neutron-
rich Si isotopes. As a result, 48Si can be a new doubly-magic nucleus. Verifying this
prediction in future RI-beam facilities will be a very attractive program.

3 Summary

We have investigated the shell evolution in the N ∼ 28 exotic nuclei with large-scale
shell-model calculations. The reduction of spin-orbit splitting due to the Otsuka effect
[12] is probed by the distribution of spectroscopic strengths. This effect gives rise to
a large deformation in the j−j closed nucleus 42Si. It is also predicted that the newly
foundN = 34 magic number enhances in 48Si. TheN ∼ 28 region constitutes a typical
case in which many-body properties are strongly affected by shell evolution. Thus, a
high-performance computing in nuclear-structure calculations will be an indispensable
tool for investigating unusual properties in exotic nuclei towards heavier-mass regions.
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Computational Approaches to Many-Body

Dynamics of Unstable Nuclear Systems

Alexander Volya
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Abstract

The goal of this presentation is to highlight various computational techniques
used to study dynamics of quantum many-body systems. We examine the pro-
jection and variable phase methods being applied to multi-channel problems of
scattering and tunneling; here the virtual, energy-forbidden channels and their
treatment are of particular importance. The direct time-dependent solutions
using Trotter–Suzuki propagator expansion provide yet another approach to
exploring the complex dynamics of unstable systems. While presenting com-
putational tools, we briefly revisit the general theory of the quantum decay of
unstable states. The list of questions here includes those of the internal dy-
namics in decaying systems, formation and evolution of the radiating state, and
low-energy background that dominates at remote times. Mathematical formula-
tions and numerical approaches to time-dependent problems are discussed using
the quasi-stationary methods involving effective non-Hermitian Hamiltonian for-
mulation.

Keywords: Quantum many-body dynamics, Time-Dependent Continuum Shell
Model; Variable Phase Method; Trotter–Suzuki propagator expansion

1 Introduction

There is no physical system that is truly isolated from the rest of the world, the closed
system idealization may be convenient but becomes poor or completely invalid for
many questions of modern-day science. In nuclear physics, as interests shift towards
weakly bound, unbound or even dynamically evolving reaction states, the theoretical
approaches for dealing with unstable dynamics of open quantum systems with multiple
degrees of freedom should be revisited. The availability of advanced computational
technologies calls forth innovative thinking and new philosophies in addressing these
types of quantum many-body problems. In this presentation, using different models
and realistic examples from the world of nuclear physics, we discuss computational
strategies and techniques for dealing with dynamically unstable many-body systems.
The Nuclear Theory in the Supercomputing Era venue is especially timely and allows
us to put emphasis on some of the techniques, that due to their computational nature,
remained behind the curtains in a number of recent investigations [1–3].

2 Intrinsic degrees of freedom in reactions

2.1 Projection method

Let us start by illustrating the difficulties that one faces while trying to reformulate
reaction problems using the basis projection methods typical for structure physics;

Proceedings of the International Conference ‘Nuclear Theory in the Super-
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Figure 1: Schematic picture of scatter-
ing. A composite system of two particles
bound by a harmonic oscillator potential
scatters off an infinite wall. One of the
particles does not interact with the wall,
at the same time the wall is impenetrable
for the second particle.

see also Refs. [2, 4]. Consider a model of scattering illustrated in Fig. 1. In this
one-dimensional problem two particles with masses µ1 and µ2 comprise a composite
system of unit mass µ1+µ2 = 1. The system can be described with the center-of-mass
and relative coordinates, X = µ1x1 + µ2x2 and x = x1 − x2, respectively. The two
particles are confined by a potential v(x). The intrinsic Hamiltonian

h = − 1

µ

∂2

∂x2
+ v(x) (1)

is assumed to have a complete set of discrete eigenstates ψn(x) with corresponding
intrinsic energies ǫn:

hψn(x) = ǫnψn(x), n = 0, 1, 2, ...

Here the reduced mass is µ = µ1µ2 and we select our units so that ~2/2 = 1. We
assume that this system scatters off an infinite wall and the wall interacts only with
the second particle. Therefore the full Hamiltonian is

H = − ∂2

∂X2
+ U(x2) + h, where U(x2) =

{
∞ if x2 ≥ 0
0 if x2 < 0

. (2)

As illustrated in Fig. 1, we assume that the incident beam is traveling from the left and
contains the projectiles in an intrinsic state (channel) n. A complete set of reflected
waves is characterized by the amplitudes Rnm defined here so that |Rmn|2 represents
the probability for the initial beam in channel n to reflect in channel m; Rnm = Rmn

due to time-reversal invariance. The scattering wave function is

Φ(X, x) =
eiKnX

√
|Kn|

ψn(x) +
∞∑

m=0

Rmn√
|Km|

e−iKmXψm(x), (3)

where
Kn(E) =

√
(E − ǫn) (4)

is the center-of-mass momentum of the two-particle system while in the nth intrinsic
state, and E is the total energy.

A channel n is considered to be open if E ≥ ǫn and the corresponding momen-
tum Kn is real. The conservation of particle-number in all open channels necessi-
tates

∑
m∈open |Rmn|2 = 1. The channel is closed if E < ǫn, in which case Kn is

purely imaginary. We stress that the principal value of the square root is implied in
Eq. (4).

The boundary condition set by an impenetrable wall,

Φ(X, x) = 0 at x2 = 0, (5)
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is to be used for determining the set of coefficients Rmn. Since the center-of-mass
coordinate X = µ1x at x2 = 0, the boundary condition can be expressed in the
intrinsic coordinate x only, Φ(µ1x, x) = 0. Therefore we can project the reaction
problem onto a complete set of intrinsic basis states, which leads to the following
linear equation

∑

m

Dn′m [−iµ1(Kn +Km)]√
|Km|

Rmn = − δn′n√
|Kn|

, (6)

where the matrix D is defined as

Dmn(κ) = 〈ψm| exp(κx)|ψn〉 . (7)

Equation (6) represents a typical mathematical challenge associated with the for-
mulation of reaction problems where reaction states are projected onto the intrinsic
states; see also Section 3. It is a linear algebra problem where the construction of the
scattering matrix amounts to matrix inversion in the projected space. The scattering
energy E is a running parameter here, and studies of scattering at different energies
is therefore time consuming. And, finally, the underlying matrix is highly singular
and there are convergence issues. The latter difficulty is the one that we would like
to illustrate using this example.

If the two particles forming a composite system are bound by a harmonic oscillator
confinement, v(x) = µω2x2/2 in Eq. (1), the D-matrix is known analytically [2].
Then to solve the problem we truncate the channel space at some large number N of
oscillator quanta, and solve Eq. (6) using standard numerical techniques. This turns
out to be a difficult task; the matrix element Dmn(κ) for virtual channels, where κ

is real, are exponentially large, making the process of matrix inversion difficult and
numerically unstable [2, 5, 6]. As shown in Fig. 2, left panel, the absolute values of
the reflection amplitudes, Rn ≡ R0n, exponentially diverge for increasingly remote
virtual channels.

While it is possible to overcome the numerical issues, further examination shows
that the approach has fundamental flaws. In Fig. 2, right panel, the phase shift, defined

as e2iδ = −R00, is shown as a function of N . While satisfactory and seemingly conver-
gent results can be easily found for the cases where the mass of the non-interacting
particle is small, in general the results start oscillating as N increases; situations
where the non-interacting particle is heavy and therefore deeply penetrates the wall,
are particularly difficult to handle. It was emphasized in Refs. [2, 4] that there is no
numerical convergence with increasing N .

2.2 Variable Phase Method

The above example shows that reaction problems call for new techniques. One ap-
proach, based on the Variable Phase Method (VPM), see Ref. [7], is proposed in
Ref. [2]. The VPM is an effective technique for solving the coupled-channel problem
of the form [

∂2

∂X2
+K2

n

]
Ψn(X)−

∑

n′

Vnn′(X)Ψn′(X) = 0, (8)

where scattering observables are to be expressed relative to free-space solutions nor-
malized to unit current

Ξ±
nn′ (X) =

e±iKnX

√−2iKn

δnn′ ; (9)

the ± sign corresponds to a wave moving in the right/left direction. In the VPM
approach, the coupled-channel Schrödinger equation (8) is reformulated as a set of
first order differential equations for dynamic reflection and transmission amplitude
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Figure 2: This figure refers to a system of two particles bound by a harmonic oscil-
lator confinement, which collides with an infinite wall. The incident kinetic energy is
exactly half of the oscillator quantum so that only the ground state channel is open.
Left panel: For a system where µ1 = µ2 the absolute values of amplitudes |Rn| ≡ |R0n|
in virtual channels are shown as functions of n assuming different trunca-
tions N . The asymptotic dependence is illustrated with the straight line “exp(n)”.
Right panel: The phase shift defined for a single open channel as e2iδ = −R00, is plot-
ted as a function of truncation N . The problems with the approach are highlighted by
an unstable and oscillatory behavior of the phase shifts. The problem is particularly
severe when the non-interacting particle of mass µ1 is heavy. Different curves show
phase-shifts for different mass ratios µ1/µ2 = 1, 2, 3, 5, 10, as labeled; the exact values
obtained with Variable Phase Method (see Section 2.2) are shown by the horizontal
grid lines with the tic-marks on the right. Inset shows the case when µ1/µ2 = 3
extending the study to considerably large values of N and emphasizing that for any
choice of parameters the approach fails at some point.

matrices Rnn′(X ′) and Tnn′(X ′). These amplitudes correspond to a potential that is
cut at X ′, namely, to Vnn′(X) θ(X −X ′):

dR(X)

dX
=
[(

Ξ+ +R(X) Ξ−)]V
[
Ξ+ + Ξ−R(X)

]
, Rnn′(∞) = 0, (10)

dT (X)

dX
= T (X) Ξ− V

[
Ξ+ + Ξ−R(X)

]
, Tnn′(∞) = δnn′ . (11)

These equations being solved from X = +∞ towards X → −∞, recover the reflection
and transmission amplitudes Rnn′(−∞) = Rnn′ and Tnn′(−∞) = Tnn′ .

Using factorization of the form

Φ(X, x) =
∑

n

Ψn(X)ψn(x),

the Schrödinger equation for the scattering problem described in Fig. 1 can be
transformed into a coupled-channel equation (8) for the center-of-mass wave func-
tions Ψn(X), where the folded potentials are

Vnn′(X) =

∫ ∞

−∞
ψ∗
n(x)U(X, x)ψn′ (x) dx. (12)



Computational approaches to many-body dynamics of unstable nuclear systems 39

0
0.1
0.2
0.3

0 1 2 3 4 5

|R
3|

2

E / h− ω 

0

0.1

0.2

0.3

|R
2|

2

0
0.2
0.4
0.6
0.8

|R
1|

2

0
0.2
0.4
0.6
0.8

1

|R
0|

2
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Some representative results for the scattering problem where an oscillator-bound
system interacts with an infinite wall, are shown in Figs. 3 and 4. The reflection
probabilities for different channels are shown in Fig. 3 as functions of incident kinetic
energy. The kinetic energy is expressed in units of oscillator ~ω, and therefore for
each integer value thereof a new channel opens. One can notice typical cusps at
thresholds associated with the loss of flux into newly opened channels. In Fig. 4, the
probability distribution for the center of mass is shown. The four curves show four of
the most representative situations: low and high incident kinetic energies E = 0.5~ω
and E = 7.5~ω, respectively, and two different mass-ratios µ1 = 0.5 and 0.9.

2.3 Time-dependent approach

Turning to a time-dependent approach is a natural strategy for dealing with non-
stationary systems. There are various computational techniques; see Ref. [8] for some
recent tests and comparisons of methods being applied to one-dimensional Schrödinger
equation. In time-dependent techniques, a preservation of unitarity is often at the
core of computational difficulties: the lack of unitarity could lead to an exponen-
tial amplification of numerical noise even for a single channel, while in multi-channel
problems, discontinuities near thresholds are particularly challenging. Here we pro-
pose and demonstrate another approach that is computationally efficient, even in
multi-variable cases, and preserves the unitarity exactly.

The time propagation,

Φ(x, t) = exp

(
− i
~
Ht

)
Φ(x, 0), (13)

can be performed by considering separately the potential and kinetic parts
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of the Hamiltonian H = K + V . In the discretized space of generalized coor-
dinates x = {x1, x2, ...}, the potential V (x) is diagonal, so the exponential oper-
ator exp(−iV t/~) can be readily applied. Similarly, in the conjugate momentum
space p = {p1, p2, ...}, the propagation with kinetic energy operator which is diag-
onal, is also easy to perform. While the operators K and V do not commute, the
time evolution (13) with the combined Hamiltonian can be done efficiently with the
Trotter–Suzuki approach [9, 10]. In this approach, the propagation is done in small
time steps ∆T ; for each of these steps the evolution operator is approximated as

exp

(
− i
~
H∆t

)
= exp

(
− i

2~
V∆t

)
exp

(
− i
~
K∆t

)
exp

(
− i

2~
V∆t

)
+O(∆t3). (14)

The Fast Fourier Transform allows for an efficient transition between the coordinate
and momentum representations so that the exponentials of operators are always ap-
plied in the diagonal form. Even with the finite time steps, the unitarity is fully
retained; the method is applicable to time-dependent Hamiltonians. The computa-
tional cost of two back and forth Fourier transforms involved in each step, is N log(N)
assuming that the coordinate space is discretized into N points. While this appears
at first to be higher than the typical O(N) scaling of traditional methods, in practice
the cost cN of any high quality method involves a constant factor c that exceeds often
log(N). Moreover, the modern computer hardware often comes with signal processing
tools which are optimized at the hardware and software levels to perform the Fast
Fourier Transform with an incredible efficiency.

Let us return to the problem of scattering illustrated in Fig. 1. The time dependent
picture of the scattering process is shown in Fig. 5 with a series of four plots showing
the two-dimensional wave function using a density plot at four different times. The
plot of the density projection onto the center-of-mass coordinate X , which is the time-
dependent analog of Fig. 4, is shown below each of the four snapshots. The initial
wave function at t = 0 shown on the first panel, is selected as the ground state wave
function for the intrinsic potential, and as a moving Gaussian wave packet for the
center of mass coordinate,

Φ(X, x) =
1√
σ0
√
π

exp

[
1

2σ2
0

(X −X0)2 + iK0X

]
ψ0(x). (15)

In this example, σ0 = 2, X0 = −5, and the initial momentum K0 = 1, all quantities
are being expressed here in dimensionless units of distance as defined earlier. While
this time dependent consideration is different from the stationary state formulation
studied above, the series of snapshots for different times shown in Fig. 5 highlights
some similar features.

At high energies, the dynamics of virtual excitations is complex; this is illustrated
in Fig. 6 where the initial wave packet is selected to have K0 = 5. A semiclassical
interpretation can be given to the stages of the process. An initial compression at t = 1
is followed by two particles bouncing apart at t = 2. Having equal masses, their center
of mass remains at the origin but the relative separation x becomes large so that the
particles are positioned roughly symmetrically on the opposite sides of the wall. Next,
at t = 3, the center of mass moves into the X < 0 region pressing the interacting
particle against the wall. Finally, the system is reflected at t = 4 with the initial wave
packet being considerably distorted.

In comparison to the projection and VPM techniques discussed earlier, the
time-dependent approach is substantially faster numerically; moreover, any poten-
tial U(x1, x2) can be considered with ease in this approach. One has to keep in mind,
however, that it is not always easy to provide quantitative answers to stationary state
questions such as the determination of scattering phase shifts in this example, us-
ing the time-dependent techniques. The exact choice of the initial state as well as
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Figure 5: The four panels show the wave function |Φ(X, x)|2 as a density plot for
different times t = 0, 5, 10 and 15, as labeled. For each of the time snapshots, the
lower plot shows the density distribution over the center-of-mass coordinate computed
as
∫
|Φ(X, x)|2dx. The initial wave function at t = 0 is given by the Gaussian wave

packet, Eq. (15). For this system µ1 = µ2, the border of inaccessible area x2 > 0 is
shown with a solid line.

the energy uncertainty of the initial state can be important for some stages of time
evolution.

The physics of decay of unstable states represents a particularly important class of
time-dependent processes. The familiar exponential decay law is only an incomplete
picture requiring some subtle approximations, and being valid only within certain
time limits. The complex intrinsic dynamics that can occur in the decaying many-
body system, further complicates the time evolution. Non-exponential decay laws in
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Figure 6: The four panes similar to those in Fig. 5, show the wave function |Φ(X, x)|2
at the most representative moments of time t = 1, 2, 3 and 4, during the high energy
collision with the impenetrable wall. Here K0 = 5, the remaining parameters being
the same as in Fig. 5.

quantum mechanics have been studied and revisited by many authors (see Ref. [3] and
references therein). The presence of three regimes, namely, the initial, the exponential,
and the long-time power law, appears to be a universal feature of decay processes.
The transitions from one regime to another are accompanied by the interference of
corresponding quantum amplitudes that is seen as oscillations on the decay curve.

As another demonstration of the time-dependent technique based on the Trotter–
Suzuki expansion and as an introduction to the section that follows, we demonstrate
in Fig. 7 the decay process in Winter’s model [11] which has been a very popular tool
for exploring non-exponential features in decays. In this model, a particle is confined
to the region x ≥ 0 by the impenetrable wall at x = 0 and is held by a delta barrier
at x = 1. The initial state at t = 0 is taken as Ψ(x, 0) =

√
2 sin(πx). The survival

probability shown by a solid red line in the left panel of Fig. 7, illustrates three general
regimes: the pre-exponential, the exponential, and the post-exponential. Oscillations
can be seen in transitional regions. The snapshots of the wave function at different
times are shown on the right.

The pre-exponential behavior at very early times is influenced by the memory
of how the state was created and, in particular, by the high energy components of
the state. Later in time, the internal structure and transitions between the intrinsic
states become relevant. Short times correspond to remote energy components where
the presence of other resonant states is to be considered. The high energy components
have much shorter lifetimes and decay quickly leading to the exponential decay phase.
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Figure 7: Left: the survival probability S(t) = |〈Ψ(0)|Ψ(t)〉|2 is shown as a function
of time (solid red line). The exponential decay law where the mean lifetime τ = 0.65
is known from the poles of the scattering matrix, is shown with a double-dotted black
line, the background component that decays following a power law is shown with a
dot-dash blue line. The survival probability at very early times is shown in the inset.
Right: the wave function of a decaying state is shown at times t = 0.8, 1.2, and 1.6:
the upper panel shows the probability distribution |Ψ(x)|2, the middle panel displays
the current j(x, t), and the wave function in momentum space is shown in the lower
panel. Here the strength of the delta function G = 6 in units where ~ = 2m = 1.

This phase is dominated by a single resonant component, the radiating state, so that
the wave function retains its shape while decreasing in amplitude. This can be seen
in the right panel of Fig. 7. In the same figure, one can also trace a moving away
background component. The background contains very low energy particles; being
far off-resonance, they essentially do not interact but move slowly away from the
interaction region. Near the decay threshold, the number of such particles with a
certain energy is determined by the available phase space, which for neutral particles
scales with energy following a power-law El+1/2 where l is the angular momentum
quantum number. This type of scaling leads to non-resonant components that follow
a power-law decay S(t) ∼ 1/t2ℓ+3. While the non-resonant component can be very
small in the initial state, eventually it becomes dominant due to its slower-than-
exponential decay. Further discussion of decay processes in quantum mechanics and
other examples can be found in Ref. [3]. The near-threshold phase space scaling with
energy which leads to power-law decay at remote times, is an important consideration
in the Time-Dependent Continuum Shell Model approach that is discussed in the
following section, see also Refs. [1, 12, 13], as well as in more complicated sequential
decay processes [14].

3 Time-Dependent Continuum Shell Model

3.1 Continuum Shell Model

A seamless transition between structure physics and reactions is one of the central
present-day theoretical problems. The computational aspect associated with tran-
sitions from discrete levels to a continuum of reaction states is especially challeng-
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ing. The Continuum Shell Model approach [12, 13] and its time-dependent version
in particular, is one among several theoretical tools confronting these issues. In the
Continuum Shell Model, the Feshbach projection formalism [15,16] is used to express
the exact dynamics in the full Hilbert space using an effective Hamiltonian in the
projected intrinsic subspace of interest, Q:

H(E) = HQQ + H̃(E), (16a)

where

H̃(E) = HQP
1

E −HPP
HPQ. (16b)

Here the effective Hamiltonian contains HQQ which is the part of the original Hamil-
tonian that acts in the space Q, and the energy-dependent non-Hermitian term H̃(E)
that emerges from the coupling of the space Q to the external space containing the
continuum of reaction states, P .

In practical applications the intrinsic space Q is assumed to represent the config-
uration space of the traditional shell model built from states |1〉 that are Slater de-
terminants constructed from bound-state single-particle wave functions. The space P
contains continua of reaction states |c, E〉 characterized by the channel index, c, and

the continuous energy parameter, E. There is a certain threshold energy E
(c)
thr for

each channel c. The energy-dependent non-Hermitian effective Hamiltonian (16) is
represented by a matrix H12(E) ≡ 〈1|H(E)|2〉,

H12(E) = H12 + ∆12(E)− i

2
W12(E) , (17a)

where

∆12(E) =
∑

c

PV

∫ ∞

E
(c)
thr.

dE′A
c
1(E′)Ac

2
∗(E′)

E − E′ , (17b)

W12(E) = 2π
∑

c(open)

Ac
1(E)Ac

2
∗(E), (17c)

and the channel amplitudes are the matrix elements Ac
1(E) = 〈1|H |c, E〉. The tradi-

tional shell model Hamiltonian is recovered when the internal space Q is isolated and
thus decoupled, Ac

1(E) = 0.
Computational challenges of the traditional shell model approach are well known,

they are mainly associated with the need to find some selected eigenvalues and eigen-
vectors of the Hamiltonian matrix H12. The matrix is generally sparse, thanks to
few-body nature of the underlying nucleon-nucleon interactions which inhibit mixing
of very remote configurations, thus iterative techniques such as Lanczos approach are
commonly used.

The physics of weakly-bound and unstable nuclear systems is much more rich
as questions of interest span from properties of bound states to features in scatter-
ing cross sections. Narrow resonances are well characterized by usual properties of
bound states with the decay width being an additional characteristic. This requires
the non-Hermitian eigenvalue problem H(E)|I〉 = E|I〉 to be solved. The resulting
complex energies E represent positions of resonances, E = Re(E), and their widths,
Γ = −2 Im(E). The most practical technique here is to start with a perturbative
treatment and evaluate the term H̃(E) associated with continuum using wave func-
tions of the traditional shell model Hamiltonian HQQ. As coupling to the continuum
increases the states become broad and one is forced to treat the non-Hermitian energy-
dependent eigenvalue problem as an iterative non-Hermitian diagonalization process.
In this limit, a major problem is associated with the physical interpretation of the
resonances and their widths.
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Formally, the energy-dependent non-Hermitian Hamiltonian provides an exact
propagator for the intrinsic space, and therefore the scattering matrix is

Scc′(E) = exp(iξc + iξc′) [δcc′ − 2πiTcc′(E)], (18a)

where

Tcc′(E) =
∑

12

Ac
1(E)

{
1

E −H

}

12

Ac′

2 (E). (18b)

Here ξc is a potential (direct-reaction) phase. The matrix is unitary (see Ref. [1]) and
the unitarity is related to the factorized form of the imaginary W12(E) in Eq. (17).
The eigenvalues of the non-Hermitian Hamiltonian are therefore the poles of the scat-
tering matrix. In the limit of broad resonances, one has to address the reaction
problem where obtaining a reaction cross section is the main goal. There are several
numerical challenges associated with Eq. (18), many of these challenges being similar
to the ones discussed in Section 2.1. First, the size of the Hamiltonian matrix and
the complex arithmetic involved are not making this problem simpler as compared
to matrix diagonalization. Second, the scattering energy E represents a running pa-
rameter so that the procedure should be repeated for all energies of interest. Finally,
the problem is numerically unstable: bound states as well as resonances with widths
ranging by many orders of magnitude, may be encountered and should be treated con-
sistently. All of these technical issues are resolved by the Time-Dependent Continuum
Shell Model approach which we discuss next.

3.2 Time-dependent many-body evolution operator

The many-body wave function follows the time evolution which is a Fourier image of
the retarded propagator involved in the scattering matrix (18):

G(E) =
1

E −H = −i
∫ ∞

0

dt exp(iEt) exp(−iHt). (19)

Here H is an arbitrary Hamiltonian but, as discussed below, it is advantageous to
include a factorized imaginary part W using a different procedure described in Sec-
tion 3.3. Thus we view H as being a Hermitian Hamiltonian of the traditional shell
model in which case it is set to have an infinitesimal negative-definite imaginary part.
The time-dependent evolution operator can be factorized using a Chebyshev polyno-
mial expansion method, see Ref. [1, 17, 18]:

exp(−iHt) =

∞∑

n=0

(−i)n(2− δn0)Jn(t)Tn(H), (20)

where Jn is the Bessel function of the first kind and Tn represents Chebyshev poly-
nomials. The Chebyshev polynomials defined as Tn[cos(θ)] = cos(nθ) or, in explicit
form,

Tn(x) =
n

2

k≤n/2∑

k=0,1,...

(−1)k

n− k

(
n− k
k

)
(2x)n−2k, (21)

provide a complete set of orthogonal functions covering uniformly the interval [-1, 1].
In contrast, Taylor expansion relies on power functions which favor the edges of the
interval and thus are more sensitive to extreme eigenvalues. The “angular addition”
identity

2Tn(x)Tm(x) = Tn+m(x) + Tn−m(x) , n ≥ m, (22)
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which follows from the definition, allows one to obtain these polynomials using the
recurrence relation

T0(x) = 1, (23a)

T1(x) = x, (23b)

Tn+1(x) = 2xTn(x)− Tn−1(x). (23c)

Therefore the process of evaluation of Chebyshev polynomials of the Hamiltonian
operator is an iterative procedure similar to that in Lanczos approach. For a given
initial state |λ〉 ≡ |λ0〉, a sequence |λn〉 = Tn(H)|λ〉 can be constructed as

|λ0〉 = |λ〉, (24a)

|λ1〉 = H |λ〉, (24b)

and

|λn+1〉 = 2H |λn〉 − |λn−1〉. (24c)

For overlap functions, assuming Hermitian H , one can also use the following identity:

〈λ′|Tn+m(H)|λ〉 = 2〈λ′m|λn〉 − 〈λ′|λn−m〉, n ≥ m. (25)

A well-controlled energy resolution is an advantage of the method. In applications
of the method, the energy interval [Emin, Emax] which should contain all eigenvalues
of H , is mapped onto [−1, 1] by rescaling the Hamiltonian as H → (H − E)/∆E,
where E = (Emax + Emin)/2 and ∆E = (Emax − Emin)/2. For a desired energy
resolution ∆E/N whereN is some even integer number, the discrete Fourier transform
allows one to evaluate Green’s function in the corresponding energy points of the
rescaled interval Ep = p/N with p = −N/2, ... , N/2,

〈λ′|G(Ep)|λ〉 = −iπ





N−1∑

τ=0

e2πipτ/N
nmax(τ)∑

n=0

(−i)n(2 − δn0)Jn(πτ)〈λ′|Tn(H)|λ〉



.

(26)
This requires the evaluation of the evolution operator at times t = πτ , where τ =
0, ... , N − 1. For each desired time point τ the number of terms in expansion (20)
needed for the convergence, is denoted as nmax(τ). The Bessel function asymp-

totics Jn(x) ≈
√

1/(2πn)[ex/(2n)]n suggests nmax(τ) ≈ eπτ/2 ≈ 4τ . At fixed values
of n but for large times the convergence remains stable due

to Jn(t) ≈
√

2/(πt) cos(t− πn/2− π/4) in this limit. For the desired energy reso-
lution ∆E/N , the propagation in time has to be extended up to ≈ τN which re-
quires nmax ≈ 4N ; therefore 2N matrix-vector multiplications are required if one also
uses Eq. (25).

The time-dependent approach provides the Green’s function for all energies at
once; it is also exceptionally stable numerically when dealing with very narrow reso-
nances or with stable states. Indeed, the time-dependent behavior of stationary states
is regular and the corresponding delta function in energy is well handled by Fourier
transform which at the desired energy resolution properly conservers the integrated
strength.

In order to illustrate the approach, let us consider strength and integrated strength
functions defined for a given state |λ〉 as

Fλ(E) = 〈λ|δ(E −H)|λ〉 = − 1

π
Im 〈λ|G(E)|λ〉, (27a)

Iλ(E) =

∫ E

−∞
Fλ(E′) dE′. (27b)
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Figure 8: Single-particle strength function (left) and cumulative or integrated strength
function (right) are shown as functions of excitation energy (in units of MeV) for 15N.

In Fig. 8 both the strength (left) and the integrated strength (right) functions are
shown for 15N for neutron channels where |λ〉 corresponds to different angular mo-
mentum channels constructed from the 1+ ground state in 14N coupled to a single
nucleon on either d5/2 (top panels) or d3/2 (bottom panels) single-particle states. This
theoretical study follows recent experimental work in Ref. [19]. The full p-sd valence
space is used with the Hamiltonian from Ref. [20]. With about 107 m-scheme basis
states, obtaining and computing strength functions in energy regions around 20 MeV
of excitation is impractical; the time-dependent method provides an excellent alter-
native.

3.3 Sherman–Morrison–Woodbury relations

It is certainly possible to implement the Chebyshev polynomial expansion proce-
dure for the full non-Hermitian Hamiltonian using Eq. (20); however the factorized
structure of H̃ offers a different alternative which is much more computationally ad-
vantageous. The two propagators corresponding to Eqs. (16),

G(E) =
1

E −HQQ
(28a)

and

G(E) =
1

E −H(E)
, (28b)

can be related through the Dyson equation G(E) = G(E) + G(E) H̃(E)G(E). Since
the contribution from the continuum emerges in the factorized form

H̃(E) =
∑

cc′

|c〉H̃cc′(E)〈c′|, (29)

the expression for the full propagator can be found in a closed form in the space
spanned by the channel states:

G = G
[
1− H̃G

]−1

=
[
1−GH̃

]−1

G. (30)
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Figure 9: Time evolution of several low-lying states in 24O. The absolute value of
the survival overlap |〈α| exp(−iHt)|α〉| is shown as a function of time. Different
lines, as marked, correspond to states α(Eα,Γα): 2+1 (4.180, 2.7), 1+1 (5291, 195.1),
4+1 (6947, 0.0), 2+3 (8107, 92.5) and 2+4 (9673, 17.5). They are eigenstates of the
traditional USD shell model but are non-stationary resonances in the Time-Dependent
Continuum Shell Model, except for the 4+1 state which due to its high spin does not
decay within the sd valence space. To emphasize the non-exponentiality in the decay
law, the unmarked solid line shows the exp(−Γαt/2) function with parameters for
the 2+4 state.

The operators here are represented by matrices in the channel subspace Gab =
〈a|G(E)|b〉 and Gab = 〈a|G(E)|b〉. In computer science these relations are known
as Sherman–Morrison–Woodbury matrix inversion equations [21]. The unitarity of
the scattering matrix immediately follows from these relations, see [1].

We illustrate the Time-Dependent Continuum Shell Model approach in its com-
plete form in Figs. 9 and 10 where the resonances in 24O are considered. The system
is treated in the sd valence space using the USD shell model Hamiltonian [22]. In
Fig. 9 the norm of the survival amplitude is shown as a function of time for the follow-
ing set of most representative states: 2+1 (4180, 2.7), 1+1 (5291, 195.1), 4+1 (6947, 0.0),
2+3 (8107, 92.5), and 2+4 (9673, 17.5). The states are listed here with their excitation
energies followed by the decay widths, both in keV. The initial wave functions at t = 0
are taken as eigenstates of the traditional shell model. For the states such as 4+1 which
cannot decay in this model due to high angular momentum, the norm of the survival
amplitude remains constant. Narrow states exhibit a nearly exponential decay, for the
state 2+4 the survival amplitude expected in exponential decay is shown. The decay
is non-exponential for broad states such as 1+1 and 2+3 . In Fig. 10 the scattering cross
section is shown for elastic neutron scattering on the ground state of 23O where the
same resonant states can be observed.

The time-dependent approach provides an effective computational strategy for
treating many-body systems that feature both bound and unbound states. In con-
trast to the stationary state formalism, the time dependent approach addresses the
evolution of states in a natural way, thus providing a computationally robust and
stable strategy where experimental observables are easily recovered and fundamental
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Figure 10: Scattering cross section
for 23O(n, n)23O reaction showing
resonances in 24O.

principles of quantum mechanics, such as linearity and unitarity, are followed. From
the computational perspective, the most efficient operation available for the matrix-
vector multiplication is utilized in building the time evolution operator with full
control of the desired energy and time resolution. The specifics of the terms that
emerge due to coupling to continuum in Feshbach projection formalism can be used
to build the full evolution operator using Sherman–Morrison–Woodbury relations.
The Time-Dependent Continuum Shell Model found broad practical applications, see
Refs. [23–25] for examples.

4 Conclusions

As our interests shift towards open, reacting, decaying, and otherwise evolving quan-
tum many-body systems, new theoretical and computational techniques must be de-
veloped to address multiple new challenges that emerge. The goal of this presentation
is to highlight some of the methods used in the recent scientific projects. We use a
simple model to demonstrate three distinctly different techniques. The most straight-
forward method involves projecting the dynamics onto a set of basis states, allowing
subsequently for the well-developed methods of linear algebra to be used; in certain
reaction problems this method appears to have significant drawbacks associated with
numerical instabilities and poor convergence. We demonstrate the Variable Phase
Method that can treat reaction problems efficiently in a discretized coordinate space.
Finally, we consider explicitly time-dependent techniques that are perhaps most ad-
equate for the time-dependent dynamics associated with decay. We put forward the
Time-Dependent Continuum Shell Model approach as a practical tool and demon-
strate its application to realistic problems in nuclear physics.

This material is based upon work supported by the U.S. Department of Energy
Office of Science, Office of Nuclear Physics under Award Number DE-SC0009883.
The author is grateful to N. Ahsan, M. Peshkin, and V. Zelevinsky for collaboration.
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Abstract

We develop a computational approach superposing a number of Slater de-
terminants to describe cluster-like as well as shell-model-like structures of light
nuclei simultaneously. The Slater determinants are prepared using imaginary-
time method starting with stochastically prepared initial configurations. A mi-
croscopic many-body Hamiltonian of Skyrme interaction is then diagonalized in
the space spanned by Slater determinants with parity and angular momentum
projections. The method is applied to 12C. It is shown that low-lying excited
states of both cluster-like and shell-model-like states are reasonably described.

Keywords: Cluster structure; Skyrme interaction; multiple Slater determinants

1 Introduction

It has been well-known that various cluster structures appear in excited states of light
nuclei [1]. Although shell-model approaches have been successful for low-lying excited
states in a wide mass region, it is difficult to describe cluster states since they require
a number of many-particle and many-hole configurations across the major shell.

To describe both cluster-like and shell-model-like states simultaneously, we have
been developing a new configuration mixing approach [2, 3]. In this approach, we
start with a many-body Hamiltonian with an empirical nucleon-nucleon interaction.
We attempt to calculate low-lying excited states as well as the ground state which
are converged with respect to configurations included in the calculation. To pre-
pare configurations which are sufficient to describe cluster-like states, we employ the
imaginary-time method which is usually employed to obtain self-consistent solutions
in the mean-field calculations. During the iterations before reaching the self-consistent
solution, there often appear various cluster-like configurations in the imaginary-time
calculations. We make use of this fact and employ them as basis functions.

In the following, we describe the outline of the method. Then we show an appli-
cation to the 12C nucleus [2].

2 Formalism

2.1 Preparation of Slater determinants

As a first step of our calculation, we prepare a set of Slater determinants, typically
50, which will be used for the configuration mixing calculation at the next step. The
set of Slater determinants is constructed by the following procedure [2, 3].

Proceedings of the International Conference ‘Nuclear Theory in the Super-
computing Era — 2014’ (NTSE-2014), Khabarovsk, Russia, June 23–27, 2014.
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As the Slater determinant which is labeled as no. 1, we choose the self-consistent
solution from the mean field calculation. We obtain it as a final convergent solution in
the imaginary-time method. Other Slater determinants are obtained in the following
recursive procedure. Assuming that we have already N Slater determinants, the next
(N+1)-th Slater determinant is obtained as follows. We prepare a Slater determinant
in which each single-particle orbital is a Gaussian wave packet whose position is
determined by random numbers. We then apply the imaginary-time method with the
Slater determinant composed of Gaussian wave packets as the initial one. During the
iteration before reaching the self-consistent solution, we examine whether the Slater
determinant includes a new configuration which will be useful for configuration mixing
calculations. In practice, if the expectation value of the Hamiltonian with respect to
the Slater determinant is sufficiently close to the energy of the ground state (less than
30 MeV excitation), we calculate the overlap between the present Slater determinant
and all Slater determinants which are already selected. If the maximum absolute value
of the overlaps is sufficiently small, we adopt it as the (N + 1)-th Slater determinant.
During one imaginary-time iteration, a few Slater determinants are selected in this
procedure. As the number of selected Slater determinants increases, it becomes more
and more difficult to find a new one which satisfies the overlap criteria.

We note that cluster structures arise often during the imaginary-time iterations.
Figure 1 shows energy expectation values obtained during imaginary-time iterations
starting from different initial Slater determinants. Calculations are performed for the
12C nucleus. At the initial stage of iterations, the energy expectation values decrease
rapidly. In some cases, it is seen that the energy expectation values stay almost
unchanged for a long period of iterations. In these flat regions, we find appearances
of cluster structures. These configurations are not stable, however. Eventually the
Slater determinants converge to the self-consistent ground state solution.

We show in Fig. 2 density distributions of several Slater determinants describing
the 12C nucleus obtained by the above procedure. In all calculations presented in this
paper, we employ Skyrme SLy4 interaction. In the case of the 1st Slater determinant
which is the self-consistent solution, a spherical shape is seen. A triangular shape is
seen in the 3rd one and a linear-chain like structure is seen in the 14th one. In this
way, various structures including both cluster-like and shell-model-like configurations
may be efficiently obtained in this procedure.
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Figure 1: Energy expectation values of the Hamiltonian for 12C nucleus during
imaginary-time iterations are shown. Different curves show energy expectation values
obtained starting from different initial configurations.
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Figure 2: Density distribution in the 12C nucleus corresponding to selected Slater
determinants obtained in the imaginary-time calculations. The distance from the
center of the nucleus is given in fm. Taken from Ref. [2].

2.2 Projection and configuration mixing calculations

We make a configuration mixing calculation in the space spanned by a set of Slater
determinants. Since the microscopic Hamiltonian is invariant under parity and rota-
tional operations, we carry out the projections with respect to the parity and angular
momentum before the configuration mixing calculation.

In carrying out the configuration mixing calculations, it is essential to employ
configurations which are linearly independent. As mentioned above, we only select
those Slater determinants which have small overlaps with each other. However, after
the projections, it usually happens that there appears a number of configurations
which are not sufficiently independent.

The linear independence of the configurations may be examined using eigenvalues
of the norm matrix. The norm matrix elements after parity and angular momentum
projections are defined as

nJπ
iK,jK′ ≡

∫
dΩDJ∗

KK′(Ω)〈Φi|e−iαĴx P̂ πe−iβĴye−iγĴx |Φj〉, (1)

where J is the total angular momentum, π is the parity, i and j distinguish Slater
determinants, K and K ′ are angular momentum components along the body-fixed
z-axis, Ω = (αβγ) is the set of Euler angles, DJ

KK′(Ω) is the Winger’s D function.

In Fig. 3, we show the eigenvalues of the norm matrix for 12C, Jπ = 2+. For
45 Slater determinants, there are 225 states in total. As seen from the figure, only
a few eigenvalues have magnitude of order unity. Most of the eigenvalues are small
and some of them are even negative (the eigenvalues starting from the number 212).
From the definition, the eigenvalues of norm matrix are positive definite. The negative
eigenvalues appear due to numerical errors. We need to remove the configurations
associated with small and negative eigenvalues for stability of the configuration mixing
calculations. In Refs. [2, 3], we describe in detail how we remove the configurations
which cause small and even negative eigenvalues.
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Figure 3: Absolute values of eigenvalues of the norm matrix for 12C nucleus after
parity and angular momentum projection.

3 Results for 12C

12C is a nucleus receiving substantial interests in different aspects. It is a key nu-
cleus in nucleosynthesis producing heavy elements. The triple-alpha reaction is a key
process to produce 12C in which the 0+2 state, the so-called Hoyle state, plays a de-
cisive role. Recently, we have reported a microscopic calculation of the triple-alpha
reaction rates [4]. Regarding the structure of the 0+2 state, it has been recognized
that this state can be understood as a Bose-condensed state composed of three alpha
particles [5].

The structure of the 12C nucleus has been extensively investigated within micro-
scopic and semi-microscopic cluster models [1, 6–8]. In Figs. 4 and 5, we show our
results for energy spectra of positive and negative parities, respectively.

In the figures, we show our results (Present), in comparison with measured spectra

Figure 4: Excitation energies of positive parity levels of 12C nucleus. The energies
are obtained by averaging over ten sets of configurations. Taken from Ref. [2].
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Figure 5: Excitation energies of negative parity levels of 12C nucleus. Taken from
Ref. [2].

(Exp) and other theoretical methods including antisymmetrized molecular dynamics
method (AMD) [8], generator coordinate method (GCM) [6], resonating group method
(RGM) [7], and ab-initio no-core shell model (NCSM) [9]. In the spectrum of our
calculation, error bars are attached to the energy. The error bars indicate uncertainly
in our calculated spectrum [2]. We carry out 10 different calculations employing
different sets of Slater determinants. As mentioned in the section describing the
formalism, we prepare 50 Slater determinants in which stochastically prepared initial
Slater determinants of Gaussian wave packets are used. By changing the random
numbers to generate the initial Slater determinants, we may obtain different sets
of Slater determinants. A small error bar indicates that the deviation of energy
eigenvalues among 10 different sets is small and that the results are reliable.

As seen from the figure, we may obtain a few low-lying states reliably for each
parity and angular momentum. For example, for 0+ states, three states, the 0+1
ground state, the 0+2 state which corresponds to the Hoyle state, and the 0+3 state
are calculated with small uncertainties. The calculated energy levels with small error
bars reproduce reasonably the measured spectra. They also coincide well with the
results of the AMD calculation. It has been known that the no-core shell model
calculations fail to describe the Hoyle state and higher 0+ states. The GCM and
RGM calculations underestimate the energies of 2+1 and 4+1 states, primarily due to
insufficient treatments of spin-orbit interactions.

Regarding the negative parity levels, the lowest energy 3−, 1− and 2− states
are reasonably described, although the excitation energies are slightly too high as
compared with measurements.

4 Conclusion

We developed a new method to calculate ground and low-lying excited states starting
from a microscopic Hamiltonian with empirical two-body interactions. Applying the
method to the 12C nucleus, we demonstrate that it is possible to obtain low-lying
spectra which are converged with respect to configurations. Both cluster-like and
shell-model-like states are described simultaneously. There are two possible directions
to extend the present approach. One is to apply the present approach to a wide mass
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region and to neutron/proton-rich unstable nuclei, which are now under progress.
The other is to employ a Hamiltonian with realistic nucleon-nucleon interactions.
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Abstract

In the Cluster-Nucleon Configuration Interaction Model (CNCIM) presented
in this work, the many-body cluster techniques are adopted for use in advanced
shell model approaches including the modern ab initio schemes. The CNCIM is
facilitated by the SU(3) symmetry which allows us to built orthogonal cluster
channel wave functions with Pauli exclusion principle being taken into account.
Multiple results concerning α spectroscopic factors for ground state to ground
state transfers in sd-shell nuclei, and for transfers from low-lying and highly
excited states in 16O and 10Be are presented. The results are in good agreement
with experimental data. Clustering properties of the light nuclei are discussed
and some predictions are made. We view our results as an important proof of
the principle, showing that modern high performance computing permits studies
of clustering within configuration interaction approaches.

Keywords: α-clustering, shell model, resonance states

1 Introduction

Clustering is an important feature of nuclei. The phenomenon has been investigated
extensively over at least half-a-century and a large body of experimental data on
this topic is available. Reaction techniques highlighting the clustering properties
are being continuously improved. In particular, thick 4He target inverse kinematics
technique [1,2] has recently provided a large amount of data concerning complicated
α-particle resonance spectra [3–5].

Theoretical challenges on the subject of nuclear clustering include ab initio ap-
proach to nuclear structure, emergence of many-body correlations and many-body
forces, nuclear reactions involving cluster knock-out, transfer and decay, as well as
many questions in astrophysics. Multiple theoretical techniques have been put for-
ward to study nuclear clustering; some selected ones can be found in Refs. [6–10] as
well as in a broad review Clusters in Nuclei series [11]. However, many of these tech-
niques, such as, a symmetry based approach found in Ref. [12], focus on the structure
of highly clustered nuclear states where cluster degrees of freedom are introduced
by construction. Moreover, connection to experimental results is often made using
observables that are not directly related to clustering, such as nuclear moments of iner-
tia, quadrupole moments, gamma-transitions, etc. This strategy may be inadequate
for drawing conclusions about nuclear clustering based on experimental evidences.
The current presentation focuses on the Cluster-Nucleon Configuration Interaction
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Model (CNCIM) and its potential to bridge the gap between experimental results
and clustering theory.

Nuclear shell model, which is also generally known as the configuration interaction
(CI) method, is broadly used in studies of quantum many-body systems. It is a well
established microscopic approach, where, within the same formalism, high quality
description and good predictive power are obtained for numerous single-particle and
collective nuclear properties [13–16]. In the nuclear shell model, cluster degrees of
freedom are not introduced explicitly. This makes the shell model an ideal tool to
study weakly clustered states and to address questions related to emergence of cluster-
ing and interplay of cluster and single nucleon degrees of freedom. Recent advances in
computational techniques and exponential growth of computational power [13,17,18]
facilitate work in this direction.

Shell-model microscopic approach to clustering has been extensively developed in
the past [19–27]; it represents the path combining both microscopic single-nucleon and
collective symmetry based properties of nuclear dynamics. In the CNCIM we advance
the shell model approach by targeting the cluster spectroscopic characteristics, by
implementing the orthogonality conditions model for description of exit and entrance
cluster channels, by utilizing the SU(3) symmetry and some other algebraic properties
inherent to the harmonic oscillator basis. This report provides a current summary of
our recent results, see also Refs. [5, 28–30].

2 Formalism

Shell model configuration interaction approach
and SU(3)-symmetric structures

In the shell model approach, the many-nucleon states

|Ψ〉 ≡ Ψ†|0〉 =
∑

{1,2,3,...,A}
〈1, 2 . . . A|Ψ〉 a†1a†2 . . . a†A|0〉 (1)

are linear combinations of configurations, which are Slater determinants of single-
particle states 1 ≡ {n, l, j,m}. These single-particle states are built from the radial

harmonic oscillator wave function (WF) ϕn1,l1(r) ≡ 〈r|1〉 ≡ 〈r|a†1|0〉 with angular mo-

mentum and spin variables coupled to total angular momentum j. The operator a†1
is the nucleon creation operator in the second quantization. The numeric coeffi-
cient 〈1, 2 . . . A|Ψ〉 in Eq. (1) determines the weight of each Slater determinant in the
linear superposition.

In our work clustering is approached using multi-nucleon structures related to a
certain irreducible representation of the SU(3) group. In the present paper we discuss
alpha clustering, therefore we construct four-nucleon states

|Φ(n,0):L〉 ≡ Φ†
(n,0):L|0〉 ≡ |{n

αi

i }[f ] = [4](n, 0) : L, S = 0, T = 0〉. (2)

Here {nαi

i } denotes a configuration where αi is the number of particles in the major
oscillator shell ni; L, S, and T are orbital, spin, and isospin quantum numbers; (λ, µ)
is the SU(3) Elliott’s symbol; and the Young frame [f ] classifies the permutation sym-
metry. The states in Eq. (2) are constructed by diagonalization of linear combinations
of the SU(3) Casimir operator of the second rank, L2, T 2, S2, and other operators as
needed in the basis of four-nucleon shell-model states.

A direct correspondence between states |Ψ〉 and creation and annihilation opera-
tors Ψ† and Ψ of the second quantization facilitates evaluation of the overlap integrals
involved in fractional parentage coefficients (FPCs)

Fnl ≡ 〈ΨP |Â
{

Φ(n,0):l ΨD

}
〉 ≡ 〈0|ΨP{Φ(n,0):lΨD}†|0〉. (3)
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Table 1: Selected FPCs and channel norms for SU(3) states. All WF and operators
are for L = 0.

ΨP Φ
∣∣〈ΨP |Φ†|Φ〉

∣∣2 〈0|ΦΦΦ†Φ†|0〉
(p)8 (0, 4) (p)4 (4, 0) 1.42222⋆ 1.42222
(sd)8 (8, 4) (sd)4 (8, 0) 0.487903 1.20213

(fp)8 (16, 4) (fp)4 (12, 0) 0.292411 1.41503
(sdg)8 (24, 4) (sdg)4 (16, 0) 0.209525 1.5278

⋆For the p shell this result agrees with the value of 64/45 = 1.42222 found in Ref. [31].

Here Â is the antisymmetrization operator and |ΨP 〉 and |ΨD〉 are arbitrary states of
type (1).

The FPCs for some selected states of SU(3) symmetry are shown in Table 1. The
channel norms shown in the last column, provide a measure of bosonic enhancement.
Indeed, if a four-nucleon L = 0 operator Φ† ≡ Φ†

(n,0):0 is thought of as a boson cre-

ation operator then ΦΦ† = 1+Nb, where Nb is the boson number operator. Therefore
for ideal bosons the norm of the one-boson channel state 〈0|ΦΦΦ†Φ†|0〉 should be 2.
The numbers in the last column are less than 2, showing that the four-nucleon config-
urations are not true bosons. These objects are comprised of fermions, and residual
Pauli blocking effects are noticeable. The blocking effects are naturally reduced for
larger shells, which brings the norm closer to 2.

Cluster form factors and spectroscopic factors

The cluster form factor (CFF), also commonly known as the spectroscopic amplitude,

φl(ρ) = 〈Ψ′
P |Â

{
Ψ′

D

δ(ρ− ρ′)
ρ2

Ylm(Ωρ′ )Ψ′
α

}
〉 (4)

is one of the most basic measures of clustering. In Eq. (4), Ψ′
P ,Ψ

′
D, and Ψ′

α are WFs
of the parent (P ), the daughter (D) and the α-cluster, respectively, which are internal,
translationally invariant, and free of the center of mass (c. m.) coordinate. Here and
in what follows we use primed notation to distinguish these WFs from those of the
shell model type (1) that implicitly depend on the c. m. motion. The coordinate ρ
is the Jacobi radial coordinate of the relative cluster — daughter nucleus motion; a
proper coupling to a relative angular momentum l is established.

In our shell model calculations the parent and daughter states are computed im-
plementing a Glockner–Lawson procedure [32] leading the c. m. motion being in the
lowest oscillator state ϕ00(R). The oscillator frequency in harmonic oscillator WF
depends in the usual way on the mass number. In order to describe α channels we
assume that the α-particle’s translationally invariant WF is represented by the lowest
four-nucleon oscillator function written through the Jacobi coordinates:

|Ψ′
α〉 ≡ |A = 4, n′ = 0, [f ] = [4](λ, µ) = (0, 0) : L = 0, S = 0, T = 0〉. (5)

Therefore in the WF |Φ(n,0):l〉 we are interested in a component that includes the in-
trinsic 4-nucleon state (5) with the c. m. variable being in the oscillator state ϕnl(Rα).
This component, referred to as cluster coefficient, is known analytically [21, 22, 33],

Xnl ≡ 〈Φ(n,0):l|ϕnl(Rα) Ψ′
α〉 =

√
1

4n
n!∏

i(ni!)
αi

4!∏
i αi!

. (6)
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The following steps (see also Refs. [20–22, 24]) include expansion of the parent
state using FPC (3) and recoupling the c. m. variables Rα and RD into their relative
coordinate ρ and the parent c. m. coordinate RP where the corresponding recoupling
coefficient (known as recoil factor) is

Rn = (−1)n[(mD +mα)/mD]n/2.

This leads to the expansion of the CFF (4) in oscillator states,

φl(ρ) =
∑

n

Cnl ϕnl(ρ), Cnl = Xnl FnlRn. (7)

In the past it was common to identify the CFF in Eq. (7) with the observable spec-
troscopic factors (SFs) Sl =

∑
n |Cnl|2. However, it was argued in Refs. [34, 35] that

the matching of φl(ρ) with the two-body cluster-nucleus solution is not appropriate.
Instead, one should use the channel WF in the form of the Resonating Group Model
or, for an easier reduction to the two-body problem, in the form of the Orthogonality
Condition Model (OCM) [36]. Therefore the CFF should be redefined as

fl(ρ) ≡ N̂−1/2
l φl(ρ), (8)

where the norm operator

N̂lφl(ρ) ≡
∫
Nl(ρ

′, ρ)φl(ρ
′)ρ′2dρ′

contains the overlap norm kernel

Nl(ρ
′, ρ′′) =

〈
Â

{
Ψ′

DΨ′
α

δ(ρ−ρ′)
ρ2 Ylm (Ωρ)

}∣∣∣∣ Â
{

Ψ′
DΨ′

α

δ(ρ−ρ′′)
ρ2 Ylm (Ωρ)

}〉
. (9)

The validity and importance of this new definition are discussed in details in
Refs. [10, 37]. We construct and diagonalize the norm kernel operator as a matrix in
oscillator basis

〈ϕn′l|N̂l|ϕnl〉 = Rn′RnXn′lXnl 〈Â
{

Φ(n′,0):l ΨD

}
|Â
{

Φ(n,0):l ΨD

}
〉. (10)

This leads to a new definition of the SF:

Sl ≡
∫
ρ2dρ |fl(ρ)|2 =

∑

k

1

Nkl

∣∣∣∣∣
∑

n

〈kl|ϕnl〉 Cnl
∣∣∣∣∣

2

, (11)

where |kl〉 is an eigenvector and Nkl is an eigenvalue of the norm kernel N̂l|kl〉 =
Nkl|kl〉, both corresponding to angular momentum l. In this form the SFs are nor-
malized; for any given parent nucleus the sum of all SFs for a given partial wave l and
to a particular daughter state equals to the number of channels (characterized by dif-
ferent values of n in four-nucleon functions Φ(n,0):l) involved. In the one-channel case
(such an example is considered in the next section), using completeness of the parent
states

∑
i |ΨPi

〉〈ΨPi
| ≡ 1, the single diagonal matrix element for the norm (10) can

be expressed as

Nnl = R2
nX

2
nl

∑

i

(F i
nl)

2 =
∑

i

Sil , (12a)

thus

Si
l = Sil /

∑

i′

Si′l = (F i
nl)

2/
∑

i′

(F i′

nl)
2. (12b)

We refer to the technique outlined here as the Cluster-Nucleon Configuration
Interaction Model (CNCIM), and in the following section we demonstrate some of its
applications. Additional details can be found in Refs. [5, 29, 30].
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3 Applications

Study of the ground state α-clustering in sd-shell nuclei

Transfer and knock-out reactions, such as the ones discussed in Refs. [38–41], provide a
wealth of information on α strengths in low-lying states of sd-shell nuclei. Theoretical
values of the corresponding SFs obtained in various papers are well-correlated [23,25].
The summary of these results as well as those from our calculations are presented
in Table 2. In our calculations of α-particle SFs for ground state to ground state
transitions the USDB Hamiltonian [42] was used. The basis is restricted by the
sd shell. Within this model only one four-nucleon operator with SU(3) quantum
numbers (8,0) contributes, and therefore the relationship (12) holds.

Prior to discussing the results in Table 2, let us clarify some problems associated
with evaluation of the absolute values of experimental SFs. First, some problems
emerge from poor knowledge of the imaginary part of nucleus-nucleus potential for the
types of reactions involved. Second, transfer reactions usually determine only relative
values of the SFs, while for knock-out reactions absolute values are commonly provided
in the literature (see Table 2, columns 2, 3). Therefore in Table 2 all values evaluated
in transfer reactions are normalized to the value of the SF in 20Ne (column 4). Given
that the experimental absolute value of SF in 20Ne according to Ref. [43] is very close
to 1.0, the remaining relative SFs in column 4 may be interpreted as the absolute
ones. Both types of experiments are nevertheless consistent in the general pattern of
variation of relative values of SFs with the increase in nuclear mass.

A comparison of theoretical values [23, 25] with the experimental data highlights
some problems. First, the theoretical SFs are several times smaller than the measured
ones; in certain cases the discrepancy is more than one order of magnitude. To
demonstrate this in Table 2 we include the non-renormalized theoretical values of
SFs from Ref. [23]. In analogy with the approach taken in experiments with transfer
reactions, it is a common practice to renormalize theoretical data using the value
of the α-particle SF in 20Ne; and yet this practice needs some rigorous justification.
Second, even after the renormalization, the tendency for the values of SFs to decrease
rapidly while going from 20Ne to 40Ca, is not confirmed by the data.

Our results, shown in the last (7th) column in Table 2, appear to resolve the
above mentioned long standing theoretical problems in a natural way. Indeed, the

Table 2: Ground state to ground state α-particle SFs, “new” S0 and “old” S0 and the
experimental SFs extracted from the cross sections of (p, pα) [43,44] and (6Li,d) [45]
reactions, traditional S0 obtained in Ref. [23] and in the current work, and “new”
SFs Snew

0 .

AP −AD Sexp [43] Sexp [44] Sexp [45] S0 [23] S0 S0

20Ne-16O 1.0 0.54 1 0.18 0.173 0.755
22Ne-18O 0.37 0.099 0.085 0.481
24Mg-20Ne 0.76 0.42 0.66 0.11 0.091 0.411
26Mg-22Ne 0.20 0.077 0.068 0.439
28Si-24Mg 0.37 0.20 0.33 0.076 0.080 0.526
30Si-26Mg 0.55 0.067 0.061 0.555
32S-28Si 1.05 0.55 0.45 0.090 0.082 0.911
34S-30Si 0.065 0.062 0.974
36Ar-32S 0.070 0.061 0.986
38Ar-34S 1.30 0.034 0.030 0.997
40Ca-36Ar 1.56 0.86 1.18 0.043 0.037 1
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agreement between absolute SFs found in experiment (columns 2–4) and those from
CNCIM (column 7) is good without any renormalization. This includes the trend of
SFs to drop down towards the middle of the sd shell and to increase at the edges.

The values of the traditional spectroscopic factors obtained by us (column 6) and
the ones presented in Ref. [23] (column 5) are close, thus showing that renormalization
of the channel WFs proposed by Fliessbach is the main reason for this improvement.

Study of α-clustering in 16O

A more advanced investigation using CNCIM is summarized in Table 3. Here we
examine α-clustering of the ground and multiple excited states in 16O relative to
channels involving 12C nucleus in the ground state. Both parent and daughter sys-
tems are treated in the unrestricted p-sd configuration space with effective interaction
Hamiltonian from Ref. [17]. In Ref. [17] Utsuno and collaborators suggest that this
effective Hamiltonian describes well the multi-particle correlations in 16O, thus mak-
ing it an ideal choice for exploring clustering. The p-sd valence space allows for the
following SU(3)-classified four-nucleon configurations:

|Φ(n,0):l〉 = |(0p)q(2s− 1d)4−q [4](n, 0) : l, S = 0, T = 0〉, (13)

where q = 0, 1...4; n = 8− q; l = n, n− 2, ..., 1 or 0; and π = (−1)l.

A broad part of the low-lying 16O spectrum is examined in our study. For over 60
states the experimentally known characteristics that include spin, parity and α-decay
reduced widths θ2α turned out to be reasonably described by our model. Focusing
on clustering properties in Table 3 we restrict our presentation to the states with
SFs Sα > 0.1. The table is organized based on the theoretically calculated spectrum
of 16O. We made an effort to identify each theoretically predicted state with an
experimentally known counterpart. In this process an agreement within a factor of
3 to 4 in SF was the primary criterion, a theory-experiment agreement in excitation
energy within about 1 MeV was considered as secondary.

Table 3: The α-particle SFs for states in 16O.

Jπ
i E(sm) Sl E(exp) θ2α continued

0+1 0.000 0.794 0.000 0.86a Jπ
i E (sm) Sl E(exp) θ2α

3−1 5.912 0.663 6.13 0.41a 2+4 12.530 0.123 —c

0+2 6.916 0.535 6.049 0.40a 6+1 13.286 0.465 14.815 0.17

1−1 7.632 0.150 7.117 0.14 4+3 13.308 0.160 14.62 0.19

2+1 8.194 0.500 6.917 0.47a 3−3 13.733 0.144 14.1 0.21

2+2 9.988 0.349 9.844b 0.0015 2+6 14.646 0.102 14.926b 0.0098

4+1 10.320 0.313 10.356 0.44 1−4 15.298 0.174 16.2 0.085

0+3 10.657 0.216 11.26 0.77 4+5 15.474 0.152 16.844 0.13

2+3 11.307 0.158 11.52b 0.033 5−1 15.945 0.289 14.66 0.55

4+2 11.334 0.203 11.097b 0.0014 6+2 16.304 0.415 16.275 0.43

aRecalculated value of the SF from [46] (see the text).
bIdentified states are, probably, of different nature.
cNo experimental analog has been found.
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The most part of the experimental information was taken from the spectroscopic
tables [47, 48]. Measured excitation energies and α spectroscopic strengths θ2α are
listed in Table 3 in the last two columns. The α-decay reduced widths were calculated
using standard equations of resonance reaction theory. For evaluation of the SFs of
sub-threshold states, the experimental data from (6Li,d) reaction [46] were used, where
SFs relative to 4+1 10.356 MeV are presented. Taking into account some inconsistencies
in determination of absolute values of the sub-threshold SFs, we rescale this data using
an over-threshold reference state with known α-decay width.

The results displayed in Table 3 are encouraging. The model includes no addi-
tional parameters, nor fits, and yet for most levels observed in experiments theoretical
partners may be found. Over 2/3 of states predicted to have strong clustering prop-
erties have been identified experimentally. Many states with lower α SF (not listed in
Table 3) are also reproduced by the theory. Other properties of the 16O states that
include electric quadrupole transitions and possible identification of rotational bands
are also well-described, see further details in Ref. [29].

The lack of configurations from the pf shell appears to be a reason for discrep-
ancy related to α-decaying states 1− E(exp)=9.585 MeV and 3− E(exp)=11.6 MeV.
Disagreements similar in nature were seen in 18O, Ref. [5]. Some cases, such as those
marked in Table 3 by b, point toward deficiencies of the Hamiltonian.

Study of α-clustering in 10Be

10Be is another popular system for studies of clustering because it is one of the
lightest nuclei where the interplay between cluster and nucleon degrees of freedom
is manifested. Apart from that, 10Be provides a path for a better understanding
of the exotic isobar-analogous system of 10C [49]. The α-cluster properties of 10Be
are not easy to measure because 6He beams lack intensity and there is no other
convenient projectile for such studies. The lack of information has motivated active
discussions and numerous loosely validated qualitative conclusions, that could benefit
from additional theoretical work.

The study of 10Be is similar to that of 16O described in the previous section.
We use the same unrestricted p-sd configuration space with the effective interaction
Hamiltonian from Ref. [17], and consider the same set of four-nucleon operators in
Eq. (13). A large number of the states with natural parity was obtained, and for each
state the SF for the α+6He channel was computed from Eq. (11). The results are
summarized in Table 4 which includes all theoretically predicted states up to 10 MeV
of excitation. In the region between 10 and 15 MeV only the states with Sl > 0.01
are listed, and this list includes all high-spin states (J ≥ 4). For higher excitation
energy low-spin levels are tabulated in the case where Γα > 300 keV and high-spin
levels where Γα > 100 keV.

The three lowest states, 0+1 , 2+1 , and 4+2 , in 10Be are strongly clustered, which are
the only states with Sl > 0.3. The clustering is explained by the large
|(1p)6[42], (λ, µ) = (2, 2), L, S = 0, T = 1〉 component, the weight of this component
is 0.65, 0.53 and 0.35 for 0+1 , 2+1 , and 4+2 , respectively. These states do not form a
rotational band because the 0+1 ground state in the algebraic model has a value of
projection K = 0, and this value of intrinsic angular momentum projection is not
presented in the 4+ state related to (λ, µ) = (2, 2) SU(3) representation. Clustering
effects are weak in high-spin states. For all 6+ states Sl < 0.04; all 7− and 8+ states
are found to have near zero SFs, to be specific, Sl < 10−6.

The experimental information presented in Table 4 comes from Refs. [50–54]. As
it is the case for the 16O example presented in Table 3, agreement in spectroscopic
factors is the primary criterion in establishing theory-experiment correspondence for
10Be as presented in Table 4; the theory-experiment agreement in excitation energy
is considered secondary. The traditional R-matrix relations, see for example Ref. [51],
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Table 4: Results of the CNCIM calculations for 10Be compared with the available
experimental information. Energies are given in MeV; decay widths are in keV, or as
indicated.

Jπ
s Sl Eth

x Γth
α Eexp

x Γexp
α θ2α(r1) θ2α(r2)

0+1 0.686 0.000 0

2+1 0.563 3.330 3.368

0+2 0.095 4.244 6.197

2+2 0.049 5.741 5.958

2+3 0.052 6.123

1−1 0.027 6.290 5.96

3−1 0.098 6.926 7.371 0.42a,b

2+4 0.116 7.650 0.3 eV 7.542 0.5 eV 1.1a,b 0.19

0+3 0.023 8.068 17

4+1 0.049 8.933 4.7

1−2 0.045 9.755 180 10.57

3−2 0.046 9.897 61

2+5 0.027 10.819 50
9.56 141d 0.074

2+6 0.023 11.295 43

0+5 0.153 11.403 800

4+2 0.370 11.426 180 10.15 185b 1.5b 0.38

5−1 0.148 11.440 150 11.93 200 0.20

1−5 0.013 12.650 76

6+1 0.013 13.134 24 13.54b 99 1.0b 0.051

5−2 0.128 13.545 250

2+10 0.040 13.789 240

4+3 0.011 13.992 20
11.76 121 0.066

4+4 0.022 14.233 40

0+6 0.018 14.252 120

3−7 0.014 14.468 77

5−3 0.059 14.992 180

4+5 0.161 15.071 800 15.3(6−)c 800d 0.16

2+13 0.046 15.534 330

4+6 0.033 15.809 180

4+7 0.03 16.426 150

4+9 0.200 17.510 1300

4+11 0.041 18.566 290

5−8 0.017 19.448 110

5−9 0.018 19.840 120

5−11 0.017 21.395 130

6+4 0.037 19.101 170

aWidths deduced from the isobaric analog channel 10B →6Li(0+)+α [50, 51].
bResults from Ref. [51].
cResults from Ref. [52].
dTotal width Γtot.



Study of cluster reactions... 65

are used to obtain theoretical predictions for the decay width Γth
α , and inversely, to ob-

tain the reduced widths θ2α from the experimentally observed α decay width Γexp
α . The

R-matrix relations depend on the excitation energy and on the channel radius r. If the
energy of the level is known experimentally, the observed value is used to compute Γth

α .
Some significant dependence of the decay width on the channel radius is demonstrated
by the last two columns in Table 4. For example, the reduced widths θ2α presented in
Ref. [51] (7th column) appear to be in disagreement, but those results were obtained
using the channel radius r1=4.77 fm, typical for stable nuclei. In the last column of
Table 4 we demonstrate that another choice of the channel radius, r2 = 6.0 fm, brings
all values of θ2α to a good agreement with calculated SFs. Moreover, the choice of a
larger channel radius is more natural for a halo 6He nucleus.

The calculated energy spectrum is consistent with the recent experimental find-
ings. There are some discrepancies: somewhat noticeable deviations in excitation
energy are observed for the 0+2 level and the doublet 4+3,4. In addition to that, a
number of theoretically predicted levels has not been observed in experiments; those,
however, can often be explained by small decay widths, such as in the case of the 2+3
state.

Being encouraged by the success of the CNCIM, we are compelled to take part in
discussions related to interpretation of recent experimental data. Our results summa-
rized in Table 4 confirm that the branching ratio Γα/Γtot for the state
at Eexp

x = 7.543 MeV is close to 1.3·10−4 [51]. The conclusion of Refs. [51, 53] that
the level 10.15 MeV is 4+ and not 3− [52] is also confirmed. Results in Table 4
suggest that the state at Ex = 13.54 MeV [51] is actually a 6+ and 5− doublet of
resonances. The state at Ex = 15.3 MeV is characterized in Ref. [52] as Jπ=6− based
on an expectation to see a K = 1 “band” member in this energy region; according to
our results it is probably a 4+ state. A number of theoretical results in Table 4 can
potentially guide future experimental investigations.

4 Summary

In this work we develop formalism and methods for conducting studies of nuclear
clustering using the advanced large-scale shell model technique. The effects of Pauli
exclusion principle which, as found in previous works, result in the specific renormal-
ization of wave functions of the cluster channels and require redefinition of traditional
cluster characteristics are accurately taken into account. The developed formalism
is applicable for all microscopic configuration interaction approaches, including ab
initio no-core schemes. Cluster transitions between the states of all kinds (ground,
excited, resonance; strongly and weakly clustered) can be treated in our approach.
The end products of the approach are the cluster spectroscopic characteristics that
can be directly compared with experimental observables.

We use a variety of examples to demonstrate the capability of our approach. Re-
viewing the α spectroscopic factors of ground state to ground state transitions in
even-even nuclei of the sd shell we resolve a long-standing problem related to under-
estimation of absolute values of spectroscopic factors and obtain a good agreement
with the experimental data.

We perform two large-scale studies of 16O and 10Be nuclei within the p-sd valence
space. The 16O system is chosen because α-decay widths and transfer strengths
going to the ground state of 12C nucleus have been measured for many states. The
performed calculations provide a good description of both the spectrum and the alpha-
decay widths. These results along with the ones related to the traditional single-
particle excitations, electromagnetic transitions and cluster rotational bands, obtained
both in our calculations and in preceding papers, validate the approach.

With the 10Be study we join the recent debate about the nature of clustering in
this exotic nucleus. The widths of known α-decaying resonances of the nucleus turn
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out to be well-described in CNCIM. This allows us to discuss structure of these states
and to make predictions.

We would like to conclude that the success of the CNCIM reported in this work
indicate that in the era of supercomputers the study of clustering physics becomes
feasible within the phenomenological or ab initio configuration interaction technique.

We thank V. Goldberg, T. Dytrych and G. Rogachev for motivating discussions.
This material is based upon work supported by the U.S. Department of Energy Office
of Science, Office of Nuclear Physics under Award Number DE-SC-0009883.
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Abstract

We use the Gogny force to calculate the two-body matrix elements of the
nucleon-nucleon (NN) interaction for shell-model calculations. As the first step,
we ignore the effective three-body force which is usually written in a density-
dependent two-body form in the Gogny force, therefore the parameters of the
Gogny force should be readjusted. In the present work, we investigate sd-shell
nuclei. The comparison with experimental data shows that the shell-model
calculations starting from the Gogny force can be successful. The present cal-
culations are preliminary, and further work is going on. The aim is to obtain
consistent descriptions in both shell-model and mean-field calculations using a
unified Gogny force.

Keywords: Gogny force; two-body matrix elements; shell model; sd-shell nuclei;
spectra

1 Introduction

In shell-model calculations, one of the most crucial tasks is how to calculate the
two-body matrix elements (TBME’s) of the nucleon-nucleon (NN) interaction. One
can start from a realistic bare NN interaction and make necessary renormalization
to soften it for shell-model calculations. For core shell-model calculations, a further
renormalization is needed to include effects from excluded space (including core po-
larization). The renormalization approximations would bring restrictions on calcula-
tions. For example, the renormalization using the folded-diagram expansion restricts
the shell-model calculations within a single shell. This means that the model space
cannot include configurations from different shells due to perturbation approximation
used [1]. On the other hand, such calculations are complicated mathematically and
time-consuming computationally, and cannot be accurately quantitatively compared
with experimental data.

As another way, one can use phenomenological interaction matrix elements ob-
tained by fitting to experimental data, e.g., the USD interaction for the sd shell [2,3].
However such phenomenological method involves a big number of parameters to be
determined by fitting data. This is a big task in fitting, particularly for heavy mass
regions, and also requires enough experimental data available.

In the present work, we use the Gogny force [4,5] to calculate the effective TBME’s.
The Gogny force has been successfully used in mean-field calculations, involving

1e-mail: frxu@pku.edu.cn
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only 14 parameters. Similar works using the Skyrme force were done for the sd-
shell nuclei 18O and 36Ar [6], and for p-shell nuclei [7]. These calculations indicate
that the phenomenological Skyrme force which has been widely employed in mean-
field calculations can be used for the calculations of effective TBME’s in shell model.
Such phenomenological calculations of TBME’s involve much less parameters than in
the case of the USD interaction.

2 The model and calculations

The Gogny force is written as [4, 5]

V (1, 2) =
∑

j=1,2

e−(r1−r2)
2/µ2

j (Wj +BjPσ −HjPτ −MjPσPτ )

+ t0 (1 + x0Pσ) δ(r1 − r2)

[
ρ

(
r1 + r2

2

)]α

+ iW0
←−∇12 δ(r1 − r2)×−→∇12 · (σ1 − σ2),

where Pσ (Pτ ) is a two-body spin (isospin) exchange operator. Totally there are 14
parameters with µ1 and µ2 describing the short- and intermediate-range properties
of the nuclear interaction, respectively.

As the first step of our work, we ignore the three-body-force density-dependent
term, t0 (1+x0Pσ) δ(r1−r2)

[
ρ
(
r1+r2

2

)]α
. Such approximation should be reasonable in

shell model calculations in which the two-body interaction provides the most impor-
tant contributions. Now only 11 parameters are involved in calculations of TBME’s.
Because the existing Gogny parameters have been evaluated by mean-field model fit-
ting to nuclear structure data mainly which included the three-body force, the Gogny
parameters should be refitted for the shell-model calculations ignoring the three-body
force.

In the present work, to test the validity of the Gogny shell model, we focus
on the sd-shell nuclei which have been well investigated by shell-model calculations.
Calculations are performed in the spherical harmonic oscillator basis with
~ω ≈ 45A−1/3 − 25A−2/3 [3]. The sd-shell single-particle energies are the same as
in the USDB shell model [3]: e(d5/2) = −3.9257 MeV; e(s1/2) = −3.2079 MeV;
e(d3/2) = 2.1117 MeV.

We choose five nuclei, 18O, 18F, 20Ne, 22Na, 24Mg, for the fit of the 11 parameters.
We fit the lowest level for each given spin in their spectra. The NuShellX code [8] is
used for the shell-model calculations. We adopt the Monte Carlo simulated annealing
algorithm in the process of parameter fittings. The fitted parameters are listed and
compared with existing mean-field Gogny parameters in Table 1.

With the parameters determined, we calculate the TBME’s for the sd shell and
perform shell-model calculations using the NuShellX code [8] for this mass region.
Figures 1–3 display some of spectroscopic calculations of sd-shell nuclei. We see that
a good agreement has been obtained. The Gogny force involving only 11 parameters
can describe well the effective shell-model interaction, providing a simple way to
calculate the TBME’s. This will be very useful.

3 Summary

We have used the Gogny force which is a non-zero-range effective interaction, to
calculate the TBME’s of the shell-model NN interaction. As the first step, we ignore
the three-body force but readjust the Gogny parameters. In the present work, we
focus on sd-shell nuclei. Five nuclei, 18O, 18F, 20Ne, 22Na and 24Mg were chosen in
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Figure 1: Shell-model calculations using
TBME’s calculated with the Gogny force
with the refitted Gogny parameters given
in Table 1, compared with the USDB cal-
culations [3] and experimental data.
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Figure 2: Same as Fig. 1 but for another
set of nuclei.



F
ro
m

G
o
g
n
y
fo
rce

to
sh
ell-m

o
d
el

ca
lcu

la
tio

n
s

7
3

Table 1: Readjusted Gogny parameters, compared with the existing mean-field values of the Gogny parameters.

D1’ [4] D1 [4] D1M [5] D1N [9] D1S [10] FIT

µ1 (fm) 0.7000 0.7000 0.5000 0.8000 0.7000 0.6537
µ2 (fm) 1.2000 1.2000 1.0000 1.2000 1.2000 0.9837
W1 (MeV) −402.40 −402.40 −12797.57 −2047.61 −1720.30 −1951.8104
W2 (MeV) −21.30 −21.30 490.95 293.02 103.64 272.4556
B1 (MeV) −100.00 −100.00 14048.85 1700.00 1300.00 3280.8417
B2 (MeV) −11.77 −11.77 −752.27 −300.78 −163.48 −607.9833
H1 (MeV) −496.20 −496.20 −15144.43 −2414.93 −1813.53 −2433.3474
H2 (MeV) 37.27 37.27 675.12 414.59 162.81 273.1813
M1 (MeV) −23.56 −23.56 11963.89 1519.35 1397.60 2562.6194
M2 (MeV) −68.81 −68.81 −693.57 −316.84 −223.93 −647.3149
W0 (MeV · fm5) 130.00 115.00 115.36 115.00 −130.00 460.8928

Figure 3: Same as Figs. 1 and 2 but for
another set of nuclei.
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the fitting of the parameters. With such determined parameters, we calculated the
TBME’s for the sd shell and performed shell-model calculations of nuclear spectra in
this mass region. Good results have been obtained.

The further work should be to extend the method on other mass regions, for
example, pf shell and sd + pf shells. The Gogny force provides a powerful way to
calculate the TBME’s. We should also take the three-body force into account in the
next work. By taking the existing Gogny parameters, we can test whether the Gogny
force can give an unified description within both mean field and shell models.
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Abstract

We study the structure of low-lying states in 6Li, 6He, 8Be, 8B, 12C, and 16O,
using ab initio symmetry-adapted no-core shell model. The results of our study
demonstrate that collective modes in light nuclei emerge from first principles.
We investigate the impact of the symmetry-adapted model space on spectro-
scopic properties and, in the case of the ground state of 6Li, on elastic electron
scattering charge form factor. The results confirm that only a small symmetry-
adapted subspace of the complete model space is needed to reproduce accurately
complete-space observables and the form factor momentum dependence.

Keywords: No-core shell model; SU(3) coupling scheme; p-shell nuclei; elec-
tron scattering

1 Introduction

Ab initio approaches to nuclear structure and reactions have advanced our under-
standing and capability of achieving first-principle descriptions of p-shell nuclei [1–3].
These advances are driven by the major progress in the development of realistic nu-
clear potential models, such as J-matrix inverse scattering potentials [4] and two- and
three-nucleon potentials derived from meson exchange theory [5] or by using chiral
effective field theory [6], and, at the same time, by the utilization of massively parallel
computing resources [7–9].

These new developments place serious demands on available computational re-
sources for achieving converged properties of p-shell nuclei. This points to the need of
further major advances in many-body methods to access a wider range of nuclei and
experimental observables, while retaining the predictive power of ab initio methods
which makes them suitable for, e. g., targeting short-lived nuclei that are inaccessi-
ble by experiment but essential to further modeling, for example, of the dynamics of
X-ray bursts and the path of nucleosynthesis (see, e. g., Refs. [10, 11]).

The main limitation of ab initio approaches is inherently coupled with the combi-
natorial growth in the size of the many-particle model space with increasing number
of nucleons and expansion in the number of single-particle levels in the model space.
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This rapid growth motivates us to develop and investigate a novel model, the ab initio
symmetry-adapted no-core shell model (SA-NCSM) [12].

The SA-NCSM adopts the first-principle concept and joins a no-core shell model
(NCSM) with a SU(3)-based coupling scheme [13]. The NCSM [2] calculations are
carried out in many-particle basis constructed from harmonic oscillator (HO) single-
particle states characterized by the HO frequency ~Ω. The model space is spanned
by nuclear configurations of fixed parity consistent with the Pauli principle, and trun-
cated by a cutoff Nmax. The Nmax cutoff is defined as the maximum number of HO
quanta allowed in a many-particle state above the minimum for a given nucleus.

The many-nucleon basis states of the SA-NCSM for a given Nmax are constructed
in SU(3)-coupled proton-neutron formalism and are labeled as

|~γ;N(λµ)κL; (SpSnS); JM〉, (1)

where the quantum numbers Sp, Sn, and S denote proton, neutron, and total intrinsic
spins, respectively. The label N signifies the number of HO quanta with respect to the
minimal number for a given nucleus, and (λµ) represent a set of quantum numbers
associated with SU(3) irreducible representations, irreps. The label κ distinguishes
multiple occurrences of the same orbital momentum L in the parent irrep (λµ). The
orbital momentum L is coupled with S to the total angular momentum J and its pro-
jection M . The symbol ~γ schematically denotes additional quantum numbers needed
to unambiguously distinguish between irreps carrying the same N(λµ)(SpSnS) quan-
tum numbers.

In the current implementation of SA-NCSM, ~γ specifies a distribution of nucleon
clusters over the major HO shells and their inter-shell coupling. Specifically, in each
major HO shell η with degeneracy Ωη, nucleon clusters are arranged into antisym-
metric U(Ωη)×SU(2)Sη

irreps [14] with U(Ωη) further reduced with respect to SU(3).
The quantum numbers,

[
f1, ... , fΩη

]
αη(λη µη)Sη, along with SU(3)×SU(2)S labels of

inter-shell coupling unambiguously determine SA-NCSM basis states (1). Note that a
spatial symmetry associated with a Young shape

[
f1, ... , fΩη

]
is uniquely determined

by the imposed antisymmetrization and the associated intrinsic spin Sη. A multi-
plicity index αη is required to distinguish multiple occurrences of SU(3) irrep (λη µη)
in a given U(Ωη) irrep. The SA-NCSM basis states (1) bring forward important
information about nuclear shapes and deformation according to an established map-
ping [15]. For example, (00), (λ 0) and (0µ) describe spherical, prolate and oblate
shapes, respectively.

2 Emergence of collective modes in light nuclei

The significance of the SU(3) group for a microscopic description of nuclear collective
dynamics can be seen from the fact that it is a symmetry group of a successful Elliott
model [13], and a subgroup of a physically relevant Sp(3,R) symplectic model [16]
which provides a comprehensive theoretical foundation for understanding of the dom-
inant symmetries of nuclear collective motion.

To explore the nature of the most important many-nucleon correlations, we analyze
the four lowest-lying isospin-zero (T = 0) states of 6Li (1+gs, 3+1 , 2+1 , and 1+2 ), the
ground-state rotational bands of 8Be, 6He and 12C, the lowest 1+, 3+, and 0+ excited
states of 8B, and the ground state of 16O. We study the probability distribution across
Pauli-allowed (SpSnS) and (λµ) configurations.

Results for the ground state of 6Li and 8Be obtained with the JISP16 and chiral
N3LO interactions, respectively, are shown in Figs. 1 and 2. These figures illustrate
a feature common to all low-energy solutions considered. In particular, a highly
structured and regular mix of intrinsic spins and SU(3) spatial quantum numbers
which, furthermore, does not seem to depend on a particular choice of realistic NN
potential.
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Figure 1: Probability distributions for proton, neutron, and total intrinsic spin com-
ponents (SpSnS) across the Pauli-allowed (λµ) values (horizontal axis) for the 1+

ground state of 6Li obtained with Nmax = 10 and ~Ω = 20 MeV with the JISP16 in-
teraction. The total probability for each N~Ω subspace is given in the upper left-hand
corner of each histogram.

For a closer look at these results, first consider the spin content. We found that
the calculated eigenstates project at a 99% level onto a comparatively small subset
of intrinsic spin combinations. These combinations are characterized by the lowest
allowed values of proton and neutron spins, Sp and Sn, and favor the total intrinsic
spin S with maximal value, i. e., S = Sp + Sn. For instance, the ground state bands
in even-even nuclei, e. g., 8Be, 6He, 12C, and 16O, are found to be dominated by
many-particle configurations carrying total intrinsic spin of the protons and neutrons
equal to zero and one, with the largest contributions due to (SpSnS)=(000) and (112)
configurations. The lowest-lying eigenstates in 6Li are almost entirely realized in terms
of configurations characterized by the following intrinsic spin (SpSnS) combinations:
(12

1
21), (32

3
23), (12

3
22), and (32

1
22), where the first combination is carrying over 90% of

each eigenstate. Likewise, the same spin components as in the case of 6Li are found
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Figure 2: Probability distributions for proton, neutron, and total intrinsic spin com-
ponents (SpSnS) across the Pauli-allowed (λµ) values (horizontal axis) for the 0+

ground state of 8Be obtained with Nmax = 8 and ~Ω = 25 MeV with the chiral
N3LO interaction. The total probability for each N~Ω subspace is given in the upper
left-hand corner of each histogram. The concentration of strengths to the far right
within the histograms demonstrates the dominance of collectivity in the calculated
eigenstates.

to dominate the ground state and the lowest 1+, 3+, and 0+ excited states of 8B
(Table 1).

Second, consider the spatial degrees of freedom. Our results show that the mixing
of (λµ) quantum numbers, induced by the SU(3) symmetry breaking terms of realis-
tic interactions, exhibits a remarkably simple pattern. One of its key features is the

Table 1: Total probabilities of the dominant (Sp Sn S) spin configuration and the
dominant nuclear shapes according to Eq. (2) for the ground states of p-shell nuclei.

Nucleus (Sp Sn S) Prob. [%] (λ0 µ0) Prob. [%]
6Li (12

1
2 1) 93.26 (2 0) 98.13

8B (12
1
2 1) 85.17 (2 1) 87.94

8Be (0 0 0) 85.25 (4 0) 90.03
12C (0 0 0) 55.19 (0 4) 48.44
16O (0 0 0) 83.60 (0 0) 89.51
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preponderance of a single 0~Ω SU(3) irrep. This so-called leading irrep, according
to the established geometrical interpretation of SU(3) labels (λµ) [15], is charac-
terized by the largest value of the intrinsic quadrupole deformation. For instance,
the low-lying states of 6Li project at a 40% – 70% level onto the prolate 0~Ω SU(3)
irrep (2 0), as illustrated in Fig. 1 for the ground state. For the considered states
of 8B, 8Be, 12C, and 16O, qualitatively similar dominance of the leading 0~Ω SU(3)
irreps is observed — (2 1), (4 0), (0 4), and (0 0) irreps, associated with triaxial,
prolate, oblate, and spherical shapes, respectively. The clear dominance of the most
deformed 0~Ω configuration within low-lying states of light p-shell nuclei indicates
that the quadrupole-quadrupole interaction of the Elliott SU(3) model of nuclear
rotations [13] is realized naturally within an ab initio framework.

The analysis also reveals that the dominant SU(3) basis states at each N~Ω sub-
space (N = 0, 2, 4, ...) are typically those with (λµ) quantum numbers given by

λ+ 2µ = λ0 + 2µ0 +N, (2)

where λ0 and µ0 denote labels of the leading SU(3) irrep in the 0~Ω (N = 0) subspace.
Furthermore, there is an apparent hierarchy among states that fulfill the condition (2).
In particular, the N~Ω configurations with (λ0+N µ0), the so-called stretched states,
carry a noticeably higher probability than the others. For instance, the (2+N 0)
stretched states contribute at the 85% level to the ground state of 6Li, as can be
readily seen in Fig. 1. Moreover, the dominance of the stretched states is rapidly
increasing with the increasing many-nucleon basis cutoff Nmax.

3 Efficacy of symmetry-adapted concept

The observed simple patterns of intrinsic spin and deformation mixing support a
symmetry-adapted selection of configuration space that takes advantage of domi-
nant symmetries and refines the definition of the NCSM model space based solely on
the Nmax cutoff.

To accommodate highly-deformed configurations (high-energy HO excitations) to-
gether with essential mixing of low-energy excitations, typical SA-NCSM calculations
span the complete space up to a given N⊥

max, while beyond this, calculations include
only selected many-nucleon basis states limited by the Nmax cutoff. At each N~Ω
space, where N⊥ < N ≤ Nmax, we select many-nucleon basis states carrying a fixed
set of (SpSnS) and (λµ) quantum numbers. It is important to note that such a de-
fined model space keeps ability to factorize the center-of-mass motion exactly [17]. As
a result, a SA-NCSM model space defined by a set of dominant U(3) irreps N(λµ)
and important intrinsic spins, (SpSnS), yields eigensolutions with the center-of-mass
in the HO ground state. We adopt a notation where, for example, a SA-NCSM model
space of “〈4〉12” includes all the configurations up through N⊥

max = 4 and a restricted
subspace beyond N⊥

max = 4 up through Nmax = 12. When we quote only the Nmax

value, it is understood that the space is complete through that Nmax (for example
Nmax = 8 = N⊥

max).
The efficacy of the symmetry-adapted concept is illustrated for SA-NCSM re-

sults obtained in model spaces which are expanded beyond a complete N⊥
max space

with irreps that span a relatively few dominant intrinsic spin components and carry
quadrupole deformation specified by Eq. (2). Specifically, we vary N⊥

max from 2 to 10
with only the subspaces determined by Eq. (2) included beyond N⊥

max. This allows us
to study a convergence of spectroscopic properties towards results obtained in the com-
plete Nmax = 12 space and hence probes the efficacy of the symmetry-adapted model
space selection concept. We use a Coulomb plus JISP16 NN interaction for ~Ω values
ranging from 17.5 up to 25 MeV, along with the Gloeckner–Lawson prescription [18]
for elimination of spurious center-of-mass excitations. The SA-NCSM eigenstates are
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Figure 3: The ground-state energies of 6Li (a) and 6He (b), excitation energies
of T = 0 states of 6Li (c), 2+1 excited state of 6He (d), shown for the complete Nmax

(dashed black curves) and truncated 〈N⊥
max = Nmax〉12 (solid red lines) model spaces.

Results shown are for JISP16 and ~Ω = 20 MeV. Note relatively large changes when
the complete space is increased from Nmax = 2 to Nmax = 12 as compared to nearly
constant 〈Nmax〉12 SA-NCSM outcomes.

used to determine spectroscopic properties of low-lying T = 0 states of 6Li and the
ground-state band of 6He for 〈N⊥

max〉12 model spaces.
The results indicate that the observables obtained in the 〈N⊥

max〉12 symmetry-
adapted truncated spaces are excellent approximations to the corresponding Nmax =
12 complete-space counterparts. Furthermore, the level of agreement achieved is
only marginally dependent on N⊥

max. In particular, the ground-state binding ener-
gies obtained in a 〈2〉12 model space represent approximately 97% of the complete-
space Nmax = 12 binding energy in the case of 6Li and reach over 98% for 6He [see
Figs. 3 (a) and (b)]. The excitation energies differ only by 5 to a few hundred keV
from the corresponding complete-space Nmax = 12 results [Figs. 3 (c) and (d)].

The electric quadrupole moments and reduced electromagnetic B(E2) transition
strengths are reproduced remarkably well by the SA-NCSM for 6He in the restricted
〈8〉12 space. Notably, the 〈2〉12 eigensolutions for 6Li yield results for B(E2) strengths
and quadrupole moments that track closely with their complete Nmax = 12 space
counterparts (see Fig. 4). It is known that a further expansion of the model space
beyond Nmax = 12 is needed to reach the convergence [20, 21]. However, the close
correlation between the Nmax = 12 and 〈2〉12 results is strongly suggestive that
this convergence can be obtained through the leading SU(3) irreps in the symmetry-
adapted space.

3.1 Electron-scattering form factors

We also study the impact of the symmetry-adapted model space selection on the elas-
tic electron scattering charge form factors for the ground state of 6Li for momentum
transfer up to q ≈ 4 fm−1. Namely, we examine the longitudinal form factor (C0)
for a range of ~Ω = 15, 20, and 25 MeV and for several SU(3)-selected spaces, 〈2〉12,
〈4〉12, 〈6〉12, 〈8〉12, 〈10〉12, together with the complete Nmax = 12 space. We use
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Figure 4: Electric quadrupole transition probabilities and quadrupole moments for
T = 0 states of 6Li calculated with JISP16 interaction without using effective charges,
are shown for the complete Nmax (dashed black lines) and 〈N⊥

max = Nmax〉12 trun-
cated (solid red lines) model spaces [(a) and (c)], and as functions of ~Ω for the
complete Nmax = 12 and 〈6〉12 truncated (solid blue lines) model spaces [(b) and
(d)]. Experimentally, B(E2; 1+1 → 3+1 ) = 25.6(20) e2 ·fm4 [19].

the realistic nucleon-nucleon interactions N2LOopt [22] and JISP16 [4]. The C0 form
factor is a Fourier transform of the charge density, and hence it provides an indication
on how well nuclear wave functions reproduce the low- and higher-momentum com-
ponents of the nuclear charge density. This, in turn, can reveal important underlying
physics responsible for achieving convergence of nuclear radii.

The charge form factors are calculated in the first-order plane-wave Born approxi-
mation. They have the center-of-mass contribution removed and are further adjusted
to account for the finite proton size. They are derived using the formalism and an ex-
tension of the computer code developed by Lee [24] and described in detail in Ref. [25],
as well as using an SU(3)-based apparatus [26, 27] for calculating charge and current
density distributions in terms of the shell-model one-body density matrix elements
(OBDMEs) and the single-particle matrix elements of the associated electromagnetic
operators.

Longitudinal electron scattering form factors for the ground state of 6Li are studied
for the bare JISP16 and N2LOopt NN interactions up to Nmax = 12 spaces. An
important result is that in all cases, the 〈6〉12 selected-space results are found to
be almost identical to the complete-space counterparts in low- and intermediate-
momentum regions (see Fig. 5), and even above 3 fm−1 (not shown in the figure).
This remains valid for various ~Ω values, as well as when different interactions are
employed [Figs. 5 (a) and (b)]. This further confirms the validity of the symmetry-
adapted concept of the SA-NCSM. Indeed, the present results indicate that using these
selected spaces that constitute only a fraction of the complete model space (about 1%
for 〈6〉12), it is possible to reproduce, in addition, the complete-space form factor
momentum dependence. In short, symmetry-adapted model-space selection based on
a straightforward prescription dictated by the approximate dynamical symmetries,
eliminates many-nucleon basis states that are shown in this study to be also irrelevant
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Figure 5: Longitudinal C0 electron scattering form factors F 2
L (translationally invari-

ant) for the SA-NCSM 1+ ground state of 6Li calculated in the complete Nmax = 12
space (darker colors) and the SU(3)-selected spaces, 〈2〉12, 〈4〉12, 〈6〉12, 〈8〉12, and
〈10〉12 (lighter colors), for ~Ω = 15 MeV or b = 1.66 fm (blue), ~Ω = 20 MeV
or b = 1.44 fm (red), and ~Ω = 25 MeV or b = 1.29 fm (black) with the bare JISP16
interaction (a) and with the bare N2LOopt interaction (b). Experimental data are
taken from Ref. [23].

for describing the single-proton momentum distribution in the 6Li ground state as
revealed by the C0 form factor at low/intermediate momentum transfers and above.

Deviations in the form factor as a result of the SU(3)-based selection of model
spaces are found to decrease with ~Ω (see Fig. 5: the higher is the ~Ω value, the
narrower is the curve). This effect is more prominent for momenta q > 2 fm−1.
The outcome suggests that for high enough ~Ω values, results are almost independent
from the model-space truncation and, for ~Ω = 25 MeV, the 〈2〉12 form factor already
reproduces the complete-space result. For low ~Ω values, larger N⊥

max spaces (〈4〉12 or
〈6〉12) appear necessary pointing to a mixing of more deformation/spin configurations
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Figure 6: Longitudinal C0 electron scattering form factors F 2
L (translationally in-

variant) for the SA-NCSM 1+ ground state of 6Li calculated for ~Ω = 20 MeV or
b = 1.44 fm and with the bare JISP16 interaction. The outcome for the SU(3)-selected
spaces, 〈6〉8 (red dots) and 〈6〉12 (blue dots), accurately reproduces the correspond-
ing results for the complete Nmax = 8 space (solid, red) and Nmax = 12 space (solid,
blue), with larger-space Nmax = 12 results lying slightly closer to experiment [23].

within these low-~Ω spaces. However, while low values, ~Ω . 15 MeV, are known to
require larger model spaces to obtain convergence of the ground state energy, such a
mixing at the 4~Ω and 6~Ω subspaces is expected to decrease for Nmax > 12. In short,
the SU(3)-based truncation of the model space yields reasonably small deviations in
the form factor, especially for q < 2 fm−1 and for ~Ω > 15 MeV.

While results using N2LOopt lie slightly closer to experiment, both interactions
show similar patterns with a small dependence on ~Ω (Fig. 5). Furthermore, as one
increases Nmax (e. g., from Nmax = 8 to Nmax = 12), SA-NCSM predictions are
reasonably trending towards experiment, as illustrated for a 〈6〉Nmax selected space
and for a reasonable ~Ω value of 20 MeV in Fig. 6. We note that the Nmax = 12
results continue to deviate from the experimental data for intermediate momenta,
especially for q & 2 fm−1. Agreement with experiment could be improved by including
contributions of three-body interactions in the SA-NCSM calculations and of two-
body operators in the F 2

L calculations.

4 Conclusions

We have developed a novel ab initio approach, SA-NCSM, that capitalizes on the
SU(3) symmetry-adapted physically relevant many-particle basis. We analyzed the
structure of low-lying states in p-shell nuclei obtained with JISP16, N2LOopt, and
chiral N3LO realistic NN interactions using complete Nmax model spaces. The result-
ing wave functions are dominated by many-nucleon basis states with large quadrupole
deformations and low intrinsic spins. This simple orderly pattern does not seem to de-
pend on the particular choice of realistic NN potential. The results demonstrate that
observed collective phenomena in light nuclei emerge naturally from first-principles
considerations.

We carried out the calculations of the binding energies, excitation energies, elec-
tromagnetic moments, E2 and M1 reduced transitions, for selected states in 6Li and
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6He obtained with the symmetry-adapted model spaces. We have shown that the SA-
NCSM reduces the configuration space to physically relevant subspaces without com-
promising the accuracy of ab initio NCSM approach. Furthermore, we demonstrated
that the symmetry-adapted model space properly treats low- and higher-momentum
components of the 6Li ground state charge density. The outcome confirms the utility
of the SA-NCSM concept for low-lying nuclear states.
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Abstract

We have used the density functional theory to investigate the interaction of
titanium nanoparticles with oxygen. We observed the energy-favorable site for
oxygen atoms and investigated the atomic structure of the oxidized cluster.

Keywords: Nanoparticles; metals and alloys; oxidation; simulation and mod-
eling

1 Introduction

Titanium has a high corrosion resistance, a low thermal expansion, and a high me-
chanical strength [1, 2]. These properties make titanium and its alloys one of the
most important structural materials for applications in aerospace vehicles, defense
technology, and metal cutting.

The interaction of titanium with oxygen is an important scientific and techno-
logical problem [3] since its mechanical and electrical properties can be significantly
modified [4–6]. The dissolution of oxygen in bulk titanium (up to 0.6 wt. %) has
been shown recently [1] to improve its mechanical properties. Kyung-Ho Heo and co-
authors [4] have shown the hardness and electrical resistivity of oxygen-doped bulk
Ti to increase linearly with increasing oxygen concentration (500–7900 ppm O). The
interaction of bulk and surface titanium with oxygen has been investigated for many
years. It was shown by first-principles quantum-mechanical methods [3,7–9] that the
oxygen prefers to occupy an octahedral interstitial site in the bulk lattice. In addition,
Henry et al. [9] have found three oxygen interstitial sites in titanium and quantified
mechanisms for oxygen diffusion. Experimental results [10,11] have indicated different
oxidation levels of metallic titanium at different temperatures. At low temperature,
the oxygen is initially adsorbed on the surface layer of Ti (0001) [10] and then diffuses
into lower layers when the temperature increases [11].

It is still unclear how the oxygen affects atomic and electronic structures as well
as the agglomeration processes of Ti nanoparticles. Thus, we have investigated the
oxygen adsorption on titanium nanoclusters and have calculated the binding energy
as a function of oxygen concentration. Our results explain why the oxygen is adsorbed
on faces of the icosahedral Ti13 cluster.

2 Methods and approaches

First-principles calculations were performed using the generalized gradient approx-
imation and allowing for spin polarization within the density functional theory by
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means of the ABINIT software package [12]. Pseudopotentials for Ti and O atoms
were constructed using the program fhi98PP [13]. A special 1× 1× 1 G-point in the
Monkhorst–Pack grid [14] with a cutoff energy of 816.34 eV was used to simulate the
Ti clusters. The simulation clusters were placed in a very large cubic cell with the size
of approximately 19 Å. The atomic structure was relaxed in the calculations while the
interatomic forces were less than 0.005 eV/Å. In addition, the Ti2 dimer structure was
calculated to validate the titanium pseudopotentials. The calculated Ti-Ti distance
was 1.9055 Å that is slightly less than the experimental value of 1.9422±0.0008 Å [15].

3 Results and discussions

Experiments [16] have shown that the most stable titanium nanoparticle structures
are the icosahedral clusters Ti13, Ti19 and Ti55. We investigated the Ti13 cluster here
because larger clusters require considerable computing resources.

To study the interaction of the Ti13 cluster with the oxygen, we considered two
oxygen coverages, 0.05 and 1 monolayer (ML). The 0.05 ML coverage corresponds to
one O atom on the Ti13 surface whereas 1 ML corresponds to 20 oxygen atoms.

An average binding energy Eb of O atom on the Ti13 surface is given by

Eb = − 1

NO

[
EO/Ti −

(
ETi +NOE

O
)]
, (1)

where NO is the number of O atoms on the surface, EO/Ti is the total energy of
the adsorbate-substrate system, ETi is the energy of the Ti13 cluster, and EO is the
energy of the O atom.

From Eq. (1), we obtain Eb = 12.01 eV for the oxygen on the Ti13 surface (Fig. 1),
which is slightly higher than the energy of dissolved oxygen (11.85 eV) in bulk ti-
tanium. Therefore the titanium nanoparticles are more reactive to oxygen than the
bulk titanium [17]. To characterize the dissolved oxygen in bulk titanium, one oxygen
atom has been incorporated in the favorable octahedral site of the bulk lattice [3,7–9].
Hence our calculations demonstrate that, despite the transition from bulk titanium to
the nanoscale (including Ti13 clusters), the interacting O atoms are advantageously
located in positions that correspond to “bulk” interstitial sites. These sites are cer-
tainly not octahedral (as in the bulk Ti). Due to the similarity of the local atomic
structures of the bulk and isolated Ti13 clusters [18] and the coincidence of the Ti-O
bonds, such a comparison is appropriate.

Figure 1: Position of one oxygen atom (red circle) adsorbed on the Ti13 cluster (blue
circles).
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Figure 2: The Ti13 cluster structure (blue circles) with 20 adsorbed oxygen atoms
(red circles).

When the oxygen coverage is increased to one monolayer, i. e., up to 20 atoms on
the cluster surface (see Fig. 2), the oxygen binding energy reduces to 10.49 eV. The
reduced binding energy manifests increased repulsive forces between the adsorbed
oxygen atoms. It can be seen in Fig. 2 that the oxygen atoms are located on each
face of the Ti13 icosahedron. Average Ti-O and O-O bond lengths are approximately
1.99 and 2.33 Å, respectively. However, when we allow all Ti atoms to relax in the
cluster, it tends to form an oxide cluster where all Ti-Ti bonds are broken. Thus, in
this case, we have fixed the titanium atoms during the relaxation.

Our results regarding the energetics and structural properties of oxygen adsorption
on titanium nanoclusters, are very important for understanding an oxygen diffusion
in nanostructured titanium materials. Specifically, the results will impact the design,
production and application of these materials in aerospace and engineering.

4 Conclusions

In conclusion, we have used first-principles calculations to investigate the oxygen ad-
sorption process on the stable Ti13 nanocluster. The atomic structure of the oxidized
titanium clusters and the oxygen adsorption energy were studied in detail for low
and high O coverages on the Ti13 surface. The results indicate that titanium dur-
ing its interaction with oxygen, for both bulk and nanoscale states, has O atoms
advantageously located in the positions corresponding to “bulk” interstitial sites.
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Abstract

The paper deals with vertex functions representing matrix elements of two-
fragment (a → 1 + 2) or three-fragment (a → 1 + 2 + 3) virtual decays of a
bound nuclear system a. Much attention is given to the on-shell vertex functions
corresponding to the case when all external particles (fragments) are on the
mass shell. The relations are established between the on-shell vertex functions
and the coefficients multiplying the asymptotic forms of wave functions and
overlap integrals in two- or three-fragment channels. It is shown that the on-shell
three-fragment vertex functions determine the contributions to the amplitudes of
processes described by the Feynman diagrams containing loops. The anomalous
asymptotics of the wave functions in the two-fragment channels is discussed.

Keywords: Vertex function; bound state; asymptotics

1 Introduction

The vertex function (VF) W for the virtual n-fragment decay of a bound state a is
the matrix element of the process

a→ 1 + 2 + . . .+ n. (1)

If the system 1 + 2 + . . .+ n possesses a bound state a, then the matrix element (the
amplitude) of the scattering process

1 + 2 + . . .+ n→ 1 + 2 + . . .+ n (2)

has a pole at the energy corresponding to that bound state, and the VF W is related
to the residue of the matrix element at that pole (see Fig. 1).

a

W W

Figure 1:
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The matrix element of the process (2) can be written as

M =
〈

Φf |V |PΨ
(+)
i

〉
= 〈Φf |V |P (1 +GV )Φi〉, (3)

P is the (anti)symmetrization operator. Using the spectral decomposition of the
Green’s function G and the relation V = H −H0 one easily gets

W (~q1, ~q2, . . . , ~qn−1) = −N1/2 (T + ǫ) 〈φ1φ2 . . . φn|φa〉. (4)

Here ~qi are the Jacobi momenta, φi is the internal wave function of the fragment i,
T is the relative kinetic energy, and ǫ > 0 is the binding energy in the channel
a→ 1 + 2 + . . .+ n.

The factor N1/2 arises due to the identity of constituents. If all fragments consist
of nucleons which are considered to be identical, then

N =
Aa!

A1!A2! . . . An!
, (5)

where Ai denotes the number of nucleons in the fragment i. If all fragments 1, 2, . . . n
are treated as structureless, then 〈φ1φ2 . . . φn|φa〉 turns into the wave function φa
and N equals n!.

VFs W for a→ 1 + 2 + . . .+ n are related to the coordinate asymptotics of φa in
the channel 1 + 2 + . . .+n. In what follows we discuss this relation for the important
cases n = 2 and n = 3.

The system of units ~ = c = 1 is used throughout the paper.

2 Two-fragment case (n = 2)

2.1 General formalism

From general principles the expression for the vertex function (the matrix element)
of the two-body decay (virtual or real) a→ b+ c can be written as [1]

Wa→b+c =
√

4π
∑

lsmlms

Gabc(ls;σa, σb, σc)

× (JbMbJcMc|sms)(lmlsms|JaMa)Ylm(~qbc/qbc). (6)

Here Ji and Mi are the spin of the particle i and its projection, (aαbβ|cγ) are the
Clebsh–Gordon coefficients, ~qbc is the relative momentum of b and c, l and ml are the
relative angular momentum of b and c and its projection, s andms are the channel spin
and its projection, Ylm is the spherical function, Gabc(ls;σa, σb, σc) are the invariant
vertex form factors (VFF). Generally, when all three particles a, b, c are off-shell,
VFFs Gabc may depend on three kinematic invariants and the quantities σa, σb, σc are
selected as such invariants in Eq. (6). σi is defined as σi = Ei − ~p2i /2mi where Ei, ~pi
and mi are the kinetic energy, the momentum, and the mass of the particle i. If the
particle i is on-shell, then σi = 0.

However, if one relates the vertex function to the residue of a scattering amplitude
and defines it according to Eq. (4), then the VFF Gabc(ls;σa, σb, σc) depends on the
relative momentum qbc only which is related to σi:

q2bc = −κ2 − 2µbc(σb + σc − σa), κ2 = 2µbcǫ, ǫ = mb +mc −ma, (7)

µij is the reduced mass of i and j. It follows from Eq. (7) that if all three particles
are on shell (σa = σb = σc = 0), then qbc = iκ.

The on-shell values of VFFs are called vertex constants (VC): G ≡ G(q)|q=iκ .
They are the analogues of the renormalized coupling constants in quantum field the-
ory. The VCs thus defined are real.
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Using Eq. (6) and the analogous expansion of the overlap function (4) in the
coordinate representation one obtains

Gabc(ls; q) = −(πNbc)
1/2 q

2 + κ2

µbc

∞∫

0

jl(qr) Iabc(ls; r) r
2dr, (8)

where Iabc(ls; r) is the radial overlap integral of the wave functions of a, b and c, and r
is the distance between b and c.

The VC G is directly related to the asymptotic normalization coefficient (ANC)
of Iabc(ls; r) at r →∞. In the case of a short-range interaction,

Iabc(ls; r) ≈ Cabc(ls)
e−κr

r
, r →∞. (9)

Inserting Eq. (9) into Eq. (8) and setting q = iκ, it is easy to obtain a relation between
the VC Gabc(ls) and the ANC Cabc(ls) [1]:

Gabc(ls) = − (πNbc)
1/2

µbc
Cabc(ls). (10)

Note that the factorN
1/2
bc is often included into the definition ofCabc(ls) and Iabc(ls; r).

The long-range Coulomb interaction modifies the asymptotic behavior of the over-
lap integral Iabc(ls; r), namely

Iabc(ls; r) ≈ Cabc(ls)
W−η,l+1/2(κr)

r
≈ Cabc(ls)

e−κr−η ln(2κr)

r
, r →∞. (11)

Here η = ZbZce
2µbc/κ is the Coulomb (Sommerfeld) parameter for a bound state a,

Zie is the charge of the fragment i, and W is the Whittaker function.
In the presence of the Coulomb interaction Eq. (8) can not be used for determining

the VC since at q → iκ the right-hand-side of (8) tends to 0 for the repulsive Coulomb
potential and to ∞ for the attractive potential.

There are different definitions of VCs in the presence of the Coulomb interac-
tion. The most natural definition relates the VC to the Coulomb-modified scattering
amplitude.

The total amplitude of elastic bc scattering in the presence of the Coulomb and
short-range interactions is written as

f(~k) = fC(~k) + fNC(~k), (12)

fC(~k) =

∞∑

l=0

(2l + 1)
exp(2iσl)− 1

2ik
Pl(cos θ), (13)

fNC(~k) =

∞∑

l=0

(2l + 1) exp(2iσl)
exp(2iδNC

l )− 1

2ik
Pl(cos θ). (14)

Here σl = arg Γ(l+1+iηs) and δNC
l are the pure Coulomb and Coulomb-nuclear phase

shifts, Γ(z) is the Gamma function and ηs = ZbZce
2µ/k is the Coulomb parameter

for a scattering state.
The renormalized Coulomb-nuclear partial-wave amplitude f̃N

l in the case of the
repulsive Coulomb potential is introduced as follows [2]:

f̃N
l = exp(2iσl)

exp(2iδNC
l )− 1

2ik

(
l!

Γ(l + 1 + iηs)

)2

eπηs . (15)
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The analytic properties of f̃N
l on the physical sheet are analogous to those for the

scattering by a short-range potential. In particular, it is regular near zero energy.
If the b+ c system possesses a bound state a with the binding energy ǫ = κ2/2µ,

then the amplitude f̃N
l (k) has a pole at k = iκ. The residue at that pole is expressed

in terms of the Coulomb-renormalized VC G̃l and ANC Cl:

res f̃N
l (k) = lim

k→iκ
[(k − iκ)f̃N

l (k] = i
µ2

2πκ
G̃2

l , (16)

Cl = − µ√
π

Γ(l + 1 + η)

l!
G̃l. (17)

The knowledge of ANCs is essential for an analysis of nuclear reactions between
charged particles at low energies. In particular, the value of the ANC Cabc(ls) de-
termines essentially the cross section of the radiative capture b(c, γ)a reaction at
astrophysical energies [3].

2.2 Anomalous asymptotics

In fact, the asymptotic form (9) has been rigorously proved only for the simplest case
when the composite system a consists of two elementary constituents. In that case
the form (9) follows directly from the Schrödinger equation. It is shown below that
the asymptotics of the overlap integral may differ from Eq. (9) if a consists of three
or more constituents.

Consider the Fourier transform J(q2) of I(r):

I(r) = (2π)−3

∫
ei~q~r J(q2) d3q. (18)

According to Eqs.(2) and (6), J(q2) can be written in the form:

J(q2) = −N−1/2
bc

2µbc

q2 + κ2
G(q2), (19)

Inserting Eq. (19) into Eq. (18) and integrating over angular variables, one obtains:

I(r) = const · 1

ir

∫ ∞

−∞
eiqr

G(q2)

q2 + κ2
qdq. (20)

In the upper half-plane of the complex variable q the integrand in Eq. (20) has a
pole at q = iκ and a cut beginning from the nearest singular point q = iκ1 of the
form factor G(q2). Making use of the Cauchy theorem one gets from Eq. (20)

I(r) = const ·
{
π

r
e−κrG(−κ2) +

1

ir

∞∫

κ1

e−kr discG(−k2)

k2 − κ2
kdk

}
= I0(r) + I1(r). (21)

An explicit asymptotic form of the second term on the r.h.s. of Eq. (21) depends
on the behavior of discG(q2) at q2 → −κ2

1 , that is, on the type of the singularity
at q = iκ1. To investigate the singular behavior of G(q2), it is convenient to use
the formalism of Feynman diagrams. In the vicinity of a proper singularity z = z0,
the singular part of the amplitude of a Feynman diagram having n inner lines and v
vertices, behaves as [4, 5]

Mnv |z→z0∼ (z − z0)s if s 6= 0, 1, 2, ...,

Mnv |z→z0∼ (z − z0)s ln(z − z0) if s = 0, 1, 2, ...,
(22)

where s = (3n− 4v + 3)/2.
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a

b

e
c

d

f

Figure 2: The simplest Feynman diagram for an a→ b+ c vertex.

The simplest Feynman diagram for an a → b + c vertex is a triangle diagram of
Fig. 2.

For this diagram, s = 0 and it is easy to obtain from Eq. (21) that the contribution
of that diagram results in

I(r) |r→∞= c0
e−κr

r
+ c1

e−κ1r

r2
, (23)

κ1 = i
mb

md
(κade + κbdf ), κ2

ijk = 2µjkǫijk, ǫijk = mj +mk −mi. (24)

The first term on the r.h.s. of Eq. (23) corresponds to a ‘normal’ asymptotics.
If κ < κ1, then this term is a leading one and the overlap integral I(r) possesses
the normal asymptotics. However, in the opposite case, κ > κ1, the asymptotics
of I(r) is governed by the second term in Eq. (23) (the ‘anomalous’ case).

Though there is no a general rules preventing the ‘anomalous’ condition κ > κ1

from being satisfied, it appears that for real nuclear systems this condition is satis-
fied not very often. The nuclear vertices 16O → 13N(13C) + 3H(3He) and
20Ne→ 17F(17O) + 3H(3He) can serve as examples of the anomalous asymptotics of
the overlap integrals due to the triangle diagram of Fig. 2.

3 Three-fragment case (n = 3)

Consider a 3-body bound system a = {123} with the wave function

ψa(~ρ,~r), ~ρ = ~r1 − ~r2, ~r = ~r3 −
m1~r1 +m2~r2
m1 +m2

. (25)

The constituents 1, 2, and 3 might be composite, then ψa turns into an overlap
integral.

Introduce the Fourier transform ϕa(~k, ~p) of ψa(~ρ,~r) and the vertex function

(VF) W (~k, ~p):

~k = (m2
~k1 −m1

~k2)/m12, ~p =
[
m12

~k3 −m3(~k1 + ~k2)
]
/M,

mij = mi +mj, M = m1 +m2 +m3. (26)

ψa(~ρ,~r) =

∫
exp [i(~k~ρ+ ~p~r)]ϕa(~k, ~p)

d~k

(2π)3
d~p

(2π)3
, (27)

ϕa(~k, ~p) = −W (~k, ~p)/L(k, p), L(k, p) = −(ǫ+ k2/2µ1 + p2/2µ2),

ǫ = m1 +m2 +m3 −ma, µ1 = m1m2/m12, µ2 = m1m12/M. (28)

ψa and ϕa are normalized:
∫
|ψa(~ρ,~r)|2 d~ρ d~r = 1,

∫
|ϕa(~k, ~p)|2 d~k d~p/(2π)6 = 1. (29)
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Introduce modified Jacobi variables:

~x1 =
√

2µ1~ρ, ~x2 =
√

2µ2~r, ~k1 = ~k/
√

2µ1, ~k2 = ~p/
√

2µ2,

x21 + x22 = R2, k21 + k22 = P 2. (30)

ψa(~x1, ~x2) and W (~k1, ~k2) can be expanded through their partial-wave components

ψ
(l,λ,L)
a (x1, x2) and W (l,λ,L)(k1, k2) corresponding to Jacobi angular momenta l and λ

(~l + ~λ = ~L). Spin variables could be taken into account as well. Strictly speaking,
the following text applies to these partial-wave components. However, to simplify
the presentation, we suppose that the l = λ = 0 components contribute only to ψa

and W . Then after integrating over the angular variables Eq. (27) assumes the form

ψa(x1, x2) =
(µ1µ2)3/2

2π4

1

x1x2

∫ ∞

0

dk1

∫ ∞

0

dk2k1k2
W (k1, k2)

ǫ+ P 2

× (eik1x1 − e−ik1x1)(eik2x2 − e−ik2x2). (31)

W (k1, k2) should depend on k21 , k
2
2 ; that is W (k1, k2) is an even function of k1, k2.

Hence Eq. (31) can be written as

ψa(x1, x2) =
(µ1µ2)3/2

2π4

1

x1x2

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2 k1k2e

i(k1x1+k2x2)
W (k1, k2)

ǫ+ P 2
. (32)

We neglect the Coulomb interaction in what follows though the results could be easily
generalized to the case when two of the particles 1, 2 and 3 are charged.

If a pair subsystem ij (ij = 12, 23, 31) can form a bound state with the bind-
ing energy ǫij , then the VF W (k1, k2) has a two-body pole at the relative kinetic
energy Eij = −ǫij . Such poles lead to the two-body asymptotics analogous to those
considered in Section 2. In the present Section we will consider the true three-body
asymptotics generated by the pole P 2 = −ǫ in Eq. (32). Denoting its contribution by
ψ3 and integrating over k2 in the integral (32) by taking the residue at k22 = −ǫ− k21 ,
one obtains

ψ3(x1, x2) = i
(m1m2m3/M)3/2

2π3

1

x1x2
J(x1, x2),

J(x1, x2) =

∫ ∞

−∞
dk1 k1 exp

(
ik1x1 −

√
ǫ+ k21 x2

)
W
(
k1, i

√
ǫ+ k21

)
. (33)

Denoting x1 = R cosα, x2 = R sinα one can evaluate J(x1, x2) at R → ∞ by the
saddle-point method (the saddle-point is k1 = iǫ1/2 cosα). As a result, one obtains the
following expression for the leading contribution to the asymptotic form of ψ3(x1, x2):

ψ
(0)
3as(R,α) = C3

e−
√
ǫR

R5/2
,

C3 = − (m1m2m3/M)3/2√
2π5/2

W (i
√
ǫ cosα, i

√
ǫ sinα). (34)

The R dependence of the asymptotic form (34) agrees with that presented in [6].
C3 is the three-body asymptotic normalization factor. It is expressed in terms of

the on-shell three-body vertex function W (α) ≡ W (i
√
ǫ cosα, i

√
ǫ sinα) correspond-

ing to P 2 = −ǫ. Eq. (34) is the three-body analogue of the two-body relation (9).
The saddle-point method allows one to calculate corrections to the leading term

(34). In the present work, the expressions for the correction terms of the order (
√
ǫR)−1
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and (
√
ǫR)−2 are obtained. These corrections are expressed in terms of W (α) and

its derivatives. The explicit expression for ψ
(2)
3as including the corrections of the or-

der (
√
ǫR)−1 and (ǫR2)−1) is of the form:

ψ
(2)
3as = ψ

(0)
3as

[
1 + (

√
ǫR)−1χα + (ǫR2)−1ξα

]
,

χα =
15

8
− 2 cot(2α) γ1(α)− 1

2
γ2(α),

ξα =
105

128
− 11

4
cot(2α) γ1(α) − 43

16
γ2(α) + cot(2α) γ3(α) +

1

8
γ4(α),

γn(α) ≡ 1

W (α)

dnW (α)

dαn
. (35)

The asymptotics of the three-body wave function was considered in [7]. The results
of that work include the corrections due to non-zero values of the angular momenta l
and λ. However, these corrections do not include the terms of the same order due to
using the saddle-point method. Making use of the results of the present work, one
can calculate the reliable correction terms for l+ λ ≤ 2.

4 Discussion and Conclusions

The on-shell VFs W (α) are important three-body characteristics determining the
asymptotics of three-body wave functions. Of a special interest are the quantities
W0 = W (α = π/2) corresponding to k1 = 0 what means that the particles 1 and 2
move as a single body with the mass m12 = m1 + m2. W0 is a constant which is
an analog of the two-body vertex constant Gabc. It could be called the generalized
vertex constant (GVC).

It follows from Landau equations [4] that the GVCs determine the contributions
of proper singularities of Feynman diagrams containing the loops consisting of two
particles (as in Fig. 3). Thus W0(a→ 1+2+3) and W0(1+2+4→ c) in Fig. 3a deter-
mine a possible anomalous asymptotics of the overlap integral Iabc. In particular, the
vertices W0(9Be→ n+α+α) and W0(n+α+p→ 6Li) (W0(n+α+n→ 6He)) in the
diagrams of the Fig. 3a type were used in Ref. [8] to analyze the anomalous asymp-
totics of the overlap integrals for the vertices 9Be → 6Li + 3H (9Be → 6He + 3He).
W0(a → 1 + 2 + 3) and W0(x + 1 + 2 → y) in Fig. 3b determine the contribution of
the t-channel normal threshold to the amplitude of the process a+ x→ 3 + y.

The concept of the GVC could be directly extended to the loops containing more
than two particles.

In conclusion it is worthwhile to note that the GVC W0 for the vertex a→ 1+2+3
could in principle be determined by the analytic continuation of the differential cross
section of the a+ x→ 1 + 2 + y reaction to the pole of the diagram of Fig. 4.

a

b

c1

2

3

4

a

x y

1 2

3

(a) (b)

Figure 3:
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Abstract

We overview the recent results on the shift of the spectrum and norm bounds
for variation of spectral subspaces of a Hermitian operator under an additive
Hermitian perturbation. Along with the known results, we present a new sub-
space variation bound for the generic off-diagonal subspace perturbation prob-
lem. We also demonstrate how some of the abstract results may work for few-
body Hamiltonians.

Keywords: Few-body problem; subspace perturbation problem; variation of spec-
tral subspace

1 Introduction

In this short survey article, we consider the problem of variation of the spectral
subspace of a Hermitian operator under an additive bounded Hermitian perturbation.
It is assumed that the spectral subspace is associated with an isolated spectral subset
and one is only concerned with the geometric approach originating in the papers by
Davis [1, 2] and Davis and Kahan [3]. In this approach, a bound on the variation
of a spectral subspace usually involves just two quantities: the distance between
the relevant spectral subsets and a norm of the perturbation operator. We discuss
only the a priori bounds, that is, the estimates that involve the distance between
complementary disjoint spectral subsets of the unperturbed operator (and none of
the perturbed spectral sets is involved). In the case where the perturbation is off-
diagonal, we also recall the bounds on the shift of the spectrum.

The paper is organized as follows. In Section 2 we collect the results that hold
for Hermitian operators of any origin. Along with the older results we present a
new bound in the general off-diagonal subspace perturbation problem that was not
published before. In Section 3 we reproduce several examples that illustrate the
meaning of the abstract results in the context of few-body bound-state problems.

In this paper we only use the usual operator norm. For convenience of the reader,
we recall that if V is a bounded linear operator on a Hilbert space H then its norm
may be computed by using the formula

‖V ‖ = sup
f∈H, ‖f‖=1

∥∥V |f〉
∥∥,

where sup denotes the least upper bound. Thus, one has
∥∥V |f〉

∥∥ ≤ ‖V ‖ ‖f‖
for any |f〉 ∈ H. If V is a Hermitian operator with min

(
spec(V )

)
= mV and

Proceedings of the International Conference ‘Nuclear Theory in the Super-
computing Era — 2014’ (NTSE-2014), Khabarovsk, Russia, June 23–27, 2014.
Eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2016, p. 98.

http://www.ntse-2014.khb.ru/Proc/Motovilov.pdf.

98



Bounds on variation of the spectrum and spectral subspaces 99

max
(
spec(V )

)
= MV , where spec(V ) denotes the spectrum of V , then ‖V ‖ =

max{|mV |, |MV |}. In particular, if V is separable of rank one, i. e., if V = λ|φ〉〈φ|
with |φ〉 ∈ H, ‖φ‖ = 1, and λ ∈ R, then ‖V ‖ = |λ|. Another simple but important
example is related to the case where H = L2(Rn), n ∈ N, and V is a bounded local
potential, that is, 〈x|V |f〉 = V (x)f(x) for any |f〉 ∈ L2(R

n), with V (·) a bounded
function from Rn to C. In this case ‖V ‖ = sup

x∈Rn

|V (x)|.

2 Abstract results

Let A be a Hermitian (or, equivalently, self-adjoint) operator on a separable Hilbert
space H. It is well known that if V is a bounded Hermitian perturbation of A then the
spectrum of the perturbed operator H = A+ V lies in the closed ‖V ‖-neighborhood
O‖V ‖

(
spec(A)

)
of the spectrum of A (see, e. g., Ref. [4]). Hence, if a subset σ of the

spectrum of A is isolated from the remainder Σ = spec(A) \ σ, then the spectrum
of H also consists of two disjoint components,

ω = spec(H) ∩ O‖V ‖(σ) and Ω = spec(H) ∩O‖V ‖(Σ), (1)

provided that

‖V ‖ < 1

2
d, (2)

where
d := dist(σ,Σ) > 0. (3)

Under condition (2), the separated spectral components ω and Ω of the perturbed
operator H may be viewed as the result of the perturbation of the respective disjoint
spectral subsets σ and Σ of the initial operator A.

Let P and Q be the spectral projections of the operators A and H associated
with the respective spectral sets σ and ω, that is, P := EA(σ) and Q := EH(ω). The
relative position of the perturbed spectral subspace Q := Ran(Q) with respect to
the unperturbed one, P := Ran(P ), may be studied in terms of the difference P −Q
and, in fact, the case where ‖P − Q‖ < 1 is of particular interest. In this case the
spectral projections P and Q are unitarily equivalent and the transformation from
the subspace P to the subspace Q may be viewed as the direct rotation (see, e. g.,
Sections 3 and 4 in Ref. [3]). Furthermore, one can use the quantity

θ(P,Q) = arcsin(‖P −Q‖),

as a measure of this rotation. This quantity is called the maximal angle between the
subspaces P and Q. For a short but concise discussion of the concept of maximal
angle we refer to Section 2 in Ref. [5]; see also Refs. [3, 6–8]. If

θ(P,Q) <
π

2
(4)

and, thus, ‖P − Q‖ < 1, the subspaces P and Q are said to be in the acute-angle
case.

Among the problems being solved in the subspace perturbation theory, the first
and rather basic problem is to find an answer to the question on whether the require-
ment (2) is sufficient for the unperturbed and perturbed spectral subspaces P and Q

to be in the acute-angle case, or, in order to ensure inequality (4), one has to impose
a stronger condition ‖V ‖ < c d with some c < 1

2 . More precisely, the question is as
follows.

(i) What is the largest possible constant c∗ in the inequality

‖V ‖ < c∗ d (5)

securing the subspace variation bound (4)?
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Another, practically important question is about the largest possible size of the sub-
space variation:

(ii) What function M : [0, c∗) 7→
[
0, π2

)
is best possible in the bound

θ(P,Q) ≤M
(
‖V ‖
d

)
for ‖V ‖ < c∗ d ? (6)

Both the constant c∗ and the function M are required to be universal in the sense
that they should work simultaneously for all Hermitian operators A and V for which
the conditions (2) and (3) hold.

Until now, the questions (i) and (ii) have been completely answered only for those
particular mutual positions of the unperturbed spectral sets σ and Σ where one of
these sets lies in a finite or infinite gap of the other one, say, σ lies in a gap of Σ. For
such mutual positions,

c∗ =
1

2
and M(x) =

1

2
arcsin(2x). (7)

This result is contained in the Davis–Kahan sin 2θ theorem (see Ref. [3]).
In the general case where no assumptions are done on the mutual position of σ

and Σ, except for condition (2), the best available answers to the questions (i) and
(ii) are based on the bound

θ(P,Q) ≤ 1

2
arcsin

π‖V ‖
d

if ‖V ‖ ≤ 1

π
d (8)

proven in Ref. [5] and called there the generic sin 2θ estimate. The bound (8) remains

the strongest known bound for θ(P,Q) whenever ‖V ‖ ≤ 4

π2 + 4
d (see Remark 4.4 in

Ref. [5]; cf. Corollary 2 in Ref. [8]).
In Ref. [5], it has been shown that the bound (8) can also be used to obtain

estimates of the form (6) for ‖V ‖ > 1
πd. To this end, one introduces the operator

path Ht = A+ tV , t ∈ [0, 1], and chooses a set of points

0 = t0 < t1 < t2 < . . . < tn = 1 (9)

in such a way that
(tj+1 − tj)‖V ‖
dist

(
ωtj ,Ωtj

) ≤ 1

π
, (10)

where ωt and Ωt denote the disjoint spectral components of Ht originating from σ
and Σ, respectively; ωt = spec(Ht)∩Od/2(σ) and Ωt = spec(Ht)∩Od/2(Σ). Applying
the estimate (8) to the maximal angle between the spectral subspaces Ran(EHtj

(ωtj ))

and Ran(EHtj+1
(ωtj+1)) of the corresponding consecutive operators Htj and Htj+1

and using, step by step, the triangle inequality for the maximal angles (see Ref. [9];
cf. Lemma 2.15 in Ref. [5]) one arrives at the optimization problem

arcsin
(
‖P −Q‖

)
≤ 1

2
inf

n, {ti}n
i=0

n−1∑

j=0

arcsin
π(tj+1 − tj)‖V ‖

dist
(
ωtj ,Ωtj

) (11)

over n ∈ N and {ti}ni=0 chosen accordingly to Eqs. (9) and (10). Taking into account
that

dist
(
ωtj ,Ωtj

)
≥ d− 2‖V ‖tj ,

one then deduces from Eq. (11) the bound

θ(P,Q) ≤Mgen

(
‖V ‖
d

)
(12)
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with the estimating function Mgen(x), x ∈ [0, 12 ), given by

Mgen(x) =
1

2
inf

n, {κi}n
i=0

n−1∑

j=0

arcsin
π(κj+1 − κj)

1− 2κj
, (13)

where the points
0 = κ0 < κ1 < κ2 < . . . < κn = x (14)

should be such that
κj+1 − κj

1− 2κj
≤ 1

π
.

An explicit expression for the functionMgen has been found by Seelmann in Theorem 1
of Ref. [10]. From this Theorem it also follows that the generic optimal constant c∗
in Eq. (5) satisfies inequalities

cS ≤ c∗ ≤
1

2
,

where

cS =
1

2
− 1

2

(

1−
√
3

π

)3

= 0.454839... (15)

The earlier results from Refs. [5], [11] and [12] concerning the generic bound (6) might
be of interest, too.

The questions like (i) and (ii) have been addressed as well in the case of off-
diagonal perturbations. Recall that a bounded operator V is said to be off-diagonal
with respect to the partition spec(A) = σ ∪ Σ of the spectrum of A with σ ∩ Σ = ∅
if V anticommutes with the difference P −P⊥ of the spectral projections P = EA(σ)
and P⊥ = EA(Σ), that is, if

V (P − P⊥) = −(P − P⊥)V.

When considering an off-diagonal Hermitian perturbation, one should take into
account that conditions ensuring the disjointness of the respective perturbed spectral
components ω and Ω originating from σ and Σ are much weaker than the condition (2).
In particular, if the sets σ and Σ are subordinated, say max(σ) < min(Σ), then
for any (arbitrarily large) ‖V ‖ no spectrum of H = A + V enters the open interval
between max(σ) and min(Σ) (see, e. g., Remark 2.5.19 in Ref. [13]). In such a case the
maximal angle θ(P,Q) between the unperturbed and perturbed spectral subspaces P
and Q admits a sharp bound of the form (6) with

M(x) =
1

2
arctan(2x), x ∈ [0,∞). (16)

This is the consequence of the celebrated Davis–Kahan tan 2θ theorem [3] (also, cf.
the extensions of the tan 2θ theorem in Refs. [6, 7, 14]).

If it is known that the set σ lies in a finite gap of the set Σ then the disjointness
of the perturbed spectral components ω and Ω is guaranteed by the (sharp) condi-
tion ‖V ‖ <

√
2 d. The same condition is optimal for the bound (4) to hold. Both

these results have been established in Ref. [15]. An explicit expression for the best
possible function M in the corresponding estimate (6),

M(x) = arctanx, x ∈ [0,
√

2),

was found in Refs. [7, 16].
As for the generic case — with no restrictions on the mutual position of the spectral

components σ and Σ, the condition

‖V ‖ <
√
3

2
d (17)
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is known to be optimal in order to ensure that the gaps between σ and Σ do not close
under an off-diagonal V . Moreover, under this condition for the perturbed spectral
sets ω and Ω we have the following enclosures:

ω ⊂ OǫV (σ) and Ω ⊂ OǫV (Σ)

with

ǫV = ‖V ‖ tan

(
1

2
arctan

2‖V ‖
d

)
<

d

2
(18)

and, hence,

dist(ω,Ω) ≥ d− 2ǫV > 0. (19)

The corresponding proofs were given initially in Theorem 1 of Ref. [17] for bounded A
and then in Proposition 2.5.22 of Ref. [13] for unbounded A. From the condition (17)
it follows that the optimal constant c∗ in the condition (5) ensuring the strict inequal-
ity (4) in the generic off-diagonal case necessarily satisfies the upper bound

c∗ ≤
√
3

2

(
= 0.866025...

)
. (20)

Now we employ the approach suggested in Refs. [5] in order to get a lower bound for
the above constant c∗. To this end, we simply apply the optimization estimate (11)
to the off-diagonal perturbations. Due to Eq. (19), for the disjoint spectral compo-
nents ωtj and Ωtj of the operator Htj = A+ tjV we have

dist
(
ωtj ,Ωtj

)
≥ d− 2tj‖V ‖ tan

(
1

2
arctan

2tj‖V ‖
d

)
= 2d−

√
d2 + 4t2j‖V ‖2.

The estimate (11) then yields

θ(P,Q) ≤Moff

(
‖V ‖
d

)
(21)

with the function Moff(x), x ∈ [0,
√
3
2 ), given by

Moff(x) =
1

2
inf

n, {κi}n
i=0

n−1∑

j=0

arcsin
π(κj+1 − κj)

2−
√

1 + 4κ2
j

, (22)

where κ0 = 0, κn = x, and the remaining points κj , j = 1, 2, . . . , n−1, should satisfy
inequalities

0 <
κj+1 − κj

2−
√

1 + 4κ2
j

≤ 1

π
.

We have only performed a partial numerical optimization of the r.h.s. term in
Eq. (22) restricting ourselves to the case where the final function is smooth. As a

result, our numerical approximation M̃off for the estimating function Moff for sure
satisfies the bound

M̃off(x) ≥Moff(x) for all x ∈
[
0,

√
3

2

)
. (23)

The numerical function M̃off(x) is plotted in Fig. 1 along with the two previously
known estimating functions

MKMM(x) = arcsin

(
min

{
1,

π x

3−
√
1 + 4x2

})
, x ∈

[
0,

√
3

2

)
,
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Figure 1: Graphs of the functions 2
πMKMM(x), 2

πMMS(x), and the numerical approx-

imation 2
π M̃off(x) for 2

πMoff(x) while its value does not exceed 1. The upper curve

depicts the graph of 2
πMKMM(x), the intermediate curve is the graph of 2

πMMS(x),

and the lower curve represents the graph of 2
π M̃off(x).

from Theorem 2 of Ref. [17] and

MMS(x) = arcsin

(
min

{
1,

π

2

∫ x

0

dτ

2−
√

1 + 4τ2

})
, x ∈

[
0,

√
3

2

)
,

from Theorem 3.3 of Ref. [12] that both serve as M is in the bound (6) for the case
of off-diagonal perturbations. For convenience of the reader, in the plot we divide all
three functions MKMM, MMS, and M̃off by π/2.

For the (unique) numerical solution x = c̃off of the equation M̃off(x) = π/2 within

the interval [0,
√
3
2 ), we obtain

c̃off = 0.692834... (24)

Since the function M̃off is monotonous and the inequality (23) holds, the number c̃off is
an approximation to the exact solution x = coff > c̃off of the equation Moff(x) = π/2.
Therefore we arrive at the new lower bound

c∗ > 0.692834 (25)

for the optimal constant c∗ in the condition (5) ensuring the subspace variation esti-
mate (4) in the generic off-diagonal subspace perturbation problem. The bound (25)
is stronger than the corresponding best previously published bound c∗ > 0.67598 from
Ref. [12]. Furthermore, we have inequalities

Moff(x) ≤ M̃off(x) < MMS(x) for any x ∈ (0, c̃off) (26)

which show that already the approximate estimating function M̃off provides a bound
of the form (6) that is stronger than the best known bound (with the function MMS)
from Ref. [12].
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3 Applications to few-body bound-state problems

From now on, we assume that the “unperturbed” Hamiltonian A has the form A =
H0 + V0 where H0 is the kinetic energy operator of an N -particle system in the c. m.
frame and the potential V0 includes only a part of the interactions that are present in
the system (say, only two-body forces). The perturbation V describes the remaining
part of the interactions (say, three-body forces if N = 3; it may also describe the
effect of external fields). We consider the case where V is a bounded operator. Of
course, both A and V are assumed to be Hermitian. In order to apply the abstract
results mentioned in the previous section, one only needs to know the norm of the
perturbation V and a very basic stuff on the spectrum of the operator A.

Examples 3.1 and 3.2 below are borrowed from Ref. [18].

The first of the examples represents a simple illustration of the Davis–Kahan sin 2θ
and tan 2θ theorems [3].

Example 3.1 Suppose that E0 is the ground-state (g. s.) energy of the Hamilto-
nian A. Also assume that the eigenvalue E0 is simple and let |ψ0〉 be the g. s. wave
function, i. e., A|ψ0〉 = E0|ψ0〉, ‖ψ0‖ = 1. Set σ = {E0}, Σ = spec(A) \ {E0}
and d = dist(σ,Σ) = min(Σ) − E0 (we notice that the set Σ is not empty since it
should contain at least the essential spectrum of A). If V is such that the condi-
tion (2) holds, then the g. s. energy E′

0 of the total Hamiltonian H = A+ V is again
a simple eigenvalue, with a g. s. wave function |ψ′

0〉, ‖ψ′
0‖ = 1. The eigenvalue E′

0 lies
in the closed ‖V ‖-neighborhood of the g. s. energy E0, i. e., |E0 − E′

0| ≤ ‖V ‖. The
corresponding spectral projections P = EA(σ) and Q = EH(ω) of A and H associ-
ated with the one-point spectral sets σ = {E0} and ω = {E′

0} read as P = |ψ0〉〈ψ0|
and Q = |ψ′

0〉〈ψ′
0|. One verifies by inspection that

arcsin
(
‖P −Q‖

)
= arccos |〈ψ0|ψ′

0〉|.

Surely, this means that the maximal angle θ(P,Q) between the one-dimensional
spectral subspaces P = Ran(P ) = span(|ψ0〉) and Q = Ran(Q) = span(|ψ′

0〉) is
nothing but the angle between the g. s. vectors |ψ0〉 and |ψ′

0〉. Then the Davis–
Kahan sin 2θ theorem implies [see Eqs. (6) and (7)] that

arccos |〈ψ0|ψ′
0〉| ≤

1

2
arcsin

2‖V ‖
d

.

This bound on the rotation of the ground state means, in particular, that, under the
condition (2), the angle between |ψ0〉 and |ψ′

0〉 can never exceed 45◦.
If, in addition, the perturbation V is off-diagonal with respect to the partition

spec(A) = σ ∪ Σ then for any (arbitrarily large) ‖V ‖ no spectrum of H is present in
the gap between the g. s. energy E0 and the remaining spectrum Σ of A. Moreover,
there are the following sharp universal bounds for the perturbed g. s. energy E′

0:

E0 − ǫV ≤ E′
0 ≤ E0,

(see Lemma 1.1 of Ref. [17] and Proposition 2.5.21 of Ref. [13]). In this case, the
Davis–Kahan tan 2θ theorem [3] implies [see Eqs. (6) and (16)] that

arccos |〈ψ0|ψ′
0〉| ≤

1

2
arctan

2‖V ‖
d

<
π

4
.

With a minimal change, the same consideration may be extended to the case
where the initial spectral set σ consists of the n + 1 lowest binding energies E0 <
E1 < . . . < En, n ≥ 1, of A. We only underline that if V is off-diagonal than for
any ‖V ‖ the perturbed spectral set ω of H = A+V originating from σ will necessarily
be confined in the interval [E0 − ǫV , En] where the shift ǫV is given by Eq. (18); the
interval

(
En,min(Σ)

)
will contain no spectrum of H . Furthermore, the tan 2θ-like



Bounds on variation of the spectrum and spectral subspaces 105

estimates for the maximal angle between the spectral subspaces P = Ran
(
EA(σ)

)

and Q = Ran
(
EH(ω)

)
may be done even for some unbounded V (but, instead of d

and ‖V ‖, those estimates involve quadratic forms of A and V ), see Refs. [7, 14].

Along with the sin 2θ theorem, the next example illustrates the tan θ bound from
Refs. [7, 16].

Example 3.2 Suppose that σ = {En+1, En+2, . . . , En+k}, n ≥ 0, k ≥ 1, is a set
formed by the consecutive binding energies of A and Σ = spec(A) \ σ = Σ− ∪ Σ+,
where Σ− is the increasing sequence of the energy levels E0, E1, . . . , En of A
that lie below min(σ); Σ+ denotes the remainder of the spectrum of A, that is,
Σ+ = spec(A) \ (σ ∪ Σ−). Under condition (3), this assumption means that the set σ
lies in the finite gap

(
max(Σ−),min(Σ+)

)
of the set Σ. If one only assumes for V the

norm bound (2) and makes no assumptions on the structure of V , then not much can
be said about the location of the perturbed spectral sets ω and Ω, except for Eq. (1).
However the Davis–Kahan sin 2θ theorem [3] still well applies and, thus, one has the
bound

θ(P,Q) ≤ 1

2
arcsin

2‖V ‖
d

<
π

4
.

Much stronger conclusions are done if V is off-diagonal with respect to the par-
tition spec(A) = σ ∪ Σ. In the Section 2 it was already mentioned that for off-
diagonal V the gap-non-closing condition is of the form ‖V ‖ <

√
2d (and even a weaker

but somewhat more detailed condition ‖V ‖ <
√
dD with D = min(Σ+)−max(Σ−)

is admitted, see Refs. [7, 15]). In this case the lower bound for the spectrum of
H = A+ V reads as E0 − ǫV where the maximal possible energy shift ǫV , ǫV < d,
is given again by Eq. (18). Furthermore, the perturbed spectral set ω is confined
in the interval [En+1 − ǫV , En+k + ǫV ], while the open intervals (En, En+1 − ǫV )
and

(
En+k + ǫV ,min(Σ+)

)
contain no spectrum of H . For tighter enclosures for

the perturbed spectral sets ω and Ω involving the the gap length D, we refer to
Refs. [13, 15, 17]. In the case under consideration, the sharp bound for the
size of rotation of the spectral subspace P = Ran

(
EA(σ)

)
to the spectral sub-

spaces Q = Ran
(
EH(ω)

)
is given by the a priori tan θ theorem (see Theorem 1 of

Ref. [16]; cf. Theorem 2 of Ref. [7]):

θ(P,Q) ≤ arctan
‖V ‖
d

< arctan
√

2.

If the gap length D is known and ‖V ‖ <
√
dD, then a stronger but more detailed

estimate for θ(P,Q) is available (see Theorem 4.1 of Ref. [16]).

Example 3.3 models the generic spectral disposition. Assume that the binding
energies of A are numbered in the increasing order, E0 < E1 < . . . < En < . . .,
and σ = {E0, E2, . . . , E2k} is formed of the first k + 1, k ≥ 1, binding energies with
even numbers. Let Σ = spec(A) \ σ and, thus, Σ contains the first k binding ener-
gies E1, E3, . . . , E2k−1 with the odd numbers, as well as the remaining point spectrum
and the essential spectrum of A. If d = dist(σ,Σ) > 0 and ‖V ‖ < c

S
d with c

S
given by

Eq. (15), then for the maximal angle θ(P,Q) between the corresponding unperturbed
and perturbed spectral subspaces P = Ran

(
EA(σ)

)
and Q = Ran

(
EH(ω)

)
we have

the bound (12).
If, in addition, the perturbation V is off-diagonal with respect to the partition

spec(A) = σ ∪Σ then the disjointness of the perturbed spectral components ω and Ω

is guaranteed by the weaker requirement ‖V ‖ <
√
3
2 d. In this case ω ⊂ OǫV (σ)

and Ω ⊂ OǫV (Σ) where ǫV is given by Eq. (18). Furthermore, if ‖V ‖ < c̃off d where c̃off
is the solution (24) of the equation M̃off(x) = π/2, then one can apply the bound (22).

Examples 3.1–3.3 show how one may obtain a bound on variation of the spectral
subspace prior to any real calculations for the total Hamiltonian H . In order to get
such a bound, only the knowledge of the values of d and ‖V ‖ is needed. Furthermore,
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if V is off-diagonal, by using just these two quantities one can also provide the stronger
estimates (via ǫV ) for the binding energy shifts.
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Abstract

An important ingredient for applications of nuclear physics to, e. g., astro-
physics or nuclear energy are the cross sections for reactions of neutrons with
rare isotopes. Since direct measurements are often not possible, indirect meth-
ods like (d, p) reactions must be used instead. Those (d, p) reactions may be
viewed as effective three-body reactions and described with Faddeev techniques.
An additional challenge posed by (d, p) reactions involving heavier nuclei is the
treatment of the Coulomb force. To avoid numerical complications in dealing
with the screening of the Coulomb force, recently a new approach using the
Coulomb distorted basis in momentum space was suggested. In order to imple-
ment this suggestion, one needs not only to derive a separable representation of
neutron- and proton-nucleus optical potentials, but also compute the Coulomb
distorted form factors in this basis.

Keywords: Separable representation of optical potentials; momentum space
Coulomb distorted form factors; Coulomb without screening

1 Introduction

Nuclear reactions are an important probe to learn about the structure of unstable
nuclei. Due to the short lifetimes involved, direct measurements are usually not
possible. Therefore indirect measurements using (d, p) reactions have been proposed
(see, e. g., Refs. [1–3]). Deuteron induced reactions are particularly attractive from
an experimental perspective, since deuterated targets are readily available. From a
theoretical perspective they are equally attractive because the scattering problem can
be reduced to an effective three-body problem [4]. Traditionally deuteron-induced
single-neutron transfer (d, p) reactions have been used to study the shell structure
in stable nuclei, nowadays experimental techniques are available to apply the same
approaches to exotic beams (see, e. g., [5]). Deuteron induced (d, p) or (d, n) reactions
in inverse kinematics are also useful to extract neutron or proton capture rates on
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computing Era — 2014’ (NTSE-2014), Khabarovsk, Russia, June 23–27, 2014.
Eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2016, p. 107.
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unstable nuclei of astrophysical relevance. Given the many ongoing experimental
programs worldwide using these reactions, a reliable reaction theory for (d, p) reactions
is critical.

One of the most challenging aspects of solving the three-body problem for nuclear
reactions is the repulsive Coulomb interaction. While the Coulomb interaction for
light nuclei is often a small correction to the problem, this is certainly not the case for
intermediate mass and heavy systems. Over the last decade, many theoretical efforts
have focused on advancing the theory for (d, p) reactions (e. g., [6, 7]) and testing
existing methods (e. g., [4,8,9]). Currently, the most complete implementation of the
theory is provided by the Lisbon group [10], which solves the Faddeev equations in
the Alt, Grassberger and Sandhas [11] formulation. The method introduced in [10]
treats the Coulomb interaction with a screening and renormalization procedure as
detailed in [12,13]. While the current implementation of the Faddeev–AGS equations
with screening is computationally effective for light systems, as the charge of the
nucleus increases technical difficulties arise in the screening procedure [14]. Indeed,
for most of the new exotic nuclei to be produced at the Facility of Rare Isotope
Beams, the current method is not adequate. Thus one has to explore solutions to the
nuclear reaction three-body problem where the Coulomb problem is treated without
screening.

In Ref. [6], a three-body theory for (d, p) reactions is derived with explicit inclu-
sion of target excitations, where no screening of the Coulomb force is introduced.
Therein, the Faddeev–AGS equations are cast in a Coulomb-distorted partial-wave
representation, instead of a plane-wave basis. This approach assumes the interactions
in the two-body subsystems to be separable. While in Ref. [6] the lowest angular
momentum in this basis (l = 0) is derived for a Yamaguchi-type nuclear interaction is
derived as analytic expression, it is desirable to implement more general form factors,
which are modeled after the nuclei under consideration.

In order to bring the three-body theory laid out in Ref. [6] to fruition, well de-
fined preparatory work needs to be successfully carried out. Any momentum space
Faddeev–AGS type calculation needs as input transition matrix elements in the dif-
ferent two-body subsystems. In the case of (d, p) reactions with nuclei these are
the t-matrix elements obtained from the neutron-proton, the neutron-nucleus and
proton-nucleus interactions. Since the formulation in Ref. [6] is designed for separa-
ble interactions, those need to be developed not only in the traditionally employed
plane wave basis, but also the basis of Coulomb scattering states.

This contribution summarizes the three major developments required to provide
reliable input to the three-body formulation for (d, p) reactions without screening the
Coulomb force, namely:

• the derivation of momentum-space separable representations of neutron-nucleus
optical potentials [15],

• the derivation of momentum-space separable representations of proton-nucleus
optical potentials in the Coulomb basis [16],

• the calculation of neutron-nucleus form-factors in the basis of momentum-space
Coulomb scattering states [17].

Sections 2, 3, and 4 summarize the necessary steps to achieve reliable calculations
of those input quantities needed for three-body calculations that treat the Coulomb
force without screening. Finally, we summarize in Section 5.
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2 Separable representation
of nucleon-nucleus optical potentials

Separable representations of the forces between constituents forming the subsystems
in a Faddeev approach have a long tradition in few-body physics. There is a large
body of work on separable representations of nucleon-nucleon (NN) interactions (see,
e. g., Refs. [18–22]) or meson-nucleon interactions [23,24]. In the context of describing
light nuclei like 6He [25] and 6Li [26] in a three-body approach, separable interactions
have been successfully used. A separable nucleon-12C optical potential was proposed
in Ref. [27], consisting of a rank-1 Yamaguchi-type form factor fitted to the positive
energies and a similar term describing the bound states in the nucleon-12C configu-
ration. However, systematic work along this line for heavy nuclei, for which excellent
phenomenological descriptions exist in terms of Woods–Saxon functions [28–31] has
not been carried out until recently [15].

The separable representation of two-body interactions suggested by Ernst–Shakin–
Thaler [32] (EST) is well suited for achieving this goal. We note that this EST
approach has been successfully employed to represent NN potentials [18, 19]. How-
ever, the EST scheme derived in Ref. [32], though allowing energy dependence of the
potentials [33, 34], assumes that they are Hermitian. Therefore, we generalized the
EST approach in Ref. [15] in order to be applicable for optical potentials which are
complex. For the ease of the reader, we briefly summarize the main points of that
work.

For applications to the theory of nuclear reactions all potential operators U need
to satisfy

KUK−1 = U †, (1)

where K is the time reversal operator appropriate to the system. This condition
guarantees that the S-matrix corresponding to U is symmetric and that reaction
amplitudes constructed from these potentials satisfy reciprocity relations. When U
is a central potential in the space of a spinless particle, K can be chosen to be the
anti-linear complex conjugation operator K0, which in the coordinate space basis |r〉
is defined by

K0 α |r〉 = α∗(K0|r〉) = α∗|r〉, (2)

and from which we deduce K0|p〉 = | − p〉. Note that for this particular K we have
(K0)−1 = K0.

Considering first a rank-1 separable potential, the EST scheme presented in Ref. [32]
requires that a separable potential U leads to the same scattering wave functions at
a specific energy EkE

(support point) as the potential u it is supposed to represent.
For u being a non-Hermitian potential, we define

U(EkE
) ≡

u|fl,kE
〉〈f∗

l,kE
|u

〈f∗
l,kE
|u|fl,kE

〉 ≡ u|fl,kE
〉λ̂〈f∗

l,kE
|u, (3)

where the strength parameter is defined by (λ̂)−1 = 〈f∗
l,kE
|u|fl,kE

〉. Here fl,kE
(r) is

the unique regular radial wave function corresponding to u and f∗
l,kE

(r) is the unique
regular radial wavefunction corresponding to u∗. By a suitable choice of arbitrary
normalization constants we can arrange that f∗

l,kE
(r) is simply the complex conjugate

of fl,kE
and hence K0|fl,kE

〉 = |f∗
l,kE
〉.

If u satisfies K0uK0 = u† the definition of Eq. (3) gives a symmetric complex
potential matrix that satisfies

K0U(EkE
)K0 =

[
K0u|fl,kE

〉
]

(λ̂)∗
[
〈f∗

l,kE
|uK0

]
= u†|f∗

l,kE
〉(λ̂)∗〈fl,kE

|u† = U †, (4)

where the square brackets mean that K0 here acts only on the quantities within the
brackets.
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In analogy to the procedure followed in Ref. [32] we define a complex separable
potential of arbitrary rank in a given partial wave as

U =
∑

i,j

u|fl,kEi
〉〈fl,kEi

|M |f∗
l, kEj

〉〈f∗
l,kEj
|u. (5)

Here fl,kEi
and f∗

l,kEi
are the same unique regular radial wave function as used in

Eq. (3). Note that u may also be energy dependent. The matrix M is defined and
constrained by

δik =
∑

j

〈fl,kEi
|M |f∗

l,kEj
〉〈f∗

l,kEj
|u|fl,kEk

〉

=
∑

j

〈f∗
l,kEi
|u|fl,kEj

〉〈fl,kEj
|M |f∗

l,kEk
〉. (6)

The corresponding separable partial wave t-matrix must be of the form

t(E) =
∑

i,j

u|fl,kEi
〉τij(E)〈f∗

l,kEj
|u, (7)

with the following restrictions

δnj =
∑

i

〈f∗
l,kEn

|u− ug0(E)u|fl,kEi
〉 τij(E), (8)

δik =
∑

j

τij(E) 〈f∗
l,kEj
|u− ug0(E)u|fl,kEk

〉. (9)

For the explicit calculation of the matrix τij(E), we define a matrix

Rij(E) ≡ 〈f∗
l, kEi

|u− ug0(E)u|fl,kEj
〉, (10)

so that the condition of Eq. (9) reads

∑

j

τij(E)Rjk(E) = δik, (11)

from which follows
τij(E) = (R(E))

−1
ij . (12)

Using that t(p′, kEi
, Ei) = 〈f∗

l,kEi
|u|p′〉, and t(p, kEi

, Ei) = 〈p|u|fl,kEi
〉, the matrix

elements Rij are calculated in momentum space as given explicitly in Ref. [15].
In order to demonstrate the construction of a separable representation of a com-

plex potential we apply the generalized EST scheme to neutron scattering from 48Ca
and 208Pb and use as starting point the Chapel Hill phenomenological global opti-
cal potential CH89 [28], which has been widely used in the literature over the last
decades. Like most phenomenological global optical potentials, CH89 is based on
Woods–Saxon functions, which are more naturally given in coordinate space, and have
an explicit energy dependence in the strength functions. In order to derive a separable
momentum-space representation of CH89, we first must construct a momentum-space
representation of the potential itself. The Fourier transform of Woods–Saxon func-
tions leads to a series expansion in momentum space, of which only the first two
terms are necessary to obtain a converged result [15]. The momentum-space poten-
tial then enters a Lippmann–Schwinger (LS) integral equation to obtain the half-shell
t-matrices at fixed energies (support points) Ei, from which the separable represen-
tation given in Eq. (7) is then constructed after having obtained the coupling matrix
τij(E) from the solution of Eq. (12).
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Table 1: The EST support points at c. m. energies Eki
used for constructing the

separable representation of the partial wave S-matrix of the n+ 48Ca and n+ 208Pb
systems. The support points in the last row for the n + 208Pb system given in bold
face indicate the universal set of support points, which can be used to construct a
representation for all nuclei given by the CH89 [28] phenomenological optical poten-
tial.

system partial wave(s) rank EST support point(s) [MeV]
l ≥ 10 1 40

n+ 48Ca l ≥ 8 2 29, 47
l ≥ 6 3 16, 36, 47
l ≥ 0 4 6, 15, 36, 47

l ≥ 16 1 40
n+ 208Pb l ≥ 13 2 35, 48

l ≥ 11 3 24, 39, 48
l ≥ 6 4 11, 21, 36, 45
l ≥ 0 5 5,11,21,36,47

A major finding of Ref. [15] is a systematic classification of support points for
partial wave groups, so that the partial wave S-matrix elements are reproduced to at
least four significant figures compared to the original momentum-space solution of the
LS equation. It turns out that the low partial waves of the n+ 208Pb system require a
rank-5 separable potential to be well represented in the energy regime between 0 and
50 MeV center-of-mass energy. The rank required for achieving a good representation
decreases with increasing angular momentum of the partial wave considered. The
recommendation of Ref. [15] for both the rank and the locations of the support points
to be used when describing medium-mass and heavy systems generated from the CH89
potential are repeated in Table 1 for the convenience of the reader.

In order to demonstrate the quality of the separable representations obtained with
the generalized EST scheme, Fig. 1 depicts the unpolarized differential cross section
for elastic scattering of neutrons from 48Ca at 38 MeV laboratory kinetic energy and
from 206Pb at 45 MeV as function of the center-of-mass (c. m.) angle θc.m.. The
solid lines (i) represent the calculations with the separable representations, while
the dotted lines (ii) stand for the corresponding coordinate space calculations. The
agreement is excellent over the entire angular range, indicating that all partial wave
S-matrix elements that enter the cross section are well described by the separable
representation.

3 Separable representation of proton-nucleus

optical potentials in the Coulomb basis

In order to implement the formulation of the Faddeev–AGS equations proposed in
Ref. [6] we need the proton-nucleus form factors in the Coulomb distorted basis, and
thus need to have a separable representation of proton-nucleus optical potentials. In
Refs. [35, 36] rank-1 separable interactions of Yamaguchi form were introduced to
represent the nuclear force up to a few MeV, and the Coulomb distorted basis was
introduced to compute proton elastic scattering from light nuclei. This is not suffi-
cient for considering the proton-nucleus interaction in a separable representation for
scattering of heavy nuclei up to tens of MeV. Thus we need to extend the generaliza-
tion of the EST scheme presented in the previous section such that it can be applied
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Figure 1: The unpolarized differential cross section for elastic scattering of neutrons
from 48Ca (upper) and 208Pb (lower) as function of the c. m. angle. For 48Ca the
cross section is calculated at a laboratory kinetic energy of 38 MeV and is scaled by
a factor 40. The calculation for 208Pb is carried out at Elab = 45 MeV. The solid
lines (ii) depict the cross section calculated in momentum space based on the rank-5
separable representation of the CH89 [28] phenomenological optical potential, while
the dotted lines (i) represent the corresponding coordinate space calculations.

in the Coulomb distorted basis [16].

In general the scattering between a proton and a nucleus is governed by a potential

w = vc + us, (13)

where vc is the repulsive Coulomb potential and us an arbitrary short range potential.
In general us consists of an optical potential, which describes the nuclear interactions
and a short-ranged Coulomb potential traditionally parameterized as the potential of a
charged sphere with radius R0 from which the point Coulomb force is subtracted [28].
In practice,

us = uN + (vcd − vc), (14)

where uN represents the nuclear (optical) potential, vcd is the Coulomb potential
inside the nucleus, and is usually taken as the Coulomb potential for a uniformly
charged sphere of radius R0, from which the point Coulomb potential is subtracted.
The expressions for the short-ranged charge distribution is given in Ref. [28] as

(vcd − vc)(r) = αZ1Z2

[
1

2R0

(
3− r2

R2
0

)
− 1

r

]
, (15)

with Z1 and Z2 being the atomic numbers of the particles, and α the Coulomb coupling
constant. Since the scattering problem governed by the point Coulomb force has an
analytic solution, the scattering amplitude for elastic scattering between a proton and
a spin-zero nucleus is obtained as the sum of the Rutherford amplitude fC(Ep0 , θ)
and the Coulomb distorted nuclear amplitude given by

MCN(Ep0 , θ) = fCN(Ep0 , θ) + σ̂ · n̂ gCN(Ep0 , θ), (16)
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with

fCN (Ep0 , θ) =

− πµ
∞∑

l=0

e2iσl(Ep0)Pl(cos θ)×
[
(l + 1)〈p0|τCN

l+ (Ep0)|p0〉+ l〈p0|τCN
l− (Ep0 )|p0〉

]
, (17)

and

gCN (Ep0 , θ) =

− πµ
∞∑

l=0

e2iσl(Ep0)P 1
l (cos θ)×

[
〈p0|τCN

l+ (Ep0)|p0〉 − 〈p0|τCN
l− (Ep0 )|p0〉

]
. (18)

Here Ep0 = p20/2µ is the c. m. scattering energy which defines the on-shell momentum
p0, and σl = arg Γ(1+ l+ iη) is the Coulomb phase shift. The Sommerfeld parameter
is given by η = αZ1Z2µ/p0. The unit vector n̂ is normal to the scattering plane, and
σ̂/2 is the spin operator. The subscripts ′+′ and ′−′ correspond to a total angular
momentum j = l + 1/2 and j = l − 1/2.

Suppressing the total angular momentum indices for simplicity, the Coulomb dis-
torted nuclear t-matrix element is given by 〈p0|τCN

l (Ep0)|p0〉, which is the solution of
a LS type equation,

〈p|τCN
l (Ep0)|p0〉 = 〈p|usl |p0〉

+

∫
p′2dp′〈p|usl |p′〉〈p′|gc(Ep0 + iε)|p′〉〈p′|τCN

l (Ep0)|p0〉. (19)

Here
g−1
c (Ep0 + iε) = Ep0 + iε−H0 − vc (20)

is the Coulomb Green’s function andH0 the free Hamiltonian. The Coulomb distorted
nuclear t-matrix element 〈p|τCN

l (Ep0)|p0〉 is related to the proton-nucleus t-matrix
〈p|tl(Ep0)|p0〉 by the familiar two-potential formula

〈p|tl(Ep0)|p0〉 = 〈p|tCl (Ep0 )|p0〉+ e2iσl(Ep0)〈p|τCN
l (Ep0 )|p0〉, (21)

where 〈p|tCl (Ep0)|p0〉 is the point Coulomb t-matrix. When the integral equation,
Eq. (19), is solved in the basis of Coulomb eigenfunctions, gc acquires the form of a free
Green’s function and the difficulty of solving it is shifted to evaluating the potential
matrix elements in this basis. For deriving a separable representation of the Coulomb
distorted proton-nucleus t-matrix element, we generalize the approach suggested by
Ernst, Shakin, and Thaler (EST) [32], to the charged particle case. The basic idea
behind the EST construction of a separable representation of a given potential is that
the wave functions calculated with this potential and the corresponding separable
potential agree at given fixed scattering energies Ei, the EST support points. The
formal derivations of [32] use the plane wave basis, which is standard for scattering
involving short-range potentials. However, the EST scheme does not depend on the
basis and can equally well be carried out in the basis of Coulomb scattering wave
functions.

In order to generalize the EST approach to charged-particle scattering, one needs
to be able to obtain the scattering wave functions or half-shell t-matrices from a
given potential in the Coulomb basis, and then construct the corresponding separable
representation thereof.

In order to calculate the half-shell t-matrix of Eq. (18), we evaluate the integral
equation in the Coulomb basis as suggested in [37] and successfully applied in [38],
and note that in this case the Coulomb Green’s function behaves like a free Green’s
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function. Taking |Φc
l,p〉 to represent the partial wave Coulomb eigenstate, the LS

equation becomes

〈Φc
l,p|τCN

l (Ep0 )|Φc
l,p0
〉 = 〈Φc

l,p|us|Φc
l,p0
〉

+

∞∫

0

〈Φc
l,p|us|Φc

l,p′〉 p′2dp′

Ep0 − Ep′ + iε
〈Φc

l,p′ |τCN
l (Ep0)|Φc

l,p0
〉

≡ 〈p|τCN
l (Ep0)|p0〉, (22)

which defines the Coulomb distorted nuclear t-matrix of Eq. (19).
To determine the short-range potential matrix element, we follow Ref. [37] and

insert a complete set of position space eigenfunctions

〈Φc
l,p′ |usl |Φc

l,p〉 =
2

π

∞∫

0

〈Φc
l,p′ |r′〉 r′2dr′ 〈r′|usl |r〉 r2dr 〈r|Φc

l,p〉

=
2

πp′p

∞∫

0

rr′drdr′ Fl(η
′, p′r′) 〈r′|usl |r〉 Fl(η, pr). (23)

The partial wave Coulomb functions are given in coordinate space as

〈r|Φc
l,p〉 ≡

Fl(η, pr)

pr
, (24)

where Fl(η, pr) are the standard Coulomb functions [39], and η(η′) is the Sommerfeld
parameter determined with momentum p(p′).

For our application we consider phenomenological optical potentials of Woods–
Saxon form which are local in coordinate space. Thus the momentum space potential
matrix elements simplify to

〈Φc
l,p′ |usl |Φc

l,p〉 =
2

πp′p

∞∫

0

dr Fl(η
′, p′r)usl (r)Fl(η, pr). (25)

We compute these matrix elements for the short-range piece of the CH89 phenomeno-
logical global optical potential [28], which consists of the nuclear part parameterized
in terms of Woods–Saxon functions and the short-range Coulomb force of Eq. (15).
The integral of Eq. (25) can be carried out with standard methods, since us(r) is
short ranged and the coordinate space Coulomb wavefunctions are well defined. The
accuracy of this integral can be tested by replacing the Coulomb functions with spher-
ical Bessel functions and comparing the resulting matrix elements to the partial-wave
decomposition of the semi-analytic Fourier transform used for the calculations in the
previous Section. For the cases we studied a maximum radius of 14 fm, 300 grid points
are sufficient to obtain matrix elements with a precision of six significant digits.

Extending the EST separable representation to the Coulomb basis involves replac-
ing the neutron-nucleus half-shell t-matrix in Eqs. (6)-(8) by the Coulomb distorted
nuclear half-shell t-matrix. This leads to the separable Coulomb distorted nuclear
t-matrix

τCN
l (Ep0) =

∑

i,j

us|f c
l,kEi
〉 τcij(Ep0 ) 〈f c∗

l,kEj
|us, (26)

with τcij(Ep0 ) being constrained by

∑

i

〈f c∗
l,kEn

|us − usgc(Ep0)us|f c
l,kEi
〉τcij(E) = δnj (27)

∑

j

τCN
ij (Ep0 ) 〈f c∗

l,kEj
|us − usgc(Ep0)us|f c

l,kEk
〉 = δik .
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Here |f c
l,kEi
〉 and |f c∗

l,kEi
〉 are the regular radial scattering wave functions correspond-

ing to the short range potentials us and (us)∗ at energy Ei. The separable Coulomb
distorted nuclear t-matrix elements are given by

〈p′|τCN
l (Ep0)|p〉 ≡

∑

i,j

hcl,i(p
′)τcij(Ep0 )hcl,j(p)

=
∑

i,j

〈Φc
l,p′ |us|f c

l,kEi
〉τcij(Ep0)〈f c∗

l,kEj
|us|Φc

l,p〉, (28)

where the form factor

hcl,i(p) ≡ 〈Φc
l,p|us|f c

l,kEi
〉 = 〈f c∗

l,kEi
|us|Φc

l,p〉 = 〈p|τCN
l (Ei)|kEi

〉 (29)

is the Coulomb distorted short-range half-shell t-matrix satisfying Eq. (22). We want
to point out that the generalization of the EST scheme to complex potentials is not
affected by changing the basis from plane waves to Coulomb scattering states.

For studying the quality of the representation of proton-nucleus optical potentials
we consider p+ 48Ca and p+ 208Pb elastic scattering and show the unpolarized differ-
ential cross sections divided by the Rutherford cross section as function of the c. m.
angle θc.m. in Fig. 2. First, we observe very good agreement in both cases of the mo-
mentum space calculations using the separable representation with the corresponding
coordinate space calculations. Second, we want to point out that we used for the
separable representation of the proton-nucleus partial-wave t-matrices the same sup-
port points (Table 1) as in the neutron-nucleus case. This makes the determination
of suitable support points Ei for a given optical potential and nucleus quite efficient.
In Fig. 2 we also show a calculation in which the short-range Coulomb potential of
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Figure 2: The unpolarized differential cross section for elastic scattering of protons
from 48Ca (upper) and 208Pb (lower) divided by the Rutherford cross section as func-
tion of the c. m. angle θc.m.. For 48Ca the cross section is calculated at a laboratory
kinetic energy of 38 MeV and is scaled by a factor 4. The calculation for 208Pb is
carried out at Elab = 45 MeV. The solid lines (i) depict the cross section calculated
in momentum space based on the rank-5 separable representation of the CH89 [28]
phenomenological optical potential, while the dotted lines (ii) represent the corre-
sponding coordinate space calculations. The dash-dotted lines (iii) show calculations
in which the short-ranged Coulomb potential is omitted.
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Figure 3: The real parts of the partial wave neutron form factors for 48Ca as function
of the momentum p for l = 0 (a) and l = 6 (c). The form factors are calculated
at the energies indicated in Table 1 for the given angular momentum, 1 ≡ 6 MeV,
2 ≡ 15 MeV, and 3 ≡ 36 MeV. The real parts of the proton form factors for 48Ca
as function of the momentum p are given for l = 0 in (b) and l = 6 in (d) for the
energies indicated in Table 1.

Eq. (18) is omitted. The differences in the cross sections clearly demonstrate the im-
portance of including this term. A detailed comparison of the partial-wave S-matrix
elements as function of the angular momentum is given in Ref. [16].

In order to illustrate some details of the separable representation of the t-matrix
of Eq. (7) that leads to the cross section given in Fig. 1, we display in the left panels of
Fig. 3 the real parts of the form factors of the n+48Ca t-matrix for l = 0 (a) and l = 6
(c) at support points given in Table 1 for the respective angular momentum. Only
for l = 0 the form factors have a finite value at p = 0, while for the higher angular
momentum all form factors go to zero for p → 0 due to the angular momentum
barrier. For comparison, the right panels in Fig. 3 display the form factors of the
Coulomb distorted nuclear t-matrix from Eq. (19) for p+ 48Ca for the same angular
momenta and support points. Those t-matrix elements enter the calculation of the
cross section in Fig. 2. First we note that for l = 0 the p + 48Ca form factors are
quite different from the n+ 48Ca form factors. In addition, they fall off much slower
as function of p, a property mainly caused by the short range Coulomb potential.

In Fig. 4 we carry out an analogous comparison between the form factors for the
n + 208Pb and p + 208Pb form factors. Here the energies are chosen slightly higher,
since in the p + 208Pb the form factors at the lowest energies given in Table 1 are
very small. The slow decrease of the p + 208Pb form factor for the small angular
momentum is even more pronounced in this case.

At this point it is crucial to note that in Figs. 3 and 4 we compare two quite
different form factors. For n + 48Ca and n+ 208Pb scattering the t-matrix elements
leading to the form factors are calculated as described in Section 2 using as basis
states in- and out-going plane-wave scattering states. For p+ 48Ca and p+ 208Pb, the
Coulomb distorted nuclear t-matrix elements enter the cross section and lead to the
form factors. Those Coulomb distorted t-matrix elements are evaluated in the basis
of Coulomb scattering states. Thus, one should not be surprised that the form factors
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Figure 4: The real parts of the partial wave neutron form factors for 208Pb as function
of the momentum p for l = 0 (a) and l = 8 (c). The form factors are calculated at the
first three energies indicated in Table 1 for the given angular momentum, 1 ≡ 21 MeV,
2 ≡ 36 MeV, and 3 ≡ 47 MeV (l = 2) and 45 MeV (l = 8). The real parts of the
proton form factors for 208Pb as function of the momentum p are given for l = 0 in
(b) and l = 8 in (d) for the same energies.

given in the left and right panels of Figs. 3 and 4 differ from each other.

4 Coulomb distorted neutron-nucleus form factors

In order to treat charged-particle scattering in momentum space without employing a
screening procedure for the Coulomb force, it is necessary to formulate the scattering
problem in a momentum space Coulomb basis. For proton-nucleus scattering, a two-
body problem with a repulsive Coulomb force, the Coulomb distorted nuclear matrix
elements are already derived in this bases, as described in the previous Section and
Refs. [16, 37, 38]. When moving forward to (d, p) reactions, an effective three-body
problem with two charged particles, one needs to solve generalized Faddeev–AGS
equations in Coulomb basis, as was proposed in Ref. [6]. In order for this approach
to be numerically practical, reliable techniques to calculate expectation values in this
basis must exist. Here we evaluate the neutron-nucleus form factors from Section 2
in the Coulomb basis to illustrate the feasibility of the approach.

The starting point is the analytic expression for the Coulomb wave function in mo-
mentum space which, after a partial wave decomposition, can be written as (see [40]
and Ref. [17])

ψC
l,p(q) = − 2π eηπ/2

pq
lim

γ→+0

d

dγ

{[
q2 − (p+ iγ)2

2pq

]iη
(ζ2 − 1)−i η2 Qiη

l (ζ)

}
. (30)

Here, p is the magnitude of the fixed asymptotic momentum and ζ =
(p2 + q2 + γ2)/2pq. The Sommerfeld parameter is given as η = Z1Z2e

2µ/p where
Z1 = 1 and Z2 corresponds to the number of protons in the nucleus, and µ is
the reduced mass of the two-body system under consideration. The spherical func-
tion Qiη

l (ζ) in Eq. (30) can be expressed in terms of hypergeometric functions 2F1 [41].
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Figure 5: The absolute value of the real part of the l = 0 Coulomb wave function
ψC
l,p,η(p) for the external momentum p = 0.6 fm−1 and η = 0.1, 0.5, 1 (upper panel)

and η = 1, 3, 3 (lower panel), as function of q. The shaded area masks the function
around the singularity at p→ q, where it is highly oscillatory.

However, care must be taken in its evaluation, since there are specific limits of va-
lidity of the various expansions. Specific difficulties together with the expressions
implemented in this work are discussed in detail in Refs. [17, 42].

In Fig. 5 we display l = 0 partial wave Coulomb functions for fixed external
momentum q = 0.6 fm−1 as function of p for selected values of η. The functions
exhibit oscillatory singular behavior for p→ q. This region is indicated in the figure
by the shaded band. For values of η ≥ 1 oscillatory behavior is already present way
outside the singular region. It is also worthwhile to note that once the momentum p
is larger than the external momentum q, the magnitude of the Coulomb function falls
off by at least an order of magnitude.

For evaluating the neutron-nucleus form factors in the Coulomb basis, we start
from the separable partial-wave t-matrix operator given in Eq. (7). Evaluating its
momentum space matrix elements 〈p|tl(E)|p′〉 in a plane-wave basis gives the nuclear
form factors

〈p|u|fl,kE
〉 = tl(p, kE ;EkE

) ≡ ul(p)
〈f∗

l,kE
|u|p′〉 = tl(p

′, kE ;EkE
) ≡ ul(p′),

(31)

where the tl(p, kE ;EkE
) are the half-shell two-body t-matrices obtained as solution of

a momentum space LS equation with the complex potential u.

The corresponding Coulomb-distorted form factors are obtained by replacing the
plane-wave basis state by a Coulomb basis state |ψC

l,p〉 leading to

〈ψC
l,p|u|fl,kE

〉 =

∫ ∞

0

dq q2

2π2
ul(q)ψ

C
l,p(q)⋆ ≡ uCl (p) (32)

〈f∗
l,kE
|u|ψC

l,p〉 =

∫ ∞

0

dq q2

2π2
ul(q) ψ

C
l,p(q) ≡ uCl (p)† (33)

When η → 0, Eqs. (32) and (33) tend to Eq. (31). This expression is a generalization
of the form introduced in Ref. [6] to account for complex interactions.

The main challenge in computing the integrals of Eq. (32) and (33) is the oscilla-
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Figure 6: The real parts of the partial wave Coulomb distorted neutron form factors
for 48Ca as function of the momentum p for l = 0 (a) and l = 6 (c). The form factors
are calculated at the energies indicated in Table 1 for the given angular momentum,
1 ≡ 6 MeV, 2 ≡ 15 MeV, and 3 ≡ 36 MeV. The real parts of the proton form factors
for 48Ca as function of the momentum p are given for l = 0 in (b) and l = 6 in (d)
for the energies given in Table 1.

tory singularity in the integrand for q = p, which is of the form

S(q − p) = lim
γ→+0

1

(q − p+ iγ)1+iη
. (34)

This type of singularity cannot be numerically evaluated by the familiar principal
value subtractions but rather needs to be treated using the scheme of Gel’fand and
Shilov [43], as proposed by [6, 41]. The generalization to the complex form factors of
our application is given in Ref. [17]. The essence of the Gel’fand and Shilov scheme
is to subtract as many terms as needed of the Laurent expansion in a small region
around the pole so that the oscillations around the pole become small, and the integral
becomes regular. For further details of the calculations as well as numerical tests we
refer to Ref. [17].

In order to illustrate the behavior of Coulomb distorted neutron form factors we
show in Fig. 6 in the left panels the real parts of the Coulomb distorted neutron form
factors of the n+ 48Ca t-matrix for l = 0 (a) and l = 6 (c) at the same support points
as the plane-wave n+ 48Ca form factors shown in Fig. 3 and the Coulomb distorted
p + 48Ca form factors shown in the right panels. The effect of Coulomb distortions
is clearly visible for l = 0, where the form factor goes to zero as p → 0. The figure
also shows that the Coulomb distorted neutron- and proton form factors are quite
different.

In Fig. 7 a similar comparison is shown but for real parts of the Coulomb distorted
n + 208Pb and p + 208Pb form factors. Drawing attention to the different scales for
the left and right side panels, we note that the Coulomb distorted p + 208Pb form
factors do not only differ in shape, but also in magnitude from the Coulomb distorted
n + 208Pb form factors. This may not come as a surprise when having in mind that
the Coulomb force is quite strong in heavy nuclei. The comparisons in Figs. 6 and 7
emphasize the need for a proper introduction of the Coulomb force in the EST scheme
as presented in Section 3.



120 Ch. Elster et al. (TORUS collaboration)

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

 i= 1
 i= 2
 i= 3

-0.1

-0.05

0

0.05

0 0.5 1 1.5 2 2.5 3 3.5
 p  [fm

-1
]

-0.06

-0.04

-0.02

0

0.02

0 0.5 1 1.5 2 2.5 3 3.5
 p [fm

-1
]

0

0.01

0.02

0.03

0.04

0.05

(a) (b)

(c)

 l= 8

 l= 2

208
Pb

R
e 

(f
or

m
 f

ac
to

rs
) 

[f
m

2 ]

(d)

Figure 7: The real parts of the partial wave Coulomb distorted neutron form factors
for 208Pb as function of the momentum p for l = 0 (a) and l = 8 (c). The form factors
are calculated at the first three energies indicated in Table 1 for the given angular
momentum, 1 ≡ 21 MeV, 2 ≡ 36 MeV, and 3 ≡ 47 MeV (l = 2) and 45 MeV (l = 8).
The real parts of the proton form factors for 208Pb as function of the momentum p
are given for l = 2 in (b) and l = 8 in (d) for the same energies.

The realization that the Coulomb distorted neutron-nucleus form factors differ
from the proton-nucleus ones has been already pointed out in Ref. [44] where separable
t-matrices for proton-proton (pp) scattering were considered. There the authors used a
separable representation in terms of Yukawa functions and re-adjusted the parameters
in the two lowest partial wave to describe the experimentally extracted pp phase shifts.
While such an approach may be viable in the pp system, it is not very practical when
heavy nuclei are considered, since here many more partial waves are affected by the
Coulomb force.

Finally, we want to inspect the Coulomb distorted form factor of Eq. (32) and
consider an alternative way for its calculation in order to verify the quite involved
integration procedure outlined in this Section and given in detail in Ref. [17]. The
quantity u|fl,kE

〉 satisfies an operator LS equation,

u|fl,kE
〉 = u|kE〉+ ug0(E)u|fl,kE

〉, (35)

where |kE〉 is the radial part of the solution of the free Hamiltonian at energy E with
angular momentum l, and g0(E) is the free Green’s function. Multiplying from the
left with the Coulomb scattering wave function ψc

l,p gives

〈ψc
l,p|u|fl,kE

〉 = 〈ψc
l,p|u|kE〉+

∫
dp′p′2〈ψc

l,p|u|p′〉
1

E − Ep′ + iǫ
〈p′|u|fl,kE

〉. (36)

The term 〈p′|u|fl,kE
〉 = tl(p

′, kE ;EkE
) is the half-shell t-matrix at a support point EkE

already calculated when obtaining the form factors for the separable representation
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Figure 8: The absolute value of the real part of the partial-wave Coulomb distorted
n+48Ca for l = 0 (E=6 MeV) and l = 6 (E=16 MeV) as function of the momentum p.
The dotted lines (i) represent the integration over the Coulomb wave functions, while
the solid lines (ii) stands for the calculations according to right-hand side of Eq. (36).
The absolute difference between the two calculation is shown as dashed line (iii).

(see Eq. (31)). It remains to calculate the driving term, which now is given as

〈Φc
l,p′ |u|p〉 r′2dr′ 〈r′|u|r〉 r2dr 〈r|p〉

=
2

πp′

∞∫

0

dr r2 dr′ r′ Fl(η
′, p′r′) 〈r′|u|r〉 jl(pr), (37)

which turns for the phenomenological Woods–Saxon potential into

〈Φc
l,p′ |u|p〉 =

2

πp′

∞∫

0

dr r Fl(η
′, p′r) us(r) jl(pr). (38)

We now can evaluate the left-hand side (LHS) and the right-hand side (RHS) of
Eq. (36) independently with two completely different algorithms. This comparison
is shown in Fig. 8 for two different form factors for 48Ca. For the l = 0 the form
factor at E = 6 MeV is shown, for l = 6 the one at E = 16 MeV. The results
of both independent calculations indistinguishable in the graph. Thus we show the
absolute difference between the two calculations as dashed line. This shows that our
numerical integration over the momentum-space Coulomb functions together with the
Gel’fand-Shilov regularization is very accurate and can be used without any problem
in Faddeev–AGS equations formulated in the Coulomb basis when matrix elements
in this basis may only be obtained in this fashion.

5 Summary and Outlook

In a series of steps we developed the input that will serve as a basis for Faddeev–AGS
three-body calculations of (d, p) reactions, which will not rely on the screening of the
Coulomb force. To achieve this, Ref. [6] formulated the Faddeev–AGS equations in



122 Ch. Elster et al. (TORUS collaboration)

the Coulomb basis using separable interactions in the two-body subsystems. For this
ambitious program to have a chance of being successful, the interactions in the two-
body subsystems, namely the NN and the neutron- and proton-nucleus systems, need
to developed so that they separately describe the observables of the subsystems. While
for the NN interaction separable representations are available, this is was not the case
for the optical potentials describing the nucleon-nucleus interactions. Furthermore,
those interactions in the subsystems need to be available in the Coulomb basis.

We developed separable representations of phenomenological optical potentials
of Woods–Saxon type for neutrons and protons. First we concentrated on neutron-
nucleus optical potentials and generalized the Ernst–Shakin–Thaler (EST) scheme [32]
so that it can be applied to complex potentials [15]. In order to consider proton-
nucleus optical potentials, we further extended the EST scheme so that it can be
applied to the scattering of charged particles with a repulsive Coulomb force [16].
While the extension of the EST scheme to charged particles led to a separable proton-
nucleus t-matrix in the Coulomb basis, we had to develop methods to reliably com-
pute Coulomb distorted neutron-nucleus t-matrix elements [17]. Here we also show
explicitly that those calculations can be carried out numerically very accurately by
calculating them within two independent schemes.

Our results demonstrate, that our separable representations reproduce standard
coordinate space calculations of neutron and proton scattering cross sections very well,
and that we are able to accurately compute the integrals leading to the Coulomb dis-
torted form factors. Now that these challenging form factors have been obtained, they
can be introduced into the Faddeev–AGS equations to solve the three-body problem
without resorting to screening. Our expectation is that solutions to the Faddeev–AGS
equations written in the Coulomb-distorted basis can be obtained for a large variety
of n + p + A systems, without a limitation on the charge of the target. From those
solutions, observables for (d, p) transfer reactions should be readily calculated. Work
along these lines is in progress.
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Abstract

Relativistic properties of a three-nucleon system are investigated using the
Bethe–Salpeter approach. A system of integral Faddeev-type equations for the
three-particle system amplitudes is obtained. The nucleon-nucleon interaction is
chosen to be in a separable form. The Gauss quadrature method for solving the
integral system of equations is considered. The binding energy and the partial-
wave amplitudes (1S0 and 3S1) of the triton are found by solving the system of
the integral equations.

Keywords: Bethe–Salpeter approach; three-nucleon system; Faddeev equation

Introduction

Three-body calculations in nuclear physics are very interesting for describing three-
nucleon bound states (3He, T), processes of elastic, inelastic and deep inelastic scat-
tering of leptons by light nuclei and also the hadron-deuteron reactions (for example,
pd→ pd, pd→ ppn). The study of the 3He and T nuclei is also interesting because it
allows us to investigate a further (in addition to the deuteron) evolution of a bound
nucleon thereby contributing to the explanation of the so-called EMC-effect.

Faddeev equations are used in quantum mechanics to describe three-particle sys-
tems. The main feature of Faddeev equations is that all three particles interact
through a pair potential. We are interested in reactions at high momentum transfer
where the relativistic methods should be used. One of such methods is the Bethe–
Salpeter (BS) approach. The relativistic analog of the Faddeev equations can be
considered in the BS formalism.

In this paper, all nucleons have equal masses. The scalar propagators instead of
the spinor ones are used also for simplicity. The spin and isospin structure of the
nucleons is taken into account by using the so-called recoupling-coefficient matrix.
The work mainly follows the ideas of Ref. [1].

The paper is organized as follows. A two-particle problem is considered in Section 1
and Section 2 is devoted to three-particle equations. In Section 3 we present the
calculations and results. The summary is given in Section 4.

1 Two-particle case

Since the formalism of the Faddeev equations is based on properties of the pair
nucleon-nucleon interaction, here only some conclusions from the two-body problem

Proceedings of the International Conference ‘Nuclear Theory in the Super-
computing Era — 2014’ (NTSE-2014), Khabarovsk, Russia, June 23–27, 2014.
Eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2016, p. 125.

http://www.ntse-2014.khb.ru/Proc/Yurev.pdf.
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Table 1: Parameters λ and β for the 1S0 and 3S1 partial-wave states.

1S0
3S1

λ (GeV4) −1.12087 −3.15480
β (GeV) 0.287614 0.279731

are given.
The Bethe–Salpeter equation for a relativistic two-particle system is written in

the following form:

T (p, p′; s) = V (p, p′) +
i

4π3

∫
d4k V (p, k)G(k; s)T (k, p′; s), (1)

where T (p, p′; s) is the two-particle T matrix and V (p, p′) is the kernel (potential)
of the nucleon-nucleon interaction. The free two-particle Green’s function G(k; s) is
expressed, for simplicity, thought the scalar propagator of the nucleons:

G−1(k; s) =
[
(P/2 + k)2 −m2

N + iǫ
][

(P/2− k)2 −m2
N + iǫ

]
. (2)

To solve Eq. (1), the separable ansatz for the nucleon-nucleon potential V (p, p′) is
used (rank-one):

V (p0, p, p
′
0, p

′) = λ g(p0, p) g(p′0, p
′). (3)

In this case the two-particle T matrix has the following simple form:

T (p0, p, p
′
0, p

′; s) = τ(s) g(p0, p) g(p′0, p
′), (4)

where

τ(s) =

[
λ−1 − i

4π3

∫ ∞

−∞
dk0

∫ ∞

0

k2dk g2(k0, k)G(k0, k; s)

]−1

. (5)

As the simplest assumption, the relativistic Yamaguchi-type form factor gY (p0, p)
is used,

gY (p0, p) =
1

−p20 + p2 + β2
, (6)

with parameters λ and β chosen to describe the experimental data. The values of the
parameters are given in Table 1.

To calculate the scattering phase shifts of proton-neutron elastic collisions, the
following parametrization of the on-mass-shell T matrix is used:

TL(p̄) = TL(0, p̄, 0, p̄; s) =
−8π
√
s

p̄
eiδL(p̄) sin δL(p̄)

with δL(p̄) being the scattering phase shifts and p̄ =
√
s/4−m2

N =
√

1
2mNTlab. The

calculated scattering phase shifts together with the experimental data are shown in
Fig. 1. The results of calculations of the low-energy parameters and properties of the
bound state (deuteron) are given in Table 2 together with the experimental data from
Ref. [3].

As it seen from Table 2, the properties of low-energy proton-neutron scattering in
the 1S0 and 3S1 partial waves and the deuteron binding are in a satisfactory agreement
with the experimental data. However, as is seen in Fig. 1, the scattering phase shifts
describe the experiment up to Tlab = 100−120 MeV only. This disadvantage is due
to the simplest rank-one choice of the nucleon-nucleon kernel.
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Figure 1: Scattering phase shifts for the relativistic Yamaguchi-type form factors.
The experimental data are taken from Ref. [2]

Table 2: The scattering length a0, the effective range r0 and the deuteron binding
energy Ed for the 1S0 and 3S1 partial waves.

3S1 experiment 1S0 experiment
a0 (fm) 5.424 5.424(4) −23.748 −23.748(10)
r0 (fm) 1.775 1.759(5) 2.75 2.75(5)
Ed (MeV) 2.2246 2.224644(46)

2 Three-particle case

A three-particle system can be described by the Faddeev equations

[ T (1)

T (2)

T (3)

]
=

[
T1
T2
T3

]
−
[

0 T1G1 T1G1

T2G2 0 T2G2

T3G3 T3G3 0

][ T (1)

T (2)

T (3)

]
, (7)

where the full matrix T =
∑3

i=1 T
(i), Gi is the two-particle (j and n) Green’s function

[ijn is cyclic permutation of (1,2,3)],

Gi(kj , kn) =
1

(k2j −m2
N + iǫ)(k2n −m2

N + iǫ)
, (8)

and Ti is the two-particle T matrix which can be written as

Ti(k1, k2, k3; k′1, k
′
2, k

′
3) = (2π)4 δ(4)(Ki −K ′

i)Ti(kj , kn; k′j , k
′
n). (9)

For the system of equal-mass particles, the Jacobi momenta can be written as

pi =
1

2
(kj − kn), qi =

1

3
K − ki, K = k1 + k2 + k3. (10)

Using expressions (10), Eq. (7) can be rewritten as

T (i)(pi, qi; p
′
i, q

′
i; s) = (2π)4 δ(4)(qi − q′i)Ti(pi; p′i; s)

− i
∫

dp′′i
(2π)4

Ti(pi; p
′′
i ; s)Gi(k

′′
j , k

′′
n)
[
T (j)(p′′j , q

′′
i ; p′i, q

′
i; s) + T (n)(p′′i , q

′′
i ; p′i, q

′
i; s)

]
. (11)
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For the three-particle bound state it is suitable to introduce an amplitude

Ψ(i)(pi, qi; s) = 〈pi, qi|T (i)|MB〉, (12)

where MB =
√
s = 3mN − EB is the mass of the bound state (triton) and s = K2 is

the total momentum squared. Assuming the orbital angular momenta in the triton to
be equal to zero (lp = lq = 0), only two partial-wave states (1S0 and 3S1) should be
taken into account. In the case of the two-particle T matrix in the separable form (4),
the amplitude of the triton becomes

Ψ(i)(p, q; s) =
∑

j=1,2

gj(p) τj(s) Φj(q; s), (13)

where j = 1(1S0), 2(3S1). The functions Φj(q) satisfy the following system of integral
equations:

Φj(q0, q; s) =
∑

j′

i

4π3

∫
dq′0

∫
q′

2
dq′

× Zjj′ (q0, q, q
′
0, q

′; s)
τj′
[
(23
√
s+ q′0)2 − q′2

]
(
1
3

√
s− q0

)2 − q′2 −m2
N + iǫ

Φj′ (q
′
0, q

′; s). (14)

The so-called effective energy-dependent potential Z is

Zjj′ (q0, q, q
′
0, q

′; s) = Cjj′

∫ 1

−1

d(cosϑqq′)

× gj
(
− 1

2q0 − q′0, | − 1
2q− q′|

)
gjj′
(
q0 + 1

2q
′
0, |q + 1

2q
′|
)

(
1
3

√
s+ q0 + q′0

)2 − (q + q′)2 −m2
N + iǫ

, (15)

where Cjj′ is the spin and isospin recoupling-coefficient matrix:

Cjj′ =

[
1
4 − 3

4
− 3

4
1
4

]
. (16)

The system of integral equations (14)–(15) has a number of singularities, namely:

• poles from the one-particle propagator:

q′01,2 =
1

3

√
s∓ [E|q′| − iǫ];

• poles from the propagator in the Z-function:

q′03,4 = −1

3

√
s− q0 ± [E|q′+q| − iǫ];

• poles from the Yamaguchi-functions:

q′05,6 = −2q0 ± 2[E| 1
2
q′+q|,β − iǫ]

and

q′07,8 = −1

2
q0 ± 1

2
[E|q′+1

2
q|,β − iǫ];

• cuts from the two-particle propagator τ :

q′09,10 = ±
√
q′2 + 4m2

N −
2

3

√
s and ±∞;



Three-nucleon calculations within the Bethe–Salpeter approach 129

• poles from the two-particle propagator τ :

q′011,12 = ±
√
q′2 + 4M2

d −
2

3

√
s.

However in the case of the bound three-particle system (
√
s ≤ 3mN), all above sin-

gularities do not cross the path of integration over q0 and thus do not affect the Wick
rotation procedure q0 → iq4. Therefore Eqs. (14)–(15) become:

Φj(q4, q; s) = − 1

4π3

2∑

j′=1

∫ ∞

−∞
dq′4

∫ ∞

0

q
′2dq′

× Zjj′ (iq4, q; iq
′
4, q

′; s)
τj′
[
(23
√
s+ iq′4)2 − q′2

]
(
1
3

√
s− iq′4

)2 − q′2 −m2
N

Φj′ (q
′
4, q

′; s) (17)

and

Zjj′ (q4, q; q
′
4, q

′; s) = Cjj′

∫ 1

−1

d(cosϑqq′)

× gj
(
− 1

2q
0 − q0′ , | 12q + q′|

)
gj
(
q0 + 1

2q
0′ , |q + 1

2q
′|
)

(
1
3

√
s+ q0 + q0′

)2 − (|q + q′|)2 −m2
N

. (18)

Various methods can be used to solve Eqs. (17)–(18). One of them is discussed in
the next section.

3 Solution and results

In order to solve the system of integral equations, the Gaussian quadrature method is
used. The integration variables q [0,∞) and q4 (−∞,∞) are mapped to the [−1, 1] in-
terval. The quadrature method replaces integrals by sums and transforms the system
of homogeneous linear integral equations to a system of algebraic equations. These
equations can be solved using FORTRAN codes.

The method can be presented schematically as

f(x) =

∫
A(x, y) f(y)→ f(xi) =

∑

j=1,n

A(xi, yj)wj f(yj),

where xi, yj and wj are the Gauss points and weights and n is the number of points.
The homogeneous system of linear equations takes the form

Mφ = 0

with Mij ≡ Aij − δij and φi = f(xi); i, j = 1, 2, ... , n. This system of equations has a
solution if the determinant of the matrix is equal to zero. This condition is satisfied
at the binding energy of the three-nucleon system:

detM(s) = 0 at
√
s = 3mN − EB.

The result of calculations (n = 15) for the binding energy is EB = 11.09 MeV
which should be compared to the experimental value of 8.48 MeV. The difference can
be explained by the simplicity of the rank-one separable kernel of the nucleon-nucleon
interaction.

The obtained partial-wave amplitudes are shown in Figs. 2–4. The imaginary
parts of the amplitudes arise as a pure relativistic effect which does not appears in
nonrelativistic Faddeev equations.
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Figure 2: Real parts of the 3S1 (left) and 1S0 (right) amplitudes as functions of q at
various q4 values.
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Figure 3: Real (left) and imaginary (right) parts of the 3S1 amplitude as functions
of q4 at various q values.
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Figure 4: Real (left) and imaginary (right) parts of the 1S0 amplitude as functions
of q4 at various q values.
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4 Summary

In this paper a three-body system in the Bethe–Salpeter approach is investigated. A
rank-one separable nucleon-nucleon interaction is utilized. The form factor is chosen
in the form of a relativistic generalization of the Yamaguchi-type function. The pa-
rameters of the nucleon-nucleon potential in the 1S0 and 3S1 partial waves reproduce
low-energy scattering parameters and deuteron properties as well as the phase shifts
up to the laboratory energy of 100–120 MeV.

The Faddeev equations for the triton wave functions considered in the BS formal-
ism are solved using the Gauss quadrature method. The triton binding energy and
amplitudes of the 1S0 and 3S1 partial-wave states are calculated.

The triton binding energy is essentially overestimated. To improve the results,
the rank of the separable kernel should be increased. Other partial waves, the P and
D waves in particular, and the spinor propagators for nucleons should be also taken
into account.
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Abstract

In a series of recent papers, the authors argued that the experimental reso-
lution is responsible only for a part of the marked discrepancies between theory
and experiment in the COLTRIMS studies on ion-impact ionization of helium.
They also pointed out that the respective theoretical treatments based on time-
independent scattering theory lack account for effects of the projectile coherence,
which potentially can resolve the remaining disagreement. It is shown by means
of time-dependent scattering theory that the projectile-coherence effects have
no impact on the cross section, in contrast to those due to the target coherence.
The results and conclusions of the usual time-independent formulation remain
unaltered both in the case of the first-order approximation and in the case of
higher-order approximations for the on-shell T -matrix.

Keywords: Ion-impact ionization; COLTRIMS; projectile coherence

1 Introduction

Ionization processes in collisions of charged projectiles with atomic systems are of
fundamental importance for the physics of interaction of particles and radiations with
matter. The basic theory of such processes in the case of fast ionic projectiles is well
established (see, for instance, the textbooks [1–4]). In particular, it is expected that
at1 |Zp|/vp ≪ 1, where Zp and vp are the projectile charge and velocity, respectively,
the perturbation theory should be well applicable. The emergence of the cold-target-
recoil-ion-momentum spectroscopy (COLTRIMS) [5, 6] made it possible to measure
fully differential cross sections (FDCS) for the ionizing ion-atom collisions with high
precision, thus providing a new, very stringent test of the theory. In this context,
a theoretical explantation of the COLTRIMS results on singly ionizing 100 Mev/u
C6+ + He (Zp/vp ≈ 0.10) [7] and 1 Mev/u H+ + He (Zp/vp ≈ 0.16) [8] collisions at
small momentum transfer presents a real challenge. Specifically, so far none of well-
known approaches has been able to obtain a reasonable agreement with the measured
electron angular distributions in a P -plane that contains the projectile momentum but
is perpendicular to the scattering plane. At the same time, all approaches reasonably
explain the experimental data for the scattering plane (see, for instance, Ref. [9] and
references therein).

The discrepancies between theory and experiment in the 100 Mev/u C6+ + He
case [7] were attributed in Ref. [10] to experimental uncertainties of the measurements

1Atomic units (a.u.) in which ~ = e = me = 1 are used throughout unless otherwise stated.
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which are due to a finite energy and angle resolution, as well as to a velocity spread of
the He gas atoms in a supersonic jet caused by its nonzero temperature. However, this
explanation was later refuted in Ref. [11] where the experimental data of Ref. [7] were
analyzed with a Monte Carlo event generator based on quantum theory. Later, in a
series of papers [12–14], it was argued that the experimental resolution can explain
only part (less than 50% [14]) of the discrepancies between theory and experiment in
the C6+ problem. It was further suggested that the remaining part of the discrepancies
can be attributed to the so-called projectile coherence. The first statement is relevant
to the FWHM values in the discussed measurements [7]. Since this issue concerns
the particular experimental method and procedures, it is beyond the scope of the
theoretical analysis. Therefore, the present contribution is focused on the second
statement that attributes the discrepancies to the projectile-coherence effects.

As formulated in Ref. [13], in analogy to classical optics and in accordance with
Huygens’ principle, the projectile transverse coherence length is given by ∆r ≈ λL/2a,
where a and L are the width of the collimating slit and its distance to the target,
respectively, and λ is the de Broglie wavelength of the projectile. If the projectile
coherence length is larger than the spatial extent of the target (i. e., of the He atom),
the projectile is coherent and incoherent otherwise. For example, the transverse
coherence length of the projectile beam in the 100 Mev/u C6+ + He experiment [7]
was estimated as ∆r ≈ 10−3 a.u. [13] thus suggesting that the C6+ projectiles were
strongly incoherent in that experiment. This fact has a very important consequence,
namely that the conventional time-independent formulation of quantum scattering
theory is not applicable in the C6+ case. Indeed, this formulation follows from the
nonstationary one, which treats time-dependent scattering of wave packets under an
assumption that the colliding wave packets are sufficiently well delocalized (localized)
in coordinate (momentum) space [3, 4].

In this contribution, it is analyzed and discussed, using an approach based on
time-dependent quantum scattering theory, how the properties of the projectile wave
packet can alter the conclusions of conventional time-independent treatments for the
discussed COLTRIMS experiments. The paper is organized as follows. Section 2 de-
livers a general theoretical formulation in terms of projectile and target wave packets.
Then, in Section 3, basic approximations for the on-shell T -matrix are presented. In
Section 4, the wave-packet effects are analyzed and discussed. Finally, conclusions
are drawn in Section 5.

2 General theory

Suppose the initial state of the ionic projectile in momentum space, as it is prepared in
a COLTRIMS experiment, to be given by the wave packet Φp(qp), whereas that of the
He atomic target to be given by ΦT (qT ). Then, according to the time-dependent scat-
tering theory, the FDCS corresponding to the discussed experimental situation [7, 8]
where only the momenta of ejected electron ke and recoil He+ ion kI are measured
while the final projectile momentum remains undetermined, is evaluated as [15]

dσ =
dke

(2π)3
dkI

(2π)3

∫
dqp

(2π)3

∫
dqT

(2π)3
2π

vz(qp)
δ
(
Ee + I1 − v(qp) ·Q(qT )

)

× |Tfi|2|Φp(qp)|2|ΦT (qT )|2, (1)

where
Q(qT ) = ke + kI − qT

is the momentum-transfer function,

v(qp) = cqp

/√
q2p +M2

p c
2
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is the projectile velocity function, and vz(q) is its projection onto the direction of the
mean projectile momentum,

∫
dqp

(2π)3
qp|Φp(qp)|2 = kp. (2)

The δ function in Eq. (1) reflects energy conservation. In its argument, kinetic energies
of the target and recoil ion are neglected compared both to the electron kinetic en-
ergy Ee and to the ionization potential I1, and the energy-transfer function T (qp,qT )
is approximated as follows:

T (qp,qT ) = c
√
q2
p +M2

p c
2 − c

√[
qp −Q(qT )

]2
+M2

p c
2 ≈ v(qp) ·Q(qT ). (3)

If the wave packets Φp and ΦT are sufficiently well peaked about the respec-
tive mean momenta kp and kT , the on-shell T -matrix Tfi and the functions v(qp)
and vz(qp) in the integrand of (1) are accurately approximated by their values taken
at these mean momenta. The remaining integrations over qp and qT then disappear
as the normalization integrals for Φp and ΦT [3]. As a result, the FDCS is given by [9]

d3σ

dEedΩedΩp
=

keE
′2
p

(2π)5c4
k′p
kp
|Tfi|2, (4)

where E′
p and k′p are the final projectile energy and momentum. It should be noted

that the condition of the well localized wave packets in momentum space is usually
supposed to be met in scattering experiments. If for some reason it is not the case,
one should take into account the wave-packet effects in the corresponding theoretical
treatment.

3 Basic approximations for T -matrix

Collisions of fast charged particles with atomic systems are usually treated to the
lowest order in projectile-target interaction. The nonrelativistic lowest-order pertur-
bation amounts to the first Born approximation (FBA) and results for the on-shell
T -matrix in [1]

T FBA
fi =

4πZp

Q2
ρfi(Q), (5)

with Zp being the projectile charge and

ρfi(Q) = 〈Ψf |
2∑

j=1

eiQ·rj |Ψi〉,

where Ψi(f) is the ground-state (final-state) wave function of He.
Effects beyond the FBA are typically estimated within the second Born approxi-

mation (SBA). For the present case, it takes the form

T SBA
fi = T FBA

fi + δT SBA
fi , (6)

where the SBA contribution evaluates as [9]

δT SBA
fi =

∑

n

∫
d3p

(2π)3
4πZp

(Q− p)2
4πZp

p2

[
ρfn(Q− p)− 2δfn

]
[ρni(p)− 2δni]

vp · p + εi − εn + i0
. (7)

Here the sum over n runs over all helium states with energies εn, the terms ∼ vpp2/kp
are neglected in the denominator of the Green’s function in the integrand.
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The projectile–target nucleus interaction plays no role in FBA which assumes a
single collision between the projectile and the ejected electron and treats the initial
and final projectile’s states as plane waves. It can be taken into account within the
distorted-wave Born approximation (DWBA) [3]. To construct the distorted waves,
one can involve the straight line or eikonal approximation that proved to be very useful
in treatments of near-forward scattering of particles with short de Broglie wavelength.
Neglecting the change in the projectile velocity, that is, vp = v′

p, and assuming the z
axis to be directed along the incident projectile momentum, one gets [9]

T DWBA
fi =

∫
d2b (vpb)

2iη

∫
d2q

(2π)2
eiq·b T FBA

fi (Q− q), (8)

where b can be viewed as an impact parameter vector, ZT is the (effective) charge of
the target nucleus, η = ZpZT /vp is the Sommerfeld parameter, and q is perpendicular
to the z axis. The b integration in Eq. (8) can be carried out analytically (see Ref. [9]).

4 Results and discussion

Let us examine, using general formula (1), the role of the projectile wave packet.
First, consider the FBA on-shell T -matrix (5). In this case, it is a function of the
momentum transfer only, that is Tfi = T FBA

fi

(
Q(qT )

)
, and therefore it is not involved

in the integral over qp. Thus the qp integration is governed by the properties of the
projectile initial wave function Φp(qp) in the case of discussed experiments. Accord-
ing to Refs. [13, 14], the transverse coherence length in the 100 Mev/u C6+ + He
experiment [7] was ∆r ≈ 10−3 a.u. This value is related to the spatial extent of freely
propagating projectile wave packet in real space Ψp(rp, t) when it reaches the collision
region (at the moment t = 0 [3]). Hence, we can estimate the transverse width of the
wave packet in momentum space

Φp(qp) =

∫
dr e−iqp·rp Ψp(rp, t = 0)

as2 ∆p ∼ 1/∆r ≈ 103 a.u. This number is very large in the atomic scale, but it
appears to be insignificant as far as the projectile velocity is concerned. Indeed, the

width in the velocity space is ∆v ≃ c∆p
/√

k2p +M2
p c

2 ∼ 0.04 a.u., thus in terms

of velocity space, the wave packet Φp(qp) is very well peaked about the mean value

of vp = ckp

/√
k2p +M2

p c
2 (vp = 58.6 a.u.). Hence the projectile velocity functions

in the integrand of (1) are accurately approximated as v(qp) = vp and vz(qp) = vp,
and the integration over qp reduces to the normalization integral for Φp. As a result,
we are left with the qT integration where an absolute square of the FBA T -matrix
on the energy shell is convoluted with an absolute square of the target wave packet
|ΦT (qT )|2.

In a recent theoretical analysis [9] of the 100 Mev/u C6+ +He experiment [7], the
target wave packet was effectively taken into account by convoluting the cross sec-
tion (4) with a 2D Gaussian-like momentum distribution function that also mimicked
the effect of experimental uncertainties of the measurements. The latter uncertain-
ties are due to a finite energy and angle resolution as well as to a velocity spread
of the He gas atoms in the supersonic jet caused by its nonzero temperature. The
results of the convolution of the FBA calculations with the 2D Gaussian-like mo-
mentum distribution function are presented in Fig. 1 in comparison with experiment.
Different values of momentum-transfer uncertainties, ∆Qx and ∆Qy (or FWHM), are

2Note that the shape of a freely propagating wave packet does not vary with time in momentum
space, i. e., |Φp(qp, t)|2 = |Φp(qp)|2.
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Figure 1: The FBA values for the angular distributions of the ejected electron in
the scattering (top panel) and perpendicular (bottom panel) planes convoluted with
experimental uncertainties. The kinetic energy of the ejected electron is Ee = 6.5 eV.
The momentum transfer is Q = 0.75 a.u. All experimental and theoretical FDCS
values are shown as normalized intensities relative to the FBA cross section for Ze = 1.
See Ref. [9] for details.

considered. The case of no uncertainties, ∆Qx = ∆Qy = 0, amounts to unconvoluted
FBA calculations, while the FWHM values of ∆Qx = 0.23 a.u. and ∆Qy = 0.46 a.u.
reported in Ref. [16] are supposed to correspond to the temperature of the He gas
atoms of 1–2 K [11, 16]. It can be seen that the inclusion of uncertainties according
to Ref. [16] insignificantly influences the FBA calculations in the scattering plane and
only slightly reduces the large discrepancy in intensity between theory and experiment
in the perpendicular plane. At the same time, it changes the theoretical angular dis-
tribution in the perpendicular plane resembling the experimental two-peak structure.
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The latter observation hints at the importance of the experimental uncertainty effects
in the perpendicular plane. This is illustrated in Fig. 1 by the results of convolu-
tion of the FBA calculations with the momentum uncertainties of ∆Qx = 0.65 a.u.
and ∆Qy = 1.3 a.u. These values correspond to the temperature of the He gas atoms
of 8–16 K which is eight times larger than that of Ref. [16]. Remarkably, the increase
of temperature provides a reasonable agreement between the theory and experiment
in the perpendicular plane, though it somewhat worsens the agreement in the scat-
tering plane. This finding supports the results of Ref. [10] where continuum distorted
wave calculations were convoluted with experimental uncertainties.

As remarked in Ref. [14], while it is not surprising that the convolution of FBA
with the initial projectile wave packet does not change the FDCS, a proper theo-
retical test of a potential influence of the projectile coherence should be performed
within a higher-order model. In particular, the authors of Ref. [14] suggested that a
small value of ∆r can lead to an incoherent contribution to the FDCS from the FBA
and higher-order amplitudes (particularly, those containing projectile-nucleus interac-
tion [16]). Higher order collision mechanisms, including those due to projectile-nucleus
interaction, enter the SBA (6) and DWBA (8) models. Using them in the general
formula (1), we find that in both cases the on-shell T -matrix depends not only on
the momentum-transfer function Q(qT ), as in the FBA case, but also on the projec-
tile momentum variable qp. However, the latter dependence enters only through the
projectile velocity function v(qp),

Tfi = T SBA/DWBA
fi

(
Q(qT ),v(qp)

)
. (9)

As in the FBA case discussed above, we make use of the fact that the projectile wave
packet Φp is very well peaked in velocity space, setting v(qp) = vp and vz(qp) = vp in
the integrand and performing the remaining integration over qp as the normalization
integral for Φp. Thus the effect of the projectile wave packet disappears, and we are
left again with the convolution of FDCS with |ΦT (qT )|2.

5 Summary and conclusions

In conclusion, using a rigorous approach based on time-dependent scattering theory,
we find no evidence that the projectile wave packet (or the projectile coherence) can
play any appreciable role. Moreover, both in the case of the first-order model (FBA)
and in the case of higher-order models (SBA and DWBA), only the target wave packet
appears to be important. This result is mainly due to the fact that, in the discussed
experiments, only the momenta of final target fragments (the ejected electron and
the recoil He+ ion) were measured, whereas the final projectile momentum remained
undetermined. One can readily see that determining the momentum transfer directly,
that is, by measuring the final projectile momentum k′

p instead of the He+ momen-
tum kI , would bring about a huge effect of the initial projectile wave packet Φp(qp).
Indeed, in such a case, the on-shell T -matrix Tfi varies strongly as a function of the
momentum transfer Q(qp) = k′

p − qp in the region of localization of Φp(qp), and
hence the above cancelation of the projectile wave packet is not possible. This obser-
vation directly reflects the smallness of the coherence length of the projectile beam in
comparison with the spatial extent of the target since the T -matrix is closely related
to the Fourier transform of the target potential [3]. It thus shows that in the situation
of the discussed experiments, one should compare the spatial extent of the target (the
atomic size) with the coherence length of the target beam rather than the projectile
beam.
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Abstract

Quasi-Sturmian (QS) functions are proposed as an expansion basis to de-
scribe continuum states of a quantum system. A closed analytic representation
of QS functions is derived. A two-body scattering example is given to demon-
strate advantages of the method.

Keywords: Inhomogeneous Schrödinger equation, Sturmian basis, Coulomb
Green’s function

1 Introduction

The three-body Coulomb scattering is one of the fundamental unresolved problem.
In atomic physics two-electrons systems are of great interest. In the one-electron con-
tinuum problem (e. g., when the electron is scattered by a bound pair) an expansion
on the bispherical basis is applicable. In this case an expansion of the partial wave
function on the basis of square integrable functions (of the electron coordinates r1
and r2) is recognized to be suitable. In the J-matrix method [1] as well as in the
converge-close coupling (CCC) approach [2] the Laguerre basis functions are used for
this purpose. Recently a new version of the Sturmian approach [3] has been devel-
oped, based upon an expansion on the so called generalized Sturmian functions (see,
e. g., the papers [4, 5] and references therein) which are eigensolutions for integral or
differential Sturm–Liouville equations with the outgoing- and incoming-wave bound-
ary conditions. The Coulomb interaction within all these approaches is involved in
the construction of the basis functions into the unperturbed part of the two-body
Hamiltonian. In the framework of the J-matrix, the Coulomb Green’s function have
been obtained in a suitable analytic form [6,7] in terms of hyper-geometric functions.
In turn, the short-ranged operator of the potential energy is represented here in a
finite subspace of L2 basis functions. As a result, e. g., the phase shift corresponding
to this truncated model potential, oscillates as the number of used basis functions
increases [8]. Thus an application of the J-matrix method to the two-body scatter-
ing problem yet requires additional efforts in order to improve the convergence. The
Sturmian function approach is free from such flaws. However these basis functions
are calculated numerically, so the generation of the basis poses a problem as difficult
as the original scattering problem.

In this paper, basis functions are proposed which we call Quasi Sturmians (QS).
The QS functions formally are the solutions of the inhomogeneous Schrödinger equation
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whose right-hand-side contains the Laguerre L2 functions. Hence, unlike the Stur-
mian functions, the QS functions with an appropriate asymptotic behavior can be
obtained in a closed analytic form.

The atomic units are assumed throughout.

2 Quasi Sturmians

Let us consider the motion of a particle of mass µ in a potential V (r) = VC(r) +U(r)

which is represented by the sum of the Coulomb potential VC(r) = Z1Z2

r and a short-

range one U . The scattering wave function Ψ
(+)
ℓ (we consider the outgoing-wave

boundary condition) satisfies the Schrödinger equation

[
− 1

2µ

(
d2

dr2
− ℓ(ℓ+ 1)

r2

)
+ V (r)− E

]
Ψ

(+)
ℓ (r) = 0. (1)

To solve the scattering problem, we express the wave function as a sum of the

Coulomb wave and of the so-called scattering wave Ψ
(+)
sc :

Ψ(k, r) = ΨC
ℓ (k, r) + Ψ(+)

sc (k, r), (2)

where ΨC
ℓ is the regular Coulomb solution [9]:

ΨC
ℓ (k, r) =

1

2
(2kr)ℓ+1 e−πα/2 eikr

|Γ(ℓ + 1 + iα)|
(2ℓ+ 1)!

1F1(ℓ + 1 + iα; 2ℓ+ 2;−2ikr). (3)

Here α = µZ1Z2

k is the Sommerfeld parameter, the energy is defined as E = k2

2µ .

Inserting (2) into (1) yields the following inhomogeneous equation for Ψ
(+)
sc :

[
− 1

2µ

(
d2

dr2
− ℓ(ℓ+ 1)

r2

)
+
Z1Z2

r
+ U(r) − E

]
Ψ(+)

sc (k, r) = −U(r)ΨC
ℓ (k, r). (4)

We suggest to find the solution Ψ
(+)
sc of the Driven Equation (4) in form of the

expansion

Ψ(+)
sc (r) =

N−1∑

n=0

cn,ℓQ
(+)
n,ℓ (r). (5)

The functions Q
(+)
n,ℓ satisfy the inhomogeneous equation

[
− 1

2µ

(
d2

dr2
− ℓ(ℓ+ 1)

r2

)
+
Z1Z2

r
− E

]
Q

(+)
n,ℓ (r) =

1

r
φn,ℓ(r), (6)

where the Laguerre basis functions

φn,ℓ(λ, r) =

√
n!

(n+ 2ℓ+ 1)!
e−λr (2λr)ℓ+1L2ℓ+1

n (2λr) (7)

are used; λ is the scale parameter of the basis.

We call the functions Q
(+)
n,ℓ Quasi Sturmians due to their analogy with (using

as a basis) Sturmian functions. QS with appropriate asymptotic properties can be
obtained (unlike the Sturmian functions) in a closed form.

QS functions can be presented as an integral:

Q
(+)
n,ℓ (r) =

∞∫

0

dr′ Gℓ(±)(k; r, r′)
1

r′
φn,ℓ(λ, r

′). (8)
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The Green function operator Ĝℓ(+) kernel is expressed in terms of the Whittaker
functions [10]:

Gℓ(±)(k; r, r′) = ∓ µ
ik

Γ(ℓ+ 1± iα)

(2ℓ+ 1)!
M∓iα;ℓ+1/2(∓ikr<)W∓iα;ℓ+1/2(∓ikr>). (9)

Explicit expressions for the matrix elements

Gℓ(±)
m,n (k;λ) =

∞∫

0

∞∫

0

drdr′
1

r
φm,ℓ(λ, r) G

ℓ(±)(k; r, r′)
1

r′
φn,ℓ(λ, r

′) (10)

have been obtained in Ref. [6] (see also Ref. [7]) using two linear independent J-matrix
solutions [11]:

Gℓ(±)
m,n (k;λ) =

2µ

k
Sn<,ℓ(k) C(±)

n>,ℓ(k). (11)

The coefficients of the QS function expansion in terms of the Laguerre basis func-
tions (7) are calculated by multiplying Eq. (8) by 1

rφn,ℓ(λ, r) and integrating over r.
As a result, in view of Eq. (10), we obtain

Q
(±)
n,ℓ (r) =

∞∑

m=0

φm,ℓ(λ, r) G
ℓ(±)
m,n(k;λ). (12)

3 Example

Let us consider an s-wave scattering of a particle of mass µ = 1 and momentum k = 1
by the combination of the Coulomb potential with Z1Z2 = 1 and Yukawa potential

U(r) = b
e−ar

r
, a = 1.3, b = 1. (13)

We study the expansion (5) convergence with increasing N . The functions Q
(+)
n,0

oscillate with different frequencies within the range of the potential U (see Fig. 1)
while the Sturmians possess the same behavior up to the amplitude factor outside the
range.

0 1 2 3 4 5 6 7
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0
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2
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R
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)
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0 / 
A n,

0 (a
. u

.)

r (a. u.)

U=exp(-1.3r)/r

Figure 1: Real parts of the first six QS functions for a particle of mass µ = 1 and
momentum k = 1 in the Coulomb potential VC = 1

r . The scale parameter of the
basis λ = 2.6.
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Figure 2: Convergence of the phase shift with N .

We insert the expansion (5) into Eq. (4), multiply the resulting expression
by φn,ℓ(λ, r) and integrate over r to obtain a discrete equation for the coefficients cn,ℓ:

[I + U ] c = d. (14)

The components dm, m = 0, . . . , N − 1 of the vector d in the right-hand-side of
Eq. (14) are defined as

dm = −
∞∫

0

dr φm,0(λ, r)U(r) ΨC
0 (r), (15)

the elements Um,n of the N ×N matrix U are defined as

Um,n =

∞∫

0

dr φm,0(λ, r)U(r)Q
(+)
n,0 (r) (16)

The unit matrix I present in the left-hand-side of Eq. (14) appears due to the orthog-
onality relation for the Laguerre basis.

Convergence of the s-wave phase shift δ0(k) with N is shown in Fig. 3.

4 Conclusion

A comparison of the phase shift obtained by our method with the phase shift from the
J-matrix calculations shows advantages of the proposed approach over the J-matrix
method.

In this work we suggested the Quasi-Sturmian functions and showed that their
application to the two-body scattering problem is quite efficient. The convergence
rate appeared to be comparable or even higher than that achieved in the J-matrix
method and generalized Sturmian approach. Moreover, the QS functions have an
obvious advantage that they can be expressed in a closed analytic form. An explicit
representation of the basis QS function in terms of known special functions may be
useful in applications to the Coulomb three-body problem.
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Abstract

A new type of basis functions is proposed to describe an (e, 3e) process on
helium. This is done in the framework of the first Born approximation approach
presented in Ref. [1]. The basis functions used to expand the three-body so-
lutions are calculated in terms of the recently introduced quasi-Sturmian (QS)
functions [2]. The QS functions satisfy a non-homogeneous Schrödinger equa-
tion with Coulomb interactions and possess outgoing-wave boundary condition.
By construction, the basis functions look asymptotically like a six-dimensional
spherical wave. The transition amplitude for the (e, 3e) process is obtained di-
rectly from the asymptotic part of the wave function. A fast convergence is
achieved for the calculated wave function. An agreement in the shape of differ-
ential cross sections is obtained with the available experimental data. While the
disagreement in magnitude is found with the experimental data, a reasonable
agreement with other ab initio theories is found.

Keywords: Quasi-Sturmian functions; Coulomb Green’s function; driven equa-
tion

1 Introduction

The Coulomb three-body scattering problem is one of the most fundamental out-
standing problems in theoretical nuclear, atomic and molecular physics. The primary
difficulty in description of three charged particles in the continuum is imposing ap-
propriate asymptotic behaviors of the wave function.

In order to describe the Coulomb three-body continuum we propose a set of two-
particle functions which are calculated by using the recently introduced so-called
quasi-Sturmian (QS) functions [2]. The QS functions satisfy a two-body non-homo-
geneous Schrödinger equation with the Coulomb potential and an outgoing-wave
boundary condition. Specifically, the two-particle basis functions are obtained, by
an analogy with the Green’s function of two non-interacting hydrogenic atomic sys-
tems, as a convolution integral of two one-particle QS functions. The QS functions
have the merit that they are expressed in a closed form, which allows us to find an ap-
propriate integration path that is useful for numerical calculations of such an integral
representation. We name these basis functions Convoluted Quasi Sturmian (CQS).
Note that by construction, the CQS function (unlike a simple product of two one-
particle ones) looks asymptotically (as the hyperradius ρ→∞) like a six-dimensional
outgoing spherical wave.

The atomic units are assumed throughout.

Proceedings of the International Conference ‘Nuclear Theory in the Super-
computing Era — 2014’ (NTSE-2014), Khabarovsk, Russia, June 23–27, 2014.
Eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2016, p. 144.

http://www.ntse-2014.khb.ru/Proc/Zaytsev.pdf.
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2 Quasi-Sturmian basis functions

2.1 Driven equation

In the approach of Ref. [1] to the (e, 3e) process, the four-body Schrödinger equation is
reduced to the following driven equation for the three-body system (e−, e−,He++) =
(1, 2, 3): [

E − Ĥ
]
Φ(+)

sc (r1, r2) = Ŵfi(r1, r2) Φ(0)(r1, r2). (1)

E =
k2
1

2 +
k2
2

2 is the energy of the two ejected electrons. The three-body helium
Hamiltonian is given by

Ĥ = −1

2
△r1 −

1

2
△r2 −

2

r1
− 2

r2
+

1

r12
, (2)

Φ(0)(r1, r2) represents the ground state of the helium atom. The perturbation oper-
ator Ŵfi is written as

Ŵfi(r1, r2) =
1

(2π)3
4π

q2
(−2 + eiq·r1 + eiq·r2), (3)

where q = ki − kf is the transferred momentum, ki and kf are the momenta of the
incident and scattered electrons.

2.2 Two-particle quasi Sturmians

Our method of solving the driven equation (1) is to expand the solution in the series

Φ(+)
sc (r1, r2) =

∑

L,ℓ,λ

N−1∑

n,ν=0

CL(ℓλ)
nν |nℓνλ;LM〉Q, (4)

where the basis

|nℓνλ;LM〉Q ≡
Q

ℓλ(+)
nν (E; r1, r2)

r1r2
YLM
ℓλ (r̂1, r̂2), (5)

YLM
ℓλ (r̂1, r̂2) =

∑

mµ

(ℓmλµ |LM ) Yℓm(r̂1) Yλµ(r̂2). (6)

Each function Q
ℓλ(+)
nν is assumed to satisfy the radial equation

[
E − ĥℓ1 − ĥλ2

]
Q(ℓλ2)(+)

nν (E; r1, r2) =
ψℓ
n(r1)ψλ

ν (r2)

r1r2
, (7)

where

ĥℓi = −1

2

∂2

∂r2i
+

1

2

ℓ(ℓ+ 1)

r2i
− 2

ri
, (8)

ψℓ
n are the Laguerre basis functions (b is a real scale parameter),

ψℓ
n(r) = [(n+ 1)2ℓ+1]

− 1
2 (2br)ℓ+1e−brL2ℓ+1

n (2br), (9)

which are orthogonal with the weight 1
r :

∞∫

0

dr ψℓ
n(r)

1

r
ψℓ
m(r) = δnm. (10)
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Figure 1: C1 is the straight-line path of integration of the convolution integral (11).
The rotated contour C2 penetrates into the region of unphysical energies.

C
3

 

 ReE

ImE 

E
2

Figure 2: The deformed contour C3 asymptotically approaches the real energy axis.

In order to obtain the Q
ℓλ(+)
nν with the outgoing-wave boundary condition, we use

the Green’s function Ĝ(ℓλ)(+)(E) [which is the inverse of the operator in the left-hand-
side of Eq. (7)] which can be expressed in the form of the convolution integral [3, 4],

Ĝ(ℓλ)(+)(E) =
1

2πi

∫

C1

dE Ĝℓ(+)(
√

2E) Ĝλ(+)(
√

2(E − E)), (11)

where the path of integration C1 in the complex energy plane E runs slightly above
the branch cut and bound-state poles of Ĝℓ(+) (see Fig. 1). In order to avoid these
singularities we, following the method of Ref. [3], rotate the contour about the point E

2
by an angle ϕ, −π < ϕ < 0. A part of the rotated straight-line contour C2 indicated
by a dashed line in Fig. 1, lies on the unphysical energy sheet, −2π < arg(E) < 0.
Note that Ĝℓ(+) grows exponentially for large |E| in the lower half-plane. In order to
ensure a rapid convergence of the integral in Eq. (11), we deform the contour C2 in
such a way that the resulting path C3 shown in Fig. 2 asymptotically approaches the
real axis.

The one-particle Green’s function operator Ĝℓ(±) kernel satisfies the equation

[
E − ĥℓ

]
Gℓ(±)(

√
2E ; r, r′) = δ(r − r′) (12)

and can be expressed, e. g., in terms of the Whittaker functions [5]:

Gℓ(±)(k; r, r′) = ± 1

ik

Γ(ℓ± iα)

(2ℓ+ 1)!
M∓iα;ℓ+1/2(∓2ikr<)W∓iα;ℓ+1/2(∓2ikr>), (13)

where α = µZ
k = − 2

k . From the formulae above one deduces that Q
ℓλ(+)
nν can be

written as

Q(ℓλ)(+)
nν (E; r1, r2) =

1

2πi

∫

C3

dE Qℓ1(+)
n (

√
2E ; r1)Qλ(+)

ν (
√

2(E − E); r2), (14)



Convoluted quasi-Sturmian basis 147

where the one-particle QS functions Q
ℓj(+)
nj are defined by [2]

Qℓ(±)
n (k; r) =

∞∫

0

dx′Gℓ(±)(k; r, r′)
1

r′
ψℓ
n(r′). (15)

2.3 Asymptotic behavior

It follows from the asymptotic behavior of the irregular Whittaker function W that

Qℓ(±)
n (k; r) ∼

r→∞
∓2

i

k
Snℓ(k) (−2kr)ℓ+1eπα/2 e±i(kr+σℓ(k)) U(ℓ+1±iα, 2ℓ+2,∓2ikr)

∼
r→∞

− 2

k
Snℓ(k) e±i(kr−α ln(2kr)−πℓ

2 +σℓ(k)), (16)

where σℓ(k) = arg Γ(ℓ + 1 + iα) is the Coulomb phase. Here Snℓ is the sine-like
J-matrix solution [6],

Snℓ(k) =
1

2

[
(n+ 1)(2ℓ+1)

]1/2
(2 sin ξ)ℓ+1 e−πα/2 ω−iα |Γ(ℓ+ 1 + iα)|

(2ℓ+ 1)!

× (−ω)n 2F1

(
−n, ℓ+ 1 + iα; 2ℓ+ 2; 1− ω−2

)
, (17)

where

ω ≡ eiξ =
b+ ik

b− ik , sin ξ =
2bk

b2 + k2
, (18)

U(a, b, z) is the Kummer function. Recall that Snℓ are formally defined as the coeffi-
cients of the expansion

ΨC
ℓ (k, r) =

∞∑

n=0

Snℓ(k)ψℓ
n(r) (19)

of the regular Coulomb solution ΨC
ℓ [7]

ΨC
ℓ (k, r) =

1

2
(2kr)ℓ+1 e−πα/2 eikr

|Γ(ℓ + 1 + iα)|
(2ℓ+ 1)!

1F1(ℓ+ 1 + iα; 2ℓ+ 2;−2ikr), (20)

i. e.,

Snℓ(k) =

∞∫

0

dr
1

r
ψℓ
n(r) ΨC

ℓ (k, r). (21)

The asymptotic behavior of the QS function (14) for r1 →∞ and r2 →∞ simultane-
ously (in the constant ratio tan(φ) = r2/r1, where φ is the hyperangle) is obtained by

replacing Q
ℓ(+)
n and Q

λ(+)
ν by their asymptotic approximation (16) and making use of

the stationary phase method to evaluate the resulting integral along the contour C1:

Q(ℓλ)(+)
nν (E; r1, r2) ∼

ρ→∞
1

E

√
2

π
(2E)3/4e

iπ
4 Snℓ(p1)Snλ(p2)

1√
ρ

× exp

{
i

[√
2Eρ− α1 ln(2p1r1)− α2 ln(2p2r2) + σℓ(p1) + σλ(p2)− π(ℓ+ λ)

2

]}
,

(22)

where ρ =
√
r21 + r22 is the hyperradius, p1 = cos(φ)

√
2E, p2 = sin(φ)

√
2E, α1 = − 2

p1
,

α2 = − 2
p2

. Notice that on the left part of the contour C3 where k ∼ i|k| and |k| → ∞,

the function Q
ℓ(+)
n behaves like e−br for large r (rather than eikr). Thus, for larger

scale parameter b, the QS function (14) reaches its asymptotic form of Eq. (22) faster.
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Finally, by inserting Eq. (22) into the Eq. (4), we find the following asymptotic
expression:

Φ(+)
sc (r1, r2) ≈ 2

E sin(2φ)

√
2

π
(2E)3/4e

iπ
4

exp
{
i
[√

2Eρ− α1 ln(2p1r1)− α2 ln(2p2r2)
]}

ρ5/2

×
∑

ℓλL

Yℓλ
LM (r̂1, r̂2) exp

{
i

[
σℓ(p1) + σλ(p2)− π(ℓ + λ)

2

]}

×
N−1∑

n,ν=0

CL(ℓλ)
nν Snℓ(p1)Sνλ(p2). (23)

2.4 Transition amplitude

On the other hand, the asymptotic limit of the Green’s function of the three-body
Coulomb system (e−, e−,He++) (for ρ→∞ while ρ′ is finite) reads [1, 8]

G(+)(E; r1, r2; r′1, r
′
2) ≈ (2E)3/4e

iπ
4

(2π)5/2

exp
{
i
[√

2Eρ+W0(r1, r2)
]}

ρ5/2
Ψ

(−)∗
k′

1,k
′

2
(r′1, r

′
2),

(24)
where the Coulomb phase W0 is given by

W0(r1, r2) = − ρ√
2E

(
− 2

r1
− 2

r2
+

1

r12

)
ln 2
√

2Eρ, (25)

k′
1 = p1r̂1, k′

2 = p2r̂2. Therefore, from Eq. (1) we obtain that in this region [1]

Φ(+)
sc (r1, r2) ≈ (2E)3/4e

iπ
4

(2π)5/2

exp
{
i
[√

2Eρ+W0(r1, r2)
]}

ρ5/2
Tk′

1,k
′

2
, (26)

where the transition amplitude

Tk′

1,k
′

2
=
〈

Ψ
(−)
k′

1,k
′

2

∣∣∣ Ŵfi

∣∣∣Φ(0)
〉
. (27)

Then, comparing two asymptotic expressions (23) and (26), we find

Tk′

1,k
′

2
=

(4π)2

E sin(2φ)
exp {−i [W0(r1, r2) + α1 ln(2p1r1) + α2 ln(2p2r2)]}

×
∑

ℓλL

([
N−1∑

n,ν=0

CL(ℓλ)
nν Snℓ(p1)Sνλ(p2)

]

× exp

{
i

[
σℓ(p1) + σλ(p2)− π(ℓ+ λ)

2

]}
YLM
ℓλ (r̂1, r̂2)

)
. (28)

Obviously, the differential cross section is expressed in terms of the ‘reduced’
transition amplitude:

d5σ

dΩ1dΩ2dΩfdE1dE2
=

1

(2π)2
kfk1k2
ki

∣∣Tk′

1,k
′

2

∣∣2. (29)

3 Solving driven equation

The QS approach is based on the assumption that the asymptotic behavior of the
basis Sturmian functions is correct. Hence there remains a problem of finding the
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wave function in the finite ‘inner’ spatial region. This calculation can be performed
in the context of a set of square integrable basis functions. In this case, the left-
hand-side of Eq. (1) decreases sufficiently fast to zero as ρ → ∞ and therefore can
be approximated by a finite linear combination of L2 basis functions. In this work,
we have tried to apply the method for obtaining the solution of the equation (1) by
expanding it into a set of the pure CQS functions (14).

Inserting Eq. (4) into Eq. (1) and having in mind Eq. (7), yields

∑

L,ℓ′,λ′

N−1∑

n′,ν′=0

C
L(ℓ′λ′)
n′ν′

[
| ˜n′ℓ′ν′λ′;LM 〉L + V̂ C

3 |n′ℓ′ν′λ′;LM〉Q
]

= Ŵfi

∣∣∣Φ(0)
〉
, (30)

where

| ˜nℓνλ;LM 〉L ≡
ψℓ
n(r1)ψλ

ν (r2)

r21r
2
2

Yℓλ
LM (r̂1, r̂2). (31)

The method of obtaining the expansion coefficients C
L(ℓλ)
nν is to multiply Eq. (30) by

|nℓνλ;LM〉L ≡
ψℓ
n(r1)ψλ

ν (r2)

r1r2
Yℓλ
LM (r̂1, r̂2), (32)

(see, e. g., Refs. [9–11]), integrate over r1 and r2, and utilize the orthogonality con-
dition

L 〈nℓνλ;LM | ˜n′ℓ′ν′λ′;LM 〉L = δn,n′ δν,ν′ δℓ,ℓ′ δλ,λ′ . (33)

As a result, we obtain the following matrix equation:

∑

L,ℓ′,λ′

N−1∑

n′,ν′=0

[
δn,n′ δν,ν′ δℓ,ℓ′ δλ,λ′ − UL(ℓλ)(ℓ′λ′)

nν,n′ν′

]
C

L(ℓ′λ′)
n′ν′ = RL(ℓλ)

nν . (34)

Here R
L(ℓλ)
nν is the projection of the right-hand-side of Eq. (30):

RL(ℓλ)
nν = L〈nℓνλ;LM |Ŵfi

∣∣∣Φ(0)
〉
. (35)

Due to the definition

|nℓνλ;LM〉Q ≡ Ĝ(ℓλ)(+)
∣∣∣ ˜nℓνλ;LM

〉
L
, (36)

the matrix element

U
L(ℓλ)(ℓ′λ′)
nν,n′ν′ = L〈nℓνλ;LM | 1

r12
|n′ℓ′ν′λ′;LM〉Q (37)

can be written as

U
L(ℓλ)(ℓ′λ′)
nν,n′ν′ = L〈nℓνλ;LM | 1

r12
Ĝ(ℓ′λ′)(+)

∣∣∣ ˜n′ℓ′ν′λ′;LM
〉
L
. (38)

Then using the Laguerre basis (32) completeness, we obtain

U
L(ℓλ)(ℓ′λ′)
nν,n′ν′ =

∑

n′′,ν′′=0

L〈nℓνλ;LM | 1

r12
|n′′ℓ′ν′′λ′;LM〉L

× L

〈
˜n′′ℓ′ν′′λ′;LM

∣∣∣Ĝ(ℓ′λ′)(+)
∣∣∣ ˜n′ℓ′ν′λ′;LM

〉
L
. (39)

In order to calculate the matrix elements of the Green’s function in the basis of
functions (31)

G
(ℓλ)(+)
nν,n′ν′ = L

〈
˜nℓνλ;LM

∣∣∣Ĝ(ℓλ)(+)
∣∣∣ ˜n′ℓν′λ;LM

〉
L
, (40)
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we use the convolution integral [9–11]

G
(ℓλ)(+)
nν,n′ν′ =

1

2πi

∫

C3

dE Gℓ(+)
nn′ (
√

2E)G
λ(+)
νν′ (

√
2(E − E)). (41)

The matrix elements of the one-particle Green’s function Gℓ(+) (13)

Gℓ(+)
nm (k) =

∞∫

0

∞∫

0

drdr′
1

r
ψℓ
n(r)Gℓ(+)(k; r, r′)

1

r′
ψℓ
m(r′) (42)

are expressed in terms of the two independent J-matrix solutions [12]:

Gℓ(+)
nm (k) = − 2

k
Sn<ℓ(k)C

(+)
n>ℓ(k), (43)

C
(+)
nℓ (k) = −

√
n!(n+ 2ℓ+ 1)

eπα/2 ωiα

(2 sin ξ)ℓ

× Γ(ℓ + 1 + iα)

|Γ(ℓ + 1 + iα)|
(−ω)n+1

Γ(n+ ℓ+ 2 + iα)
2F1

(
−ℓ+ iα, n+ 1;n+ ℓ+ 2 + iα;ω2

)
. (44)

Our numerical calculations showed that the values of the convolution integrals (41)
along the contour C3 are equal to those on the straight-line path C2. Note that the
integrand in Eq. (41) does not have exponentially divergent factors unlike that of
Eq. (11).

We approximate U
L(ℓλ)(ℓ′λ′)
nν,n′ν′ by a finite sum

U
L(ℓλ)(ℓ′λ′)
nν,n′ν′ =

N−1∑

n′′ν′′=0

V
L(ℓλ)(ℓ′λ′)
nν,n′′ν′′ G

(ℓ′λ′)(+)
n′′ν′′,n′ν′ . (45)

Here V
L(ℓλ)(ℓ′λ′)
nν,n′ν′ are the matrix elements of 1

r12
in the basis (32):

V
L(ℓλ)(ℓ′λ′)
nν,n′ν′ = L〈nℓνλ;LM | 1

r12
|n′ℓ′ν′λ′;LM〉L. (46)

In our calculations we take N in Eq. (45) to be equal to the number of QS functions
(for each of the coordinates r1 and r2). In order to examine the applicability of the
QS approach, in conjunction with the approximation (45), we study the convergence
of the cross section with increasing N .

4 Results and discussion

We have applied the method outlined above to the problem of electron-impact double
ionization of He. The corresponding fully resolved fivefold differential cross sections
(FDCS) measurements have been performed by the Orsay group [13]. The geometry
of the (e, 3e) process is coplanar with an incident energy E0 = 5599 eV and a small
momentum transfer q = 0.24 a. u. For a fixed value of one of the ejected electron
angles, say, θ1, the FDCS is measured as function of the other angle θ2.

The energies of the two ejected electrons are E1 = E2 = 10 eV, so that E =
0.737 a. u. Hence for φ = π

4 we have p1 = p2 = k1 = k2 = 0.859. As for the
scale parameter b, note that the sine-like J-matrix solution (17) depends on the wave
number k through its dependence on ω [see Eq. (18)]. Thus, it seems intuitively
obvious that the parameter b must be chosen in such a way that the value of ω is
far from its limits ω0 = ±1. In other words, b should be comparable to k1,2. In our
calculations we set b = 0.78.
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Figure 3: The real parts of the first three QS functions.

Note that the asymptotic behavior (22) of the two-particle QS functions (14)
depends upon the indices n and ν. It follows from Eq. (17) that this dependence can
be eliminated by dividing Eq. (14) by Aℓ

n(p1)Aλ
ν (p2), where

Aℓ
n(k) = [(n+ 1)2ℓ+1]1/2(−ω)n 2F1

(
−n, ℓ+ 1 + iα; 2ℓ+ 2; 1− ω−2

)
. (47)

The same result can be obtained using modified one-particle QS functions

Q̃ℓ(+)
n (k; r) =

Q
ℓ(+)
n (k; r)

Aℓ
n(k)

(48)

in the integral in Eq. (14). To illustrate the use of the convolution integral represen-
tation (14), we present in Figs. 3 and 4 a few modified CQS functions

Q̃(ℓλ)(+)
nν (E; r1, r2) =

1

2πi

∫

C3

dE Q̃ℓ(+)
n (
√

2E; r1) Q̃λ(+)
ν (

√
2(E − E); r2) (49)

for ℓ = λ = 0 on the diagonal r1 = r2 = ρ/
√

2. The energy E on the contour C3 is
parametrized in the form

E = t+ i
E
2 − t
1 + t2

, (50)
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Figure 4: The same as Fig. 3 but for the imaginary parts.
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Figure 5: Convergence of FDCS for the He(e, 3e)He++ reaction with increasing N
and comparison with experimental data [13].

where t runs from ∞ to −∞.
To find the helium ground-state function Φ(0), we diagonalize the matrix of the

Hamiltonian (2) in the basis

|nνℓ〉 ≡ χℓ
n(r1)χℓ

ν(r2)

r1r2
Yℓℓ
00(r̂1, r̂2), (51)

where
χℓ
n(r) =

√
2b0 [(n+ 1)2ℓ+2]

− 1
2 (2b0r)

ℓ+1e−b0rL2ℓ+2
n (2b0r). (52)

In doing this, we limit ourselves to ℓmax = 5 and nmax = νmax = 20. Choosing the
basis parameter b0 = 1.688, we obtain E0 = −2.903542 a. u. for the ground state
energy.

We restrict ourselves to the maximal value of the total angular momentum Lmax =
2 and set the maximal angular momentum quantum numbers ℓ and λ to be 3 in the
expansion (4). We examine the differential cross section convergence with increasing

number N of the one-particle QS functions Q
ℓ(+)
n and Q

λ(+)
ν , n, ν = 0, . . . , N − 1

[see Eq. (15)] employed in the basis. A very good convergence of our numerical
procedure is displayed in Fig. 5 where the FDCS (29) for θ1 = 27◦ calculated with
different N are plotted. This result is surprising keeping in mind the aforementioned
shortcoming of the CQS basis functions (14) asymptotic behavior, which results in
noncompactness of Eq. (1). In Fig. 5 we show results for FDCS (29) in comparison
with the experimental data [13]. The results are in agreement in shape, but not in
magnitude, with the experiment.
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Abstract

There has been significant recent progress in solving the long-standing prob-
lems of how nuclear shell structure and collective motion emerge from under-
lying microscopic inter-nucleon interactions. We review a selection of recent
significant results within the ab initio No Core Shell Model (NCSM) closely
tied to three major factors enabling this progress: (1) improved nuclear interac-
tions that accurately describe the experimental two-nucleon and three-nucleon
interaction data; (2) advances in algorithms to simulate the quantum many-
body problem with strong interactions; and (3) continued rapid development of
high-performance computers now capable of performing 20×1015 floating point
operations per second. We also comment on prospects for further developments.

Keywords: No Core Shell Model; chiral Hamiltonians; JISP16; petascale com-
puters; exascale computers
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1 Introduction

The ab initio No Core Shell Model (NCSM), using realistic microscopic nucleon-
nucleon (NN) and three-nucleon forces (3NFs), has proven to be a powerful combi-
nation for describing and predicting properties of light nuclei [1–7]. The Hamiltonian
framework results in a large sparse matrix eigenvalue problem for which we seek the
low-lying eigenvalues and eigenvectors to form comparisons with experimental data
and to make testable predictions. Given the rapid advances in hardware with frequent
disruptions in architecture, it has become essential for physicists, computer scientists
and applied mathematicians to work in close collaboration in order to achieve efficient
solutions to forefront physics problems. Fortunately, US funding agencies have rec-
ognized these challenges at the interface of science and technology and have provided
support leading to our recent successes [8–17].

We present here a selection of recent results for light nuclei and neutron drops in
external traps and set out some of the challenges that lie ahead. The results include
both those utilizing the JISP16 NN interaction and those using chiral effective field
theory NN plus 3N interactions. We also present a selection of algorithms developed
for high-performance computers that are helping to rapidly pave the way to efficient
utilization of exascale machines (1018 floating point operations per second). We il-
lustrate the scientific progress attained with multi-disciplinary teams of physicists,
computer scientists and applied mathematicians.

This paper is aimed to complement presentations at this meeting that cover
closely-related topics. In this connection, it is important to point especially to the
papers by Dytrych et al. [18], by Abe et al. [19], by Shirokov et al. [20] and by Mazur
et al. [21]. We therefore focus here on the following recent results: (1) demonstrating
the emergence of collective rotations in light nuclei; (2) achieving an accurate descrip-
tion of the properties of 12C with chiral Hamiltonians; (3) solving for properties of
neutron drops with chiral Hamiltonians; (4) development of techniques for efficient
use of computational accelerators; and (5) development of techniques for overlapping
communication and computation.

2 Emergence of collective rotations

NCSM calculations of various types have been used to demonstrate the emergence
of collective rotational correlations in p-shell nuclei, including 6Li [18, 22], the Be
isotopes [22–25], and 12C [26]. Here we focus on the results for the Be isotopes solved
in the No Core Full Configuration (NCFC) framework [4,6,7] using the realistic JISP16
NN interaction [27, 28] with the M -scheme harmonic oscillator (HO) basis. The
NCFC framework uses many of the same techniques as the NCSM but additionally
features extrapolations of observables to the infinite matrix limit [4].

With no prior selection of our basis to favor solutions with collective motion and
using only the realistic bare NN interaction (i. e. we omit the Coulomb interac-
tion to ensure exact conservation of isospin thereby simplifying the spectrum1) we
face the task of analyzing our microscopic results and determining which particular
states, among the large number of calculated levels, exhibit signatures of collective
nuclear motion. We follow the path of calculating observables and post-analyzing
their systematics to infer that they follow the patterns prescribed by collective rota-
tion. This path is analogous to that taken when analyzing experimental data. When
we discover patterns appropriate to a collective band in our calculated results, we
assign the moniker of “collective motion” to our microscopic results. We further com-
pare the so-detected band with experimental results and find good agreement which

1The primary effect of the Coulomb is to shift the binding energies which would not affect our
analysis of rotational band observables. New analysis including Coulomb [29] confirms this.
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further supports our discovery of emergent collective phenomena in light nuclei from
the underlying microscopic many-body theory.

The details of this step-by-step analysis may be found in the Refs. [23–25]. We
analyze the systematics of calculated excitation energies, quadrupole moments, dipole
moments, electric quadrupole transition B(E2)’s and their reduced matrix elements
to isolate states which have a clear rotation band assignment from those which do
not. In this way, we have identified both ground state and excited state bands, both
natural and unnatural parity bands, and bands in even-even as well as in even-odd
nuclei.

Perhaps the most striking hallmark of collective rotation is the appearance of
excited states with excitation energies that follow a simple pattern prescribed by the
collective model. This pattern of collective rotational excitation energies is given in
Eq. (1):

E(J) = E0 +A
[
J(J + 1) + a(−)J+1/2(J + 1

2 )δK,1/2

]
, (1)

where E0 is an offset to properly position excited band heads relative to the lowest
band head, a is the Coriolis decoupling parameter forK = 1

2 bands appearing in odd-A
nuclei, J is the total angular momentum and A ≡ ~2/(2J ) with J representing the
moment of inertia of the deformed nucleus.

To be convinced that the states are indeed members of a rotational band one needs
to find that these states also exhibit enhanced electromagnetic moments and transition
rates that exhibit a dependence on angular momentum J that is also prescribed by the
collective rotational model. We therefore adopt these additional criteria for assigning
calculated states to rotational bands. It is worth noting here that, in light nuclei,
gamma decay data are scarce due to the short-lived resonant nature of the states.
Therefore, the calculations provide access to quantities that are typically inaccessible
in experiment, yet crucial for confirming collectivity.

We extract parameters of the traditional rotational description through fits to our
theoretical results after extrapolation to the the infinite matrix limit (for extrapolation
details see Ref. [25]) and we compare these extracted parameters with rotational
parameters determined from similar fits to the corresponding experimental data. The
energy parameters for bands across the Be isotopic chain are summarized in Fig. 1: the
band excitation energy Ex (defined relative to the yrast band as Ex ≡ E0−E0,yrast),
the band rotational parameter or slope A, and the band Coriolis decoupling parameter
or staggering a (for K = 1/2).

In total, we compare 23 theoretical and experimental collective rotation param-
eters for energies in the 6 Be isotopes depicted in Fig. 1. Overall the agreement
between theory and experiment is remarkable. Additional analyses of the calculated
electromagnetic observables in Refs. [23–25] and comparison with sparse data avail-
able confirm that we have observed the emergent phenomena of collective rotation in
these ab initio calculations for the Be isotopes. At the same time, there are oppor-
tunities for additional theoretical and experimental research to explore, for example,
where rotational bands terminate and whether additional bands may be found in
these and other light nuclei. It appears that bands do not always terminate at the
state corresponding to the maximum angular momentum supported by the nucleons
occupying the standard valence shell model orbitals [23–25].

3 Chiral Hamiltonian description of 12C

Recent significant theoretical advances for the underlying Hamiltonians, constructed
within chiral effective field theory (EFT), provide a foundation for nuclear many-body
calculations rooted in QCD [30,31]. These developments motivate us to adopt a chiral
EFT Hamiltonian here and in the following section on neutron drops in an external
trap. We also adopt the similarity renormalization group (SRG) approach [32–37]
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Figure 1: Rotational parameters A, a and Ex [defined relative to the yrast band
as Ex ≡ E0−E0,yrast — see Eq. (1)] for ground and excited bands of the Be isotopes
(adapted from Ref [25]). Brackets highlight the difference between the parameters de-
termined from experimental data (horizontal bars) and those extracted from NCFC
calculations with extrapolation (parallel triangles) to the infinite matrix limit. Solid
symbols connected by solid lines indicate the finite matrix results as a function of
increasing Nmax with larger symbols for larger Nmax values. Nmax is defined as
the maximum number of oscillator quanta in the HO configurations above the mini-
mum for the nucleus under investigation. The minimum Nmax is 0 for natural parity
and 1 for unnatural parity. The results indicated in the solid symbols correspond
to 6 ≤ Nmax ≤ 10 for natural parity and 7 ≤ Nmax ≤ 11 for unnatural parity.

that allows us to consistently evolve (soften) the Hamiltonian and other operators,
including 3N interactions [38–40].

We select the example of the spectroscopy of 12C to illustrate the recent progress.
In so doing, it is important to note that additional progress in achieving larger basis
spaces is needed before we can realistically address cluster model states in light nuclei
such as the celebrated “Hoyle state”, a 0+ state at 7.654 MeV of excitation energy
in 12C.

The theoretical excitation spectra are presented in Fig. 2 for the two highest Nmax

values currently achievable and are compared with experiment. For the negative par-
ity states, we elect to show excitation energies relative to the lowest state of that
parity whose experimental energy is 9.641 MeV above the ground state. The trends
with increasing Nmax (see the trends for additional observables in Ref. [41]) suggest
convergence is sufficient to draw important conclusions regarding the underlying inter-
action. In particular, we note that the shifts from including the initial 3N interaction
are substantial. In most cases, these shifts improve agreement between theory and
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Figure 2: Theoretical and experimental excitation spectra of 12C for both positive
parity (top panel) and negative parity (bottom panel) states for two different values of
Nmax at ~Ω = 20 MeV (adapted from Ref. [41]). The columns labelled “chiral NN”
include the 3NF induced by SRG while the sub panels labelled “chiral NN + 3N”
include the initial NN+3NF evolved by SRG together with NN . The SRG evolution
parameter is λ = 2.0 fm−1. See Ref. [41] for additional details.

experiment. A notable exception is the Jπ = 1+, T = 0 positive parity state which
shifts further from experiment when we include the initial 3N interaction.
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From our results in 12C, we conclude that we need further improvements in the
chiral interactions. For example, we need to haveNN and 3N interactions at the same
chiral order to be consistent. We also need to extend the chiral order of the interactions
to N4LO and, possibly, to include the derived four-nucleon (4N) interactions.

4 Confined neutron drops with chiral Hamiltonians

There are many motivations for considering artificial pure neutron systems confined
by an external trap.

• Gain insights into the properties of systems dominated by multi-neutron degrees
of freedom such as unstable neutron-rich nuclei and neutron stars.

• Isolate selected isospin components of the NN (T = 1) and 3N (T = 3/2)
interactions for detailed study.

• Inform the development of nuclear energy density functionals that may be tuned
to reproduce ab initio calculations, complementing their tuning to experimental
data.

The external trap is required since realistic interactions do not bind pure neutron
systems, though they do produce net attraction when the systems are confined. The

Figure 3: Comparison of ground state energies of systems with N neutrons trapped
in a HO with strength 10 MeV. Solid red diamonds and blue dots signify results
with NN + 3N interactions derived from chiral effective field theory related to QCD.
The inset displays the ratio of NN + 3N to NN alone for the different interactions
with the error indicated on the far right of each curve where it is maximum. The
label indicates the many-body methods employed: (Importance-Truncated) No Core
Shell Model ((IT-)NCSM); Coupled Cluster including Triples (ΛCCSD(T)); Quantum
Monte Carlo (QMC). Figure adapted from Ref. [16].
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main foci are to observe differences among realistic interactions and to see if subshell
closures are predicted. For example, one may investigate spin-orbit splitting as a
function of the chosen interaction and as a function of the external field parameters.

Using the same realistic chiral NN + 3N interactions as used in the previous sec-
tion, we investigated [15,16] neutron drop systems in a 10 MeV HO trap. In Ref. [16]
we compared the results with those from Green’s Function Monte Carlo (GFMC) and
auxiliary field diffusion Monte Carlo (AFDMC) [42, 43] using the Argonne v′8 (AV8’)
NN interaction [44] and the Urbana IX (UIX) 3N interaction. We also compared
with GFMC and AFDMC results using AV8’ with the Illinois-7 (IL7) 3N interac-
tion [44, 45].

For the investigations in Ref. [16] we employed both NCFC and coupled cluster
(CC) methods. By implementing CC, we were able to obtain results for larger neutron
drop systems.

We found important dependences on the selected interactions as shown in Fig. 3
which should have an impact on phenomenological energy-density functionals that
may be derived from them. Note in Fig. 3 that, with increasing N , the chiral predic-
tions lie between results from different high-precision phenomenological interactions,
i. e. between AV8′+UIX and AV8′+IL7. It will be very important to see the influences
the results of these different interactions have on energy density functionals.

One also notices in Fig. 3 there are surprisingly weak contributions from the
inclusion of the chiral 3N interaction. Based on systematic trends shown in previous
neutron-drop investigations [42,43,46], with non-chiral interactions we anticipate these
conclusions will persist over a range of HO well strengths. Additional investigations
are in progress to confirm this hypothesis and to extend the results to higher neutron
numbers.

5 Computational accelerators
and decoupling transformations

Fundamental physics investigations with chiral NN + 3N interactions require fore-
front computational techniques in order to efficiently utilize leadership computational
facilities. Many of our efforts are aimed to develop new algorithms that exploit the
recent advances in hardware and software. Here we describe one of those projects
that could only have been accomplished through our multidisciplinary team working
in close collaboration.

This specific project focused on adapting our NCSM code, Many-Fermion Dynam-
ics — nuclear (MFDn), for use with GPU accelerators on the supercomputer Titan
at Oak Ridge National Lab. MFDn represents the input NN and 3N interactions in
the “coupled-JT ” basis with coupled angular momentum and isospin, exploiting rota-
tional symmetry and isospin conservation to reduce memory requirements [26,38,40].
In one representative case, storing a 3N input interaction in the coupled-JT basis
reduces the interaction file size from 33 GigaBytes (GB) to less than 0.5 GB. This
method is crucial for pushing the boundaries of problem sizes that we can address,
as the input interactions must be stored once per process; using the ideal process
configuration on Titan, processes have access to 16 GB each. Such a reduction in
memory usage, then, not only enables calculations with larger input interactions,
which are required for larger model spaces, but also makes their memory footprints
more manageable, leaving more room for the memory-limited NCSM calculation.

As a side-effect of this compression, as we construct the full many-nucleon Hamilto-
nian from the input NN and 3N interactions, we must perform basis transformations
to extract input interaction matrix elements that our code can use directly. These
basis transformations are both computationally intensive and amenable to paralleliza-
tion; they are a natural fit for Titan’s GPU accelerators. We have taken advantage of
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Figure 4: Speedup in the many-nucleon Hamiltonian construction stage due to im-
plementation on GPU accelerators, graphed against the number of nonzero matrix
elements in the Hamiltonian. There is no clear trend, but all speedups are in approx-
imately the same region, indicating good weak scaling across this range of problem
sizes. We graph matrix construction speedup here instead of overall speedup; overall
speedup depends strongly on how long the matrix diagonalization takes, which is a
function of the number of eigenstates required. Figure adapted from Ref. [15].

our multidisciplinary team of physicists, computer scientists, and applied mathemati-
cians to port this section of our code to the GPU and optimize it [47]. Integrating the
GPU-accelerated basis transformation into MFDn produces a speedup of 2.2x–2.7x in
the many-nucleon Hamiltonian construction, as illustrated in Fig. 4, and a speedup
of 1.2x–1.4x in the full calculation, with some variation depending on the particular
problem chosen [15].

6 Overlapping communications and calculations

Our configuration interaction (CI) approach to the nuclear many-body problem re-
sults in a large sparse matrix eigenvalue problem with a symmetric real Hamiltonian
matrix. This presents major technical challenges and is widely recognized as “compu-
tationally hard.” One of the popular methods for obtaining the low-lying eigenvalues
and eigenvectors is the Lanczos algorithm that we have implemented in MFDn. As
the problem size increases with either increasing basis spaces or with the inclusion
of 3N interactions, we face the challenge of communication costs rising with the in-
creased numbers of nodes used in the calculations. The increase in nodes is driven by
memory requirements as mentioned in the previous section.

In order to reduce communication costs, we developed an efficient mapping of
the eigensolver onto the available hardware with a “topology-aware” mapping al-
gorithm [13, 17]. We also developed an improved Lanczos algorithm that overlaps
communications with calculations [14, 17].

For the challenge of efficiently overlapping communications with calculations, we
worked with a hybrid MPI-OpenMP implementation and delegated one or a few
threads to perform inter-process communication tasks, while the remaining threads
carried out the multi-threaded computational tasks. In our algorithm, we also im-
plemented a dynamical scheduling of the computations among the threads for the
sparse matrix-vector multiplication (SpMV) so that, once a communication thread
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Figure 5: Comparison of SpMV and communication methods for an iteration of the
Lanczos algorithm carried out by the majority of the processing units, the ones that
store the off-diagonal blocks of the Hamiltonian matrix. The left subfigure displays
a traditional sequential process that may be implemented with MPI. The right sub-
figure presents our algorithm suitable for hybrid MPI-OpenMP. Yellow ovals depict
communication and rectangles depict computation. The red rectangle indicates where
we require thread synchronization which incurs a small additional cost. The figure is
adopted from Refs. [14, 17].

completes that task, it can participate in the multi-threaded computations.

In Fig. 5 we compare a straightforward SpMV implementation using sequential
steps (left subfigure) with our algorithm (right subfigure). By mapping MPI pro-
cesses in a balanced column-major order as well as developing and implementing our
algorithm to overlap communications and calculations, we achieved over 80% parallel
efficiency through reduction in communication overhead during the Lanczos iteration
process. This includes both the SpMV and orthogonalization steps that occur in each
iteration. We also found major improvements in the scalability of the eigensolver
especially after adopting our topology-aware mapping algorithm. Since SpMV and
vector-vector multiplication of these types are common to many other iterative meth-
ods, we believe our achievements have a wide range of applicability.

7 Future prospects

Most of our applications have focused on light nuclei with atomic number A ≤ 16
where our theoretical many-body methods have achieved successes with leadership
class facilities. However, the frontiers of our field include applications to heavier nuclei
and utilizing new and improved interactions from chiral effective field theory. At the
same time, we aim to evaluate observables with increasing sophistication using their
operators also derived within chiral effective field theory. We mention the example of
neutrinoless double beta decay as one exciting example of frontier research with ab
initio computational nuclear theory.

We therefore face the dual challenge of advancing the underlying theory at the
same time as advancing the algorithms to keep pace with the growth in the size and
complexity of leadership class computers. Recent history in these efforts, with the
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substantial support of the funding agencies, indicates we are experiencing a “Double
Moore’s Law” rate of improvement — i. e. Moore’s Law for hardware improvements
and a simultaneous Moore’s Law improvement in the algorithms/software. We need
continued support for multi-disciplinary collaborations and growth in leadership class
facilities in order to achieve the full discovery potential of computational nuclear
physics.
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Abstract

We report a preliminary study of extrapolations to infinite basis space of
ground-state energies in the no-core Monte Carlo shell model. Ground-state
energies of 4He, 8Be, 12C and 16O are calculated in the basis spaces up to
Nshell = 7 with the JISP16 two-nucleon interaction. Then we extrapolate these
energy eigenvalues obtained in the finite basis spaces to infinity. For the extrap-
olation to the infinite basis space, we employ two schemes: One of them is the
traditional exponential extrapolation scheme. The other is the extrapolation
scheme based on the infrared and ultraviolet regulators. From a preliminary
investigation, both extrapolation schemes give consistent extrapolated energy
eigenvalues in the Nshell truncation, however, estimations of the uncertainty are
needed. We also compare the MCSM results to the NCFC results obtained from
the different basis space truncation, Nmax. We find reasonable agreement be-
tween the MCSM and NCSM results.

Keywords: No-core shell model; Monte Carlo shell model; infrared and ultra-
violet regulators

1 Introduction

The No-core Shell Model (NCSM) is one of powerful ab initio methods to investigate
low-energy nuclear structure and reactions in light nuclei [1]. However, the computa-
tional cost is expensive and explodes factorially as the number of nucleons increases
and/or the basis spaces are enlarged, because the NCSM retains all nucleon degrees
of freedom explicitly. At present, the maximum size of the Hamiltonian matrix at-
tainable for the direct diagonalization by the Lanczos technique is around 1010−11

in the M -scheme basis space. To avoid the large dimensionality of the Hamiltonian
matrix to be diagonalized, several variants of the NCSM have emerged recently. One
of these approaches is the Importance-Truncated NCSM [2] where the model spaces
are extended by using an importance measure evaluated with perturbation theory.
Another approach is the Symmetry-Adapted NCSM [3] where the model spaces are
truncated according to selected symmetry groups. The No-core Shell Model with

Proceedings of the International Conference ‘Nuclear Theory in the Super-
computing Era — 2014’ (NTSE-2014), Khabarovsk, Russia, June 23–27, 2014.
Eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2016, p. 166.

http://www.ntse-2014.khb.ru/Proc/Abe.pdf.

166



Extrapolation to infinite basis space in no-core Monte Carlo shell model 167

a Core [4] obtains microscopically the core, one- and two-body terms of the con-
ventional shell-model framework, and the Hamiltonian matrix is diagonalized in the
smaller basis space. Similar to these attempts, the No-core Monte Carlo Shell Model
(MCSM) [5, 6] is one of the promising candidates to go beyond the Full Configu-
ration Interaction (FCI) method which involves a different truncation of the basis
space, Nshell, than the one commonly used in the NCSM, Nmax. A proof of principle
study of the MCSM without an assumed inert core has been demonstrated on the
Be isotopes [5]. By exploiting the recent development in the MCSM algorithm [7],
the no-core calculations with the MCSM algorithm can be performed efficiently on
massively parallel supercomputers. From the benchmark calculations, the observables
such as the energy, root-mean-square radius, electromagnetic dipole and quadrupole
moments, give good agreement between the MCSM and FCI results in applications
to p-shell nuclei [6].

Recently, extrapolation methods to the infinite basis space in the harmonic oscil-
lator basis have been developed [8, 9]. In these proceedings, we extend the MCSM
calculations in larger basis spaces and extrapolate the ground-state (g. s.) energies of
4He, 8Be, 12C and 16O to the infinite basis space. For the extrapolations, we apply
a traditional extrapolation scheme and the recently proposed infrared and ultraviolet
cutoff extrapolations in a harmonic oscillator basis.

2 Monte Carlo shell model

The MCSM has been developed mainly for conventional shell-model calculations with
an assumed inert core [10]. The shell-model calculations with an assumed inert core
by the MCSM have succeeded in obtaining approximate solutions where the direct
diagonalization is difficult due to large dimensionalities. Recently, the algorithm
and code itself have been significantly revised and rewritten so as to accommodate
massively parallel computing environments [7]. We are able now to apply the MCSM
method successfully to the no-core calculations [5, 6].

In the MCSM, a many-body basis state |ΨJπM 〉 is approximated as a linear com-
bination of non-orthogonal angular-momentum, J , and parity, π, projected deformed
Slater determinants with good total angular momentum projection, M ,

|ΨJπM 〉 =

Nb∑

n=1

fn

J∑

K=−J

gnK P J
MK P π|φn〉, (1)

where P J
MK is the projection operator for the total angular momentum, J , with

its z-projection in the laboratory (body-fixed) frame, M (K). P π is the projection
operator for the parity. Nb is the number of Slater determinants. A deformed Slater
determinant is described by |φ〉 =

∏A
i=1 a

†
i |−〉 with the vacuum |−〉 and the creation

operator a†i =
∑Nsp

α=1 c
†
αDαi. Nsp is specified by the cutoff of the single particle basis

space, Nshell.
One then stochastically samples the coefficient Dαi in all possible many-body basis

states around the mean field solutions through auxiliary fields and/or automatically
evaluates it by the conjugate gradient method. The coefficients, fn and gnK , are
determined by the diagonalization of the Hamiltonian matrix. With increasing the
number of basis states, Nb, the energy eigenvalue converges from above to the exact
solution and gives the variational upper bound. In recent MCSM calculations, the
energy eigenvalue obtained by the above way is extrapolated by using the energy
variance so as to get better estimate of true eigenvalue in the chosen basis space.
Recent development and the technical details of the MCSM algorithm can be found
in Ref. [7]. The next step is to further extrapolate the MCSM results to those in the
infinite basis space to get an ab initio solution and to compare them with another
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solution by the NCFC method [11], which extrapolates from the different truncation
of basis space, Nmax.

3 Extrapolations to infinite basis space

Extrapolation methods to the infinite basis space in the harmonic oscillator basis
have been developed in recent years [8, 9]. In this section, we briefly summarize the
extrapolation methods applied to the MCSM.

The extrapolation of the results in the harmonic oscillator basis has a long history.
Until recently, the exponential fit of the energy with fixed ~ω,

E(N) = E(N =∞) + a exp(−bN), (2)

has been traditionally adopted. Here, N describes the size of basis space, and
E(N =∞), a and b are the fit parameters. The NCFC method combines the NCSM
with an elaborated scheme based on the traditional extrapolation scheme, which gives
an ab initio solution by extrapolating the results in the N = Nmax truncated basis
space to infinity [11].

Recently proposed extrapolation scheme utilizes the infrared (IR) and ultraviolet
(UV) cutoff scales [8,9]. It is just a transformation from a two-parameter problem in
(N, ~ω) to (λ,Λ), but the scaling properties can be different. In the harmonic oscillator
basis, the IR cutoff scale is defined as λsc =

√
(m~ω)/(N + 3/2), which corresponds

to the inverse of the root-mean-square radius in the highest harmonic oscillator level in
the basis space N , while the UV cutoff scale is defined as Λ =

√
m(N + 3/2)~ω, which

is associated with the highest harmonic oscillator level in the basis space N . Note that
there is another definition of the IR scale by λ =

√
m~ω, which is characterized by

the minimum allowed energy difference between the harmonic oscillator levels. Here,
we use λsc, not λ, as the IR cutoff due to its scaling property. Also note that there
is another definition of the UV regulator (Λ′ =

√
2Λ), but the extrapolated energy is

not affected by the difference of the definitions. In this study, we use Λ as the UV
regulator. The IR-cutoff extrapolation is performed by using UV-saturated results
with

E(λ) = E(λ = 0) + a exp(−b/λ), (3)

where E(λ = 0), a and b are the fit parameters. Note that the IR extrapolation
formula, Eq. (3) was derived for a single-particle system and is widely applied to
bound states of many-body systems [9]. Although the UV extrapolation formula
has yet to be derived, the IR- and UV-cutoff combined extrapolation is applied, for
example, in Ref. [12]. The IR- and UV-cutoff extrapolation is given by using the
following formula,

E(λ,Λ) = E(λ = 0,Λ =∞) + a exp(−b/λ) + c exp(−Λ2/d2), (4)

where E(λ = 0,Λ =∞), a, b, c and d are the fit parameters.
By using the above formulae, Eqs. (2), (3) and (4), we attempt to extrapolate the

MCSM results of the g. s. energies in the N = Nshell truncation to the infinite basis
space.

4 Results

We have calculated the ground-state energies of 4He, 8Be, 12C and 16O in the basis
spaces up to Nshell = 7. In this study, we have taken Nb = 100 and extrapolated the
energies obtained in each basis space by the energy variance. The energy-variance
extrapolation is needed to obtain better estimate of true eigenvalue derived from
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Figure 1: Extrapolations of 4He g. s. energy. The JISP16 two-nucleon interaction is
employed and Coulomb interaction is turned off. The color (symbol) difference corre-
sponds to different size of basis space. The red (plus), green (cross), blue (asterisk),
pink (open square), aqua (solid square), orange (open circle) symbols with solid lines
are the MCSM results in Nshell = 2, 3, 4, 5, 6 and 7, respectively. The traditional
exponential extrapolation by Eq. (2) is shown in the left panel. The black solid cir-
cles with dotted line, black open triangles with short-dashed line, and black solid
triangles with long-dashed line denote the extrapolated results to infinite basis space
from the MCSM results in Nshell = 2−7, 3−7, and 4−7, respectively. The IR-cutoff
extrapolation by Eq. (3) is shown in the right panel as the black dotted curve.

the calculated eigenvalue and its variance in the Nb = 100 truncation of each fi-
nite MCSM basis space defined by Nshell. In the MCSM calculations, the JISP16
two-nucleon interaction [13] is employed, and the Coulomb force is turned off. For
simplicity, the effect of spurious center-of-motion is neglected. MCSM calculations
have been performed on K computer, RIKEN AICS and FX10 at the University of
Tokyo. The MCSM results of the energies have been extrapolated to the infinite basis
space by using the extrapolation schemes discussed in the previous section. For the
extrapolations to the infinite basis space, we take Nshell as N in Eqs. (2), (3) and (4).

Fig. 1 shows the extrapolations of the 4He g. s. energy to the infinite basis space.
In the figure, each color (symbol) corresponds to a different value of Nshell. The red
(plus), green (cross), blue (asterisk), pink (open square), aqua (solid square), orange
(open circle) symbols with solid lines are the MCSM results in Nshell = 2, 3, 4, 5, 6 and
7, respectively. The traditional extrapolation is demonstrated in the left panel, while
the IR-cutoff extrapolation in the right panel. In the left panel, the black symbols
connected with dotted lines are the extrapolated results obtained by the traditional
extrapolation scheme, Eq. (2). The black solid circles with dotted line, black open
triangles with short-dashed line, and black solid triangles with long-dashed line denote
the extrapolated results to infinite basis space from the MCSM results in Nshell =
2−7, 3−7, and 4−7, respectively. Traditional exponential fits to the MCSM results
with ~ω = 15−35 MeV in Nshell = 3−7 give the 4He g. s. energy ranging from −29.389
to −29.077 MeV. In the right panel, the dotted curve is the fit function of Eq. (3)
determined by the MCSM results, which demonstrates the IR-cutoff extrapolation.
The IR-cutoff extrapolation gives −29.142 MeV where λsc = 0. These extrapolated
results give a good agreement with the NCFC result of −29.164(2) MeV, which is
obtained by the traditional exponential extrapolation to infinite basis space from a
different truncation of the basis space governed by Nmax.

Fig. 2 shows the extrapolations of the 8Be g. s. energy to the infinite basis space.
The notation conventions in Fig. 2 are the same as in Fig. 1. As shown in the left panel
of Fig. 2, the traditional exponential fits to the MCSM results with ~ω = 25−35 MeV
in Nshell = 3−7 give the 8Be g. s. energy ranging from −59.289 to −57.396 MeV.
From the right panel of Fig. 2, the IR-cutoff extrapolation gives −58.676 MeV. These
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Figure 2: Extrapolations of 8Be g. s. energy. Same caption as in Fig. 1, but for 8Be.
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Figure 3: Extrapolations of 12C g. s. energy. Same caption as in Fig. 1, but for 12C.
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Figure 4: Extrapolations of 16O g. s. energy. Same caption as in Fig. 1, but for 16O,
besides the absence of the Nshell = 2 results and the traditional extrapolation to the
infinite basis space from the MCSM results in Nshell = 2−7.

extrapolated results are in a good agreement with the NCFC result of −59.1(1) MeV.

Fig. 3 shows the extrapolations of the 12C g. s. energy to the infinite basis space.
The notation conventions in Fig. 3 are the same as in Fig. 1. From the left panel of
Fig. 3, the traditional exponential fits to the MCSM results with ~ω = 25− 35 MeV
in Nshell = 3− 7 give the 12C g. s. energy ranging from −105.392 to −103.393 MeV.
From the right panel of Fig. 3, the IR-cutoff extrapolation gives −104.812 MeV. Note
that the NCFC result is not yet available.

Fig. 4 shows the extrapolations of the 16O g. s. energy to the infinite basis space.
The notation conventions in Fig. 4 are the same as in Fig. 1, except for the absence of
the Nshell = 2 results and for the traditional extrapolation to the infinite basis space



Extrapolation to infinite basis space in no-core Monte Carlo shell model 171

 0
 20

 40
 60

 80
 100

 120

 0 100 200 300 400 500 600 700 800

-30

-25

-20

-15

E (MeV)

λsc (MeV)

ΛUV (MeV)

4He(0+)

Figure 5: IR- and UV-cutoff extrapolations of 4He g. s. energy. The color (symbol)
difference corresponds to different size of basis spaces, see Fig. 1 for details. The black
mesh shows the IR- and UV-cutoff extrapolations by Eq. (4).

from the MCSM results in Nshell = 2−7. From the left panel of Fig. 4, the traditional
exponential fits to the MCSM results with ~ω = 25−35 MeV in Nshell = 4−7 give the
16O g. s. energy ranging from −161.435 to −160.378 MeV. From the right panel of
Fig. 4, the IR-cutoff extrapolation gives −159.592 MeV. Note that the NCFC result,
as in the case of 12C, is not yet available.

Fig. 5 shows the IR- and UV-extrapolation of the 4He g. s. energy to the infinite
basis space. In the figure, each color (symbol) corresponds to a different value of Nshell

as in Fig. 1. The dotted mesh is obtained by the fit with Eq. (4) to the MCSM results,
which demonstrate the IR- and UV-cutoff extrapolation. The IR- and UV-cutoff
extrapolation gives −29.139 MeV where λsc = 0 and Λ = ∞. Although the IR- and
UV-cutoff extrapolated result is in a good agreement with those of the traditional and
IR-cutoff extrapolations shown in Fig. 1 and also with the NCFC, further investigation
on the extrapolation uncertainties is necessary to confirm these extrapolated results.
The IR- and UV-cutoff extrapolations for 8Be, 12C and 16O are under way.

Finally, we summarize the extrapolated results in Table 1. These MCSM results
are preliminary. We have to obtain better MCSM results in each basis space by
increasing Nb so as to quantify the uncertainties both of the energy-variance extrap-
olation in the finite basis space and of the extrapolations to the infinite basis space.

5 Summary

We have shown preliminary results of extrapolations to the infinite basis space for
ground-state energies in no-core Monte Carlo shell model. The g. s. energies of 4He,

Table 1: Comparison of the extrapolated g. s. energies of 4He, 8Be, 12C and 16O. The
entries of Traditional, IR, IR and UV, and NCFC are the extrapolated MCSM results
by Eqs. (2), (3), and (4), and the NCFC result, respectively. Energies are in MeV.

Traditional IR IR and UV NCFC

4He 0+ g. s. energy −29.389÷−29.007 −29.142 −29.139 −29.164(2)
8Be 0+ g. s. energy −59.289÷−57.396 −58.676 −59.1(1)
12C 0+ g. s. energy −105.392÷−103.393 −104.812
16O 0+ g. s. energy −161.435÷−160.378 −159.592
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8Be, 12C and 16O were calculated in the basis spaces up to Nshell = 7 with the JISP16
two-nucleon interaction and without the Coulomb interaction. Then we extrapolate
these energy eigenvalues obtained in the finite basis spaces to the infinite basis limit
by the traditional exponential scheme and the schemes with the IR and UV cutoffs.
From this preliminary investigation, both extrapolation schemes give consistent ex-
trapolated energy eigenvalues in the Nshell truncation, however, estimations of the
uncertainty are needed. We also compare the MCSM results for the 4He and 8Be g. s.
energies to the NCFC results obtained from the different Nmax basis space trunca-
tions. The agreement between them seems to be reasonable.
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e. g., B. R. Barrett, P. Navrátil and J. P. Vary, Progr. Part. Nucl. Phys. 69, 131
(2013).
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Abstract

We utilize various ab initio approaches to search for a low-lying resonance in
the four-neutron (4n) system using the JISP16 realistic NN interaction. Our
most accurate prediction is obtained using a J-matrix extension of the No-Core
Shell Model and suggests a 4n resonant state at an energy near Er = 0.8 MeV
with a width of approximately Γ = 1.4 MeV.

Keywords: Four-neutron system, No-Core Shell Model; HORSE (J-matrix)
formalism of quantum scattering theory; No-Core Gamow Shell Model; reso-
nance energy and width; S-matrix poles

With interest sparked by a recent experiment [1] on the possibility of a resonant
four neutron (4n) structure (see also [2] for a recent communication) and while await-
ing for forthcoming experiments on the same system [3–5], we search for 4n (tetra-
neutron) resonances using the high precision nucleon-nucleon interaction JISP16 [6].
The experiment has found a candidate 4n resonant state with an energy of
0.83± 0.65(stat)± 1.25(syst) MeV above the 4n disintegration threshold and with
an upper limit of 2.6 MeV for the width. The 4n system was probed by studying
the reaction between the bound 4He nucleus and the weakly bound Helium isotope,
8He. It has been shown [7] that the four neutrons in 8He form a relatively compact
geometry. Hence the experimental study of the 4He + 8He collisions is a promising
avenue for the isolation of the 4n subsystem.

The experimental quest for the very exotic 4n structure started almost fifteen years
ago when the possibility of a bound 4n (or tetraneutron) was proposed [8] in 14Be
breakup reactions (14Be → 10Be + 4n). This experimental result however has not
been confirmed. Early calculations of the 4n system in a small Harmonic Oscillator
(HO) basis [9] found it unbound by about 18.5 MeV. More recent state-of-the-art the-
oretical calculations have concluded that without altering fundamental characteristics
of the nuclear forces [10], the tetraneutron should not be bound. More theoretical
calculations were performed [11, 12], all of them agreeing that a bound tetraneutron
is not supported by theory. Calculations performed in the complex energy plane to
search of multi-neutron resonances within the Complex Scaling Method [13–15] give
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quantitatively similar results and point to the fact that the 4n resonance, if it ex-
ists, would have a very large width (∼15 MeV), likely prohibitive for experimental
detection. The tetraneutron could however exist if confined in a strong external field.
In Nature, this would be the case of 8He, where the nuclear mean-field is strong
enough to confine the tetraneutron around the tightly bound α-core. Once the field
is suddenly removed by knocking out 4He, it is expected that the tetraneutron will
disintegrate very fast due to its anticipated large width.

There is also a work [16] where the continuum response of the tetraneutron was
studied. The outcome was that there exists a resonant-like structure at around
4–5 MeV above threshold, however this structure depends on the tetraneutron pro-
duction reaction mechanism represented by the source term in this study, and the
conclusion was that the 4n probably cannot be interpreted as a well-defined reso-
nance but most probably as a few-body continuum response in a reaction.

Nevertheless, our current knowledge of nuclear interactions and many-body meth-
ods provide new opportunities to probe exotic states above thresholds. We are further
motivated by the conclusion in Ref. [10] that even though the existence of a bound
tetraneutron is ruled out, extrapolations of (artificialy) bound state results to the
unbound regime imply that there may be a 4n resonance at about 2 MeV above the
four-neutron threshold.

A complete investigation of the tetraneutron as a resonant state, would consist of
performing calculations of the actual experimental reaction 4He(8He,8Be). However,
such a realistic calculation is currently out of reach, though we are witnessing the first
steps for such theoretical calculations to become a reality [17, 18].

We treat the 4n system with a realistic non-relativistic Hamiltonian which consists
of the kinetic energy and the realistic inter-neutron potential defined by the JISP16
interaction [6]. We solve for the 4n energies by employing basis expansion techniques
for the Hamiltonian. Specifically, we employ the No-Core Shell Model (NCSM) [19]
and artificially bind the 4n system by scaling the interaction to track its lowest state as
a function of that scaling. We also employ the No-Core Gamow Shell Model (NCGSM)
[20, 21] which provides resonant parameters directly in the complex energy plane.
Finally, we extend NCSM using the Single-State Harmonic Oscillator Representation
of Scattering Equations (SS-HORSE) formalism [22–24] for calculations of the S-
matrix resonant parameters. This paper elaborates on the work presented in Ref. [25].

First, to get an estimate of whether JISP16 can provide a 4n resonant state, we
exploit the technique suggested in Ref. [10] and perform pure NCSM calculations by
constructing an artificially bound 4n system by scaling up the NN interaction. Our
extrapolations to the unbound regime are in quantitative agreement with Ref. [10] that
predicts a resonance at around 2 MeV above threshold but without any indication of
the width. We tried also a much more elaborate technique of Analytic Continuation
in the Coupling Constant (ACCC) [26, 27]. The ACCC requires exact results for
the 4n energy with scaled interactions while NCSM provides only variational energy
upperbounds; extrapolations to the infinite basis space appear to lack the precision
needed for a definite prediction of the resonance energy and width.

In order to shed further light on a possible 4n resonance, we solve the NCGSM
with the JISP16 interaction. In the NCGSM one employs a basis set that is spanned
by the Berggren states [28] which includes bound, resonant and non-resonant states;
they correspond to solutions of the single particle (s. p.) Schrödinger equation obey-
ing outgoing (bound-resonant states) and scattering (non-resonant states) boundary
conditions. In this basis the Hamiltonian matrix becomes complex symmetric and its
eigenvalues acquire both real and imaginary parts. The real part is identical to the
position of the resonant state above the threshold and the imaginary part is related
to its width, Γ = −2 Im(E).

We adopt the basis provided by a Woods–Saxon (WS) potential for a neutron in
relative motion with a 3n system. We modify the WS parameters in a way that it will
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support a weakly bound 0s1/2 state and a resonant 0p3/2 state. For the s1/2 and p3/2
shells we include the 0s1/2 bound state, the 0p3/2 resonant state and the associated
non-resonant states. We additionally include the p1/2 real scattering continuum along
the real momentum axis. We performed calculations for several WS parameterizations
supporting both narrow and broad s. p. states. States with an angular momentum
of ℓ > 2 are taken as HO states. We retain states through the 3g9/2 shells. For
our NCGSM calculations, the ~Ω parameter of the HO basis was varied from 4 MeV
to 14 MeV. Due to the use of Berggren states for low angular momentum partial
waves, we observe a weak dependence of the results on the ~Ω parameter.

For the 4n calculation we constructed Slater determinants allowing two neutrons
to occupy continuum orbits, called the 2p-2h approximation. Taking the dependence
on basis space parameters into account, the NCGSM results indicate a broad resonant
state in the energy range Er ∼ 2.5 to 3 MeV above the 4n threshold and a width
ranging from Γ ∼ 2.5 to 6 MeV. These variations reflect the omission of additional
p-h excitations. Nevertheless the real part of the resonance exhibits a robust char-
acter at the current level of p-h truncation, i. e., it is nearly independent of the WS
parameterizations and independent of the frequency of the HO basis.

At the same time, we observe that the resonance energy decreases together with
the width as the NCGSM basis increases. Getting the converged resonance pole
position in this approach requires the NCGSM basis spaces beyond our current reach.

Finally, following the J-matrix formalism in scattering theory [29] as represented
in the HORSE method [30], we extend the finite NCSM Hamiltonian matrix in the
HO basis into the continuum by appending to it the infinite kinetic energy matrix.

For the kinetic energy extension of the NCSM Hamiltonian, we use the democratic
decay approximation (also known as true four-body scattering or 4 → 4 scattering)
suggested [31, 32] and first applied to the tetraneutron problem [33–35] by Jibuti
and collaborators. Later it was exploited in other tetraneutron studies (see, e. g.,
Refs. [13, 16, 36, 37]). Democratic decay implies a description of the continuum using
a complete hyperspherical harmonics (HH) basis. In practical applications, a limited
set of HH is selected which is adequate for the systems like the 4n which has no bound
subsystems.

The general theory of the democratic decay within the HORSE formalism was
proposed in Ref. [38]. We use here the minimal approximation for the four-neutron
decay mode, i. e., only HH with hyperspherical momentum K = Kmin = 2 are retained
in the kinetic energy extension to the NCSM. This approximation relies on the fact
that the decay in the hyperspherical states with K > Kmin is strongly suppressed

by a large hyperspherical centrifugal barrier L (L+1)
ρ2 where L = K + 3 and the

hyperradius ρ2 =
∑4

i=1(ri − R)2, R is the tetraneutron center-of-mass coordinate
and ri are the coordinates of individual neutrons. Note, all possible HH are retained
in the NCSM basis. The accuracy of this approximation was confirmed in studies of
democratic decays in cluster models [39–42].

Realistic NN interactions require large NCSM basis spaces and extensive com-
putational resources. For computational economy, we also adopt the SS-HORSE
approach [22–24] where we calculate the 4→ 4 S-matrix S(E) at one of the positive
eigenenergies of the NCSM Hamiltonian, E = Eλ. In this case, the general HORSE
formula for the S-matrix simplifies: expressing S(E) through the 4 → 4 phase
shifts δ(E),

S(E) = e2iδ(E), (1)

we obtain for the phase shifts [22–24]

δ(Eλ) = − tan−1 SNtot
max+2,L (Eλ)

CNtot
max+2,L (Eλ)

. (2)
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Figure 1: NCSM results for the tetraneutron ground state energy obtained with
various Nmax (symbols) plotted as functions of ~Ω. The shaded area shows the NCSM
result selection for the S-matrix parametrization; the solid curves are obtained from
the phase shifts parametrized with a single resonance pole by solving Eq. (2) for the
eigenenergies at given Nmax and ~Ω values.

Here the maximal total quanta in the NCSM basis N tot
max = Nmin + Nmax, Nmin = 2

is the quanta of the lowest possible oscillator state of the 4n system, Nmax is the
maximal excitation quanta in the NCSM basis; analytical expressions for the regu-
lar SNL (E) and irregular CNL (E) solutions of the free many-body Hamiltonian in
the oscillator representation can be found elsewhere [38]. Varying Nmax and ~Ω in the
NCSM calculations, we obtain the phase shifts and S-matrix over an energy interval.
Parametrizing the S-matrix in this energy interval, we obtain information about its
nearby poles and hence resonances in the system.

The NCSM calculations were performed with Nmax = 2, 4, ... , 18 using the code
MFDn [43, 44] and with ~Ω values, 1 MeV ≤ ~Ω ≤ 40 MeV. The results for the 0+

tetraneutron ground state are shown in Fig. 1.
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Figure 2: The 4 → 4 phase shifts obtained directly from the NCSM results using
Eq. (2).
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Figure 3: The 4→ 4 scattering phase shifts: parametrization with a single resonance
pole (solid line) and obtained directly from the selected NCSM results using Eq. (2)
(symbols). The dashed line shows the contribution of the resonance term.

The convergence patterns of the NCSM SS-HORSE approach to the 4→ 4 phase
shifts using Eq. (2) are shown in Fig. 2. We observe that the phase shifts tend to the
same curve when Nmax is increased. The convergence is first achieved at the higher
energies while larger Nmax yield converged phase shifts at smaller energies. We obtain
nearly completely converged phase shifts at all energies with Nmax = 16 and 18.

We need only phase shifts close to convergence for the phase shift parametrization.
Our selected NCSM eigenenergies are enclosed by the shaded area in Fig. 1 since their
resulting phase shifts form a single smooth curve (see Figs. 3 and 4).

We will describe now how we utilize the NCSM solutions within the SS-HORSE
method in order to obtain resonance positions. Due to the S-matrix symmetry
property,

S(k) =
1

S(−k)
, (3)
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Figure 4: Same as Fig. 3 but for the parametrization with resonance and false state
poles. The dashed-dotted line shows the contribution of the false state pole term.
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and Eq. (1), the 4 → 4 phase shift δ(E) is an odd function of momentum k and its
expansion in Taylor series of

√
E ∼ k includes only odd powers of

√
E:

δ(E) = v1
√
E + v3

(√
E
)3

+ ...+ v9
(√
E
)9

+ v11
(√
E
)11

+ ... (4)

Furthermore, the 4→ 4 phase shifts at low energies, i. e., in the limit k → 0, should
behave as δ ∼ k2L+1. Note, in our case, L = Kmin + 3 = 5, hence

v1 = v3 = ... = v9 = 0, (5)

and expansion (4) starts at the 11th power.
Supposing the existence of a low-energy resonance in the 4n system, we express

the S-matrix as
S(E) = Θ(E)Sr(E), (6)

where Θ(E) is a smooth function of energy E and Sr(E) is a resonant pole term. The
respective phase shift is

δ(E) = φ(E) + δr(E), (7)

where the pole contribution δr(E) takes the form

δr(E) = − tan−1

(
a
√
E

E − b2

)
. (8)

The resonance energy Er and width Γ are expressed through parameters a and b
entering Eq. (8) as

Er = b2 − 1

2
a2, (9)

Γ = a
√

4b2 − a2. (10)

We use the following expression for the background phase:

φ(E) =
w1

√
E + w3

(√
E
)3

+ c
(√
E
)5

1 + w2E + w4E2 + w6E3 + dE4
. (11)

The parameters wi, i = 1, 2, 3, 4, 6 are uniquely defined through the parameters a
and b and guarantee the fulfilment of the condition (5), i. e., the cancellation of the
terms of powers up to 9 in the phase shift expansion (4).

Our phase shift parametrization is given by Eqs. (7), (8) and (11) with fitting
parameters a, b, c and d. For each parameter set, we solve Eq. (2) to find the values

of the energies Ea,b,c,d
λ , and search for the parameter set (a, b, c, d) minimizing the

rms deviation of Ea,b,c,d
λ from the selected set of NCSM eigenenergies Eλ. Follow-

ing this route, we obtain an excellent description of the selected Eλ with an rms
deviation of 5.8 keV with a = 0.724 MeV− 1

2 , b2 = 0.448 MeV, c = 0.941 MeV− 5
2 ,

and d = −9.1 · 10−4 MeV−4. The resulting predictions for the NCSM eigenenergies
are shown by solid lines in Fig. 1; it is seen that we also describe well NCSM energies
with large enough Nmax and/or ~Ω not included in the minimization fit. We obtain
an excellent description of NCSM-SS-HORSE predicted phase shifts as is shown by
solid line in Fig. 3.

However the resonance parameters describing the location of the S-matrix pole
obtained by this fit, are surprisingly small: the resonance energy Er = 0.186 MeV
and the width Γ = 0.815 MeV. Note, looking at the phase shift in Fig. 3, we would
expect the resonance at the energy of approximately 0.8 MeV corresponding to the
maximum of the phase shift derivative and with the width of about 1.5 MeV. The
contribution of the pole term (8) to the phase shifts is shown by the dashed line in
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Fig. 3. This contribution is seen to differ considerably from the resulting phase shift
due to substantial contributions from the background phase (11) which is dominated
by the terms needed to fulfill the low-energy theorem δ ∼ k2L+1 and to cancel low-
power terms in the expansion of the resonant phase δr(E). Such a sizable contribution
from the background in the low-energy region, impels us to search for additional
poles or other singularities giving rise to a strong energy dependence which would be
separate from the background phase.

After we failed to find a reasonable description of the NCSM-SS-HORSE phase
shifts with a low-energy virtual state, we found the resolution of the strong background
phase problem by assuming that the S-matrix has an additional low-energy false
pole [45] at a positive imaginary momentum. We add the false term contribution

δf (E) = − tan−1

√
E

|Ef |
(12)

to the phase shift to obtain the equation

δ(E) = φ(E) + δr(E) + δf (E) (13)

replacing Eq. (7). This parametrization involves an additional fitting parameter Ef .
We obtain nearly the same quality description of the selected 4n ground state en-
ergies with the rms deviation of 6.2 keV with the parameters a = 0.701 MeV− 1

2 ,
b2 = 1.089 MeV, c = −27.0 MeV− 5

2 , d = 0.281 MeV−4, and a low-lying false pole
at energy Ef = −54.9 keV. The respective 4n resonance at Er = 0.844 MeV and
width Γ = 1.378 MeV appears consistent with what is expected from directly inspect-
ing the 4n phase shifts. The parametrized phase shifts are shown by solid line in
Fig. 4 together with separate contributions from the resonant and false pole terms.
We note that corrections introduced by this new parametrization to the solid lines in
Figs. 1 and 3 are nearly unseen in the scales of these figures.

Conclusions. Our results with the realistic JISP16 interaction and the SS-HORSE
technique show a resonant structure near 0.8 MeV above threshold with a width
Γ of about 1.4 MeV. This is the first theoretical calculation that predicts such a
low energy 4n resonance without altering any of the properties of the realistic NN
interaction. Our result is compatible with the recent experiment [1] which found a
resonant structure at an energy of 0.86±0.65(stat)±1.25(syst) MeV and set an upper
limit for the width at Γ = 2.6 MeV. Our complex energy calculations also suggest a
broad low-lying 4n resonance that agrees marginally with experiment due to the large
error bars for both the current application of the NCGSM and the experiment.
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Abstract

We suggest a method for calculating scattering phase shifts and energies and
widths of resonances which utilizes only eigenenergies obtained in variational
calculations with oscillator basis and their dependence on oscillator basis spac-
ing ~Ω. We make use of simple expressions for the S-matrix at eigenstates of
a finite (truncated) Hamiltonian matrix in the oscillator basis obtained in the
HORSE (J-matrix) formalism of quantum scattering theory. The validity of the
suggested approach is verified in calculations with model Woods–Saxon poten-
tials and applied to calculations of nα resonances and non-resonant scattering
using the no-core shell model.

Keywords: No-core shell model; HORSE (J-matrix) formalism of quantum
scattering theory; resonance energy and width; S-matrix poles

1 Introduction

To calculate energies of nuclear ground states and other bound states within various
shell model approaches, one conventionally starts by calculating the ~Ω-dependence of
the energyEν(~Ω) of the bound state ν in some model space. The minimum of Eν(~Ω)
is correlated with the energy of the state ν. The convergence of calculations and
accuracy of the energy prediction is estimated by comparing with the results obtained
in neighboring model spaces. To improve the accuracy of theoretical predictions,
various extrapolation techniques have been suggested recently [1–13] which make it
possible to estimate the binding energies in the complete infinite shell-model basis
space. The studies of extrapolations to the infinite model spaces reveal general trends
of convergence patterns of shell model calculations.

Is it possible to study nuclear states in the continuum, low-energy scattering and
resonant states in particular, in the shell model using bound state techniques? A
conventional belief is that the energies of shell-model states in the continuum should
be associated with the resonance energies. It was shown however in Ref. [14,15] that
the energies of shell-model states may appear well above the energies of resonant
states, especially for broad resonances. Moreover, the analysis of Refs. [14,15] clearly
demonstrated that the shell model should also generate some states in a non-resonant
nuclear continuum. The nuclear resonance properties can be studied in the Gamow
shell model, including the ab initio no-core Gamow shell model (NCGSM) [16, 17].
Another option is to combine the shell model with resonating group method (RGM).
An impressive progress in the description of various nuclear reactions was achieved by
means of the combined no-core shell model/RGM (NCSM/RGM) approach [18–23].

Proceedings of the International Conference ‘Nuclear Theory in the Super-
computing Era — 2014’ (NTSE-2014), Khabarovsk, Russia, June 23–27, 2014.
Eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2016, p. 183.
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Both NCGSM and NCSM/RGM complicate essentially the shell model calculations.
Is it possible to get some information about unbound nuclear states directly from
the results of calculations in NCSM or in other versions of the nuclear shell model
without introducing additional Berggren basis states as in NCGSM or additional
RGM calculations as in the NCSM/RGM approach?

The general behaviour of shell model eigenstates at positive energies (or just at the
energies above various thresholds) is not well-studied and there is no well-established
extrapolation technique to the infinite basis space for resonances. Generally, a com-
plete study of the nuclear continuum can be performed by extending the nuclear shell
model with the J-matrix formalism of scattering theory. The J-matrix formalism has
been suggested in atomic physics [24, 25]. Later it was independently rediscovered in
nuclear physics [26,27] and was successfully used in shell-model applications [28]. The
J-matrix approach utilizes diagonalization of the Hamiltonian in one of two bases:
the so-called Laguerre basis that is of a particular interest for atomic physics applica-
tions and the oscillator basis that is appropriate for nuclear physics. The version of
the J-matrix formalism with the oscillator basis is also sometimes referred to as an
Algebraic Version of RGM [26] or as a HORSE (Harmonic Oscillator Representation
of Scattering Equations) method [29] — we shall use the latter nomenclature in what
follows.

We note that a direct implementation of the HORSE formalism in modern large-
scale shell-model calculations is very complicated and unpractical: the HORSE
method requires calculation of a huge number of eigenstates while modern shell-
model codes usually utilize the Lanczos algorithm which provides only the few lowest
Hamiltonian eigenstates. Furthermore, the HORSE method needs also the weight
of the highest component of the wave function of each eigenstate which is usually
obtained with a low precision. On the other hand, the HORSE formalism can be
used for a simple calculation of the scattering phase shift or S-matrix at a single
energy Eν(~Ω) which is an eigenstate of the shell-model Hamiltonian. In this case,
the HORSE phase shift calculation requires only the value of the energy Eν(~Ω) and
the basis parameters (the ~Ω value and the basis truncation). We shall refer to such
a simplified approach as a Single State HORSE (SS-HORSE) method. Varying the
shell-model parameter ~Ω and using results from a set of basis spaces, we generate a
variation of Eν(~Ω) in some energy range and hence we can calculate the phase shifts
in that energy range.

Calculations of scattering phase shifts at the eigenenergies of the Hamiltonian in
the oscillator basis and obtaining the phase shift energy dependence by variation of
basis parameters, was recently performed in Ref. [5] using another (not the HORSE)
technique. A detailed study of scattering phase shifts at eigenenergies of the Hamil-
tonian in arbitrary finite L2 basis was performed in Ref. [30]. This study was based
on the theory of spectral shift functions introduced by I. M. Lifshitz nearly 70 years
ago [31] and later forgotten by physicists though used up to now by mathematicians
(see Ref. [30] and references therein).

Another method to obtain scattering phase shifts from bound state calculations
in a harmonic oscillator basis features the use of an additional harmonic oscillator
potential [32]. The method was demonstrated with nucleon-nucleon scattering where
it reveals a challenge of needing a large basis to access the low-energy scattering
region.

It is worth noting here that approximate resonant widths can be extracted from
bound state approaches to many-body nuclear systems using a relation between the
partial width in a specified breakup channel and an integral over the “interaction
region” where all of the nucleons are close to each other. This method was described
in detail in Ref. [33] where it was used to evaluate widths of resonances in light
nuclei based on the variational Monte Carlo calculations. It has been used before in
combination with other many-body approaches (see Ref. [33] for the list of respective
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references), in particular, it can be utilized within the nuclear shell model. However
this approach is applicable to narrow enough resonances only and is unable to provide
information about non-resonant scattering.

In this contribution, we suggest a simpler and more powerful approach. We
formulate below a method for calculating low-energy phase shifts and for extract-
ing resonant energies Er and widths Γ from the shell model results, or, generally,
from results of any variational calculation with a finite oscillator basis. We apply the
SS-HORSE formalism to calculate the S-matrix in the energy interval of variation of
one of the Hamiltonian eigenenergies Eν(~Ω) due to variation of ~Ω and truncation
boundary of the Hamiltonian matrix. We use either a low-energy expansion of the
S-matrix or express the S-matrix as a pole term plus slowly varying with energy back-
ground terms and fit the expansion parameters to describe the S-matrix behaviour
in the above energy interval. The low-energy phase shifts δℓ, the resonant energy Er

and width Γ appear as a result of this fit. We obtain relations describing the general
behaviour of shell-model states associated with a resonance or with a non-resonant
continuum as functions of ~Ω and truncation boundary of the Hamiltonian matrix.
This approach is tested in calculations of phase shifts and resonance parameters of
two-body scattering with model potential. Next we apply the SS-HORSE method to
the calculation of resonances and of non-resonant continuum in the neutron-α scat-
tering based on No-core Shell Model (NCSM) results obtained with the JISP16 NN
interaction [34, 35]. This paper elaborates on the work presented in Refs. [36, 37].

In our earlier study [38], we evaluated resonant energies Er and widths Γ using the
SS-HORSE and Breit–Wigner formula for the description of resonances. The Breit–
Wigner formula describes the phase shifts and S-matrix only in the case of narrow
resonances and only in a narrow energy interval in the vicinity of the resonance. As a
result, the approach of Ref. [38] can be used only in rare cases when the eigenenergies
of the truncated Hamiltonian are obtained very close to the resonant energy Er and
cannot provide an accurate description of resonant parameters even in these rare
cases. This drawback is eliminated in the current study.

The paper is organized as follows. We present in Section 2 the basic relations
of the HORSE formalism, derive the SS-HORSE method and present all equations
needed to calculate phase shifts, S-matrix and resonant parameters Er and Γ. The
SS-HORSE approach to the calculation of resonant energy and width is verified in
Section 3 using a two-body scattering with a model potential. Section 4 is devoted to
calculations of resonances in nα scattering based on NCSM calculations of 5He with
JISP16 NN interaction. Conclusions are presented in Section 5.

2 SS-HORSE approach to calculation
of low-energy scattering and resonant parameters

2.1 HORSE formalism

The J-matrix approach and HORSE in particular are widely used in various appli-
cations. Some of the recent applications together with pioneering papers where the
J-matrix has been suggested, can be found in the book [39]. We sketch here the
basic relations and ideas of the HORSE formalism for the two-body single-channel
scattering following our papers [29, 40, 41].

The radial wave function uℓ(k, r) describing the relative motion in the partial wave
with orbital momentum ℓ is expanded within the HORSE formalism in an infinite
series of radial oscillator functions RNℓ(r),

uℓ(k, r) =
∑

N=N0,N0+2,...,∞
aNℓ(k)RNℓ(r), (1)



186 A. I. Mazur, A. M. Shirokov, I. A. Mazur and J. P. Vary

where

RNℓ(r) = (−1)(N−ℓ)/2

√
2Γ(N/2− ℓ/2 + 1)

r0Γ(N/2 + ℓ/2 + 3/2)

(
r

r0

)ℓ+1

exp

(
− r2

2r20

)
L
ℓ+ 1

2

(N−ℓ)/2

(
r2

r20

)
.

(2)

Here k is the relative motion momentum, Lα
n(z) are associated Laguerre polynomials,

the oscillator radius r0 =
√

~

mΩ , m is the reduced mass of colliding particles, ~Ω is

the oscillator level spacing, N = 2n+ℓ is the oscillator quanta while n is the oscillator
principal quantum number, the minimal value of oscillator quanta N0 = ℓ. Using the
expansion (1) we transform the radial Schrödinger equation

Hℓ uℓ(k, r) = E uℓ(k, r) (3)

into an infinite set of linear algebraic equations,
∑

N ′=N0,N0+2,...,∞
(Hℓ

NN ′ − δNN ′E) aN ′ℓ(k) = 0, N = N0, N0 + 2, ... , (4)

where Hℓ
NN ′ = T ℓ

NN ′ + V ℓ
NN ′ are matrix elements of the Hamiltonian Hℓ in the

oscillator basis, and T ℓ
NN ′ and V ℓ

NN ′ are kinetic and potential energy matrix elements
respectively.

The kinetic energy matrix elements T ℓ
NN ′ are known to form a tridiagonal matrix,

i. e., the only non-zero matrix elements are

T ℓ
NN =

1

2
~Ω(N + 3/2),

T ℓ
N,N+2 = T ℓ

N+2,N = −1

4
~Ω
√

(N − ℓ+ 2)(N + ℓ+ 3).

(5)

These matrix elements are seen to increase linearly with N for large N . On the other
hand, the potential energy matrix elements V ℓ

NN ′ decrease as N,N ′ →∞. Hence the
kinetic energy dominates in the Hamiltonian matrix at large enough N and/or N ′.
Therefore a reasonable approximation is to truncate the potential energy matrix at
large N and/or N ′, i. e., to approximate the interaction V by a nonlocal separable

potential Ṽ of the rank N = (N−N0)/2 + 1 with matrix elements

Ṽ ℓ
NN ′ =

{
V ℓ
NN ′ if N ≤ N and N ′ ≤ N;

0 if N > N or N ′ > N.
(6)

The approximation (6) is the only approximation within the HORSE method; for the
separable interaction of the type (6), the HORSE formalism suggests exact solutions.
Note, the kinetic energy matrix is not truncated within the HORSE theory contrary to
conventional variational approaches like the shell model. Hence the HORSE formalism
suggests a natural generalization of the shell model.

The complete infinite harmonic oscillator basis space can be divided into two
subspaces according to truncation (6): an internal subspace spanned by oscillator
functions with N ≤ N where the interaction V is accounted for and an asymptotic
subspace spanned by oscillator functions with N > N associated with the free motion.

Algebraic equations (4) in the asymptotic subspace take the form of a second order
finite-difference equation:

T ℓ
N,N−2 a

ass
N−2,ℓ(E) + (T ℓ

NN − E) aassNℓ (E) + T ℓ
N,N+2 a

ass
N+2,ℓ(E) = 0. (7)

Any solution aassNℓ (E) of Eq. (7) can be expressed as a superposition of regular SNℓ(E)
and irregular CNℓ(E) solutions,

aassNℓ (E) = cos δℓ SNℓ(E) + sin δℓ CNℓ(E), N ≥ N, (8)
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where δℓ is the scattering phase shift. The solutions SNℓ(E) and CNℓ(E) have simple
analytical expressions [25, 27, 29, 40]:

SNℓ(E) =

√
πΓ(N/2− ℓ/2 + 1)

Γ(N/2 + ℓ/2 + 3/2)
qℓ+1 exp

(
−q

2

2

)
L
ℓ+1/2
(N−ℓ)/2(q

2), (9)

CNℓ(E) = (−1)ℓ

√
πΓ(N/2− ℓ/2 + 1)

Γ(N/2 + ℓ/2 + 3/2)

q−ℓ

Γ(−ℓ+ 1/2)

× exp

(
−q

2

2

)
Φ(−N/2− ℓ/2− 1/2,−ℓ+ 1/2; q2), (10)

where Φ(a, b; z) is a confluent hypergeometric function and q is a dimensionless mo-
mentum,

q =

√
2E

~Ω
. (11)

The solutions aNℓ(E) of the algebraic set (4) in the internal subspace N ≤ N are
expressed through the solutions aassNℓ (E) in the asymptotic subspace N ≥ N:

aNℓ(E) = GNN(E)T ℓ
N,N+2 a

ass
N+2, ℓ(E), N = N0, N0 + 2, ... ,N. (12)

Here the matrix elements

GNN ′(E) = −
N−1∑

ν=0

〈Nℓ|ν〉〈ν|N ′ℓ〉
Eν − E

(13)

are related to the Green’s function of the HamiltonianHN which is the HamiltonianHℓ

truncated to the internal subspace, and are expressed through eigenenergies Eν ,
ν = 0, 1, 2, ... , N − 1 (N is the dimensionality of the basis) and respective eigenvectors
〈Nℓ|ν〉 of the Hamiltonian HN:

∑

N ′=N0,N0+2,...,N

Hℓ
NN ′〈N ′ℓ|ν〉 = Eν〈Nℓ|ν〉, N = N0, N0 + 2, ...,N. (14)

A relation for calculation of the scattering phase shifts δℓ can be obtained through
the matching condition

aNℓ(E) = aass
Nℓ (E). (15)

Using Eqs. (8), (12) and (15) it is easy to obtain [25, 27, 29, 40]

tan δℓ(E) = −
SNℓ(E)− GNN(E)T ℓ

N,N+2 SN+2,ℓ(E)

CNℓ(E)− GNN(E)T ℓ
N,N+2CN+2,ℓ(E)

. (16)

The respective expression for the S-matrix reads

S(E) =
C

(−)
Nℓ (E)− GNN(E)T ℓ

N,N+2 C
(−)
N+2,ℓ(E)

C
(+)
Nℓ (E)− GNN(E)T ℓ

N,N+2 C
(+)
N+2,ℓ(E)

, (17)

where

C
(±)
Nℓ (E) = CNℓ(E)± SNℓ(E). (18)

We are using here the single-channel version of the HORSE formalism described
above. The multi-channel HORSE formalism is discussed in detail in Refs. [25,29,40].
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2.2 SS-HORSE method

A direct HORSE extension of modern large-scale shell-model calculations is unprac-
tical. Note, Eq. (13) involves a sum over all shell-model eigenstates of a given spin-
parity, i. e., over millions or even billions of states in modern NCSM applications.
These states should be accurately separated from those having center-of-mass excita-
tions. Unfortunately one cannot restrict the sum in Eq. (13) to some small enough
set of eigenstates: even for the energies E close enough to one of the low-lying eigen-
states Eν , the contribution of some high-lying eigenstates to the sum in Eq. (13) can
be essential: in model two-body problems describing, e. g., nα scattering, the growth
of the denominator in the r.h.s. of Eq. (13) is compensated by the growth of the nu-
merator; in NCSM calculations of 5He, the many-body eigenstates concentrate around
the eigenstates of the model two-body Hamiltonian and though the contribution of
each particular NCSM eigenstate is small, the sum of their contributions is large and
close to the contribution of the respective state of the model Hamiltonian. A calcu-
lation of a large number of many-body eigenstates is too computationally expensive.
Note, in many-body applications, one also needs to calculate the components 〈Nℓ|ν〉 of
the wave function which should be projected on the scattering channel of interest; this
projection requires numerous applications of Talmi–Moshinsky transformations which
increase the computational cost and makes it very difficult to achieve a reasonable
accuracy of the final sum in Eq. (13) due to computer noise.

To avoid these difficulties, we propose the SS-HORSE approach which requires
calculations of the S-matrix or phase shifts only at E = Eν , i. e., at the energy equal
to one of the lowest eigenstates lying above the reaction threshold. Equations (16)
and (17) are essentially simplified in this case and reduce to

tan δℓ(Eν) = −SN+2,ℓ(Eν)

CN+2,ℓ(Eν)
(19)

and

S(Eν) =
C

(−)
N+2,ℓ(Eν)

C
(+)
N+2,ℓ(Eν)

. (20)

Varying N and ~Ω we obtain eigenvalues Eν and hence phase shifts and S-matrix
in some energy interval. An accurate parametrization of δℓ(E) and S-matrix in this
energy interval makes it possible to extrapolate them to a larger energy interval and
to calculate the resonance energy and width.

The use of Eqs. (19) and (20) drastically reduces the computational burden in
many-body calculations. Within this SS-HORSE approach we need only one or prob-
ably very few low-lying eigenstates which energies should be calculated relative to the
respective threshold, e. g., in the case of nα scattering we need to subtract from the
5He energies the 4He ground state energy. Another interesting and important feature
of the SS-HORSE technique is that the Eqs. (19) and (20) do not involve any in-
formation regarding the eigenvectors 〈Nℓ|ν〉. This essentially simplifies calculations,
the information about a particular channel under consideration is present only in the
threshold energy used to calculate the eigenenergies Eν and in the channel orbital
momentum ℓ. Equations (19) and (20) establish some correlations between scattering
in different channels when the channel coupling can be neglected, a topic that deserves
further investigation but is outside the scope of the present work.

We use here Eqs. (19) and (20) to obtain phase shifts and S-matrix from Hamilto-
nian diagonalization results. However these equations can be used in inverse manner:
if the phase shifts are known from analysis of experimental scattering data, one can
solve Eq. (19) to obtain eigenenergies Eν which the shell model Hamiltonian should
have to be consistent with scattering data. The direct use of Eq. (19) essentially sim-
plifies the inverse approach to nucleon-nucleus scattering suggested in Refs. [14, 15].
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We see that the scattering phase shifts are determined by the universal function

fNℓ(E) = − arctan

[
SN+2,ℓ(E)

CN+2,ℓ(E)

]
. (21)

This is a smooth monotonically decreasing function which drops down by nπ as
energy E varies from 0 to ∞. At low energies when

E ≪ 1

8
~Ω (N + 2− ℓ)2, (22)

one can replace the functions SN+2,ℓ(E) and CN+2,ℓ(E) in Eq. (21) by their asymptotic
expressions at large N (see Ref. [40]) to obtain

fNℓ(E) ≈ f l.e.
ℓ (E) = arctan

[
jℓ
(
2
√
E/s

)

nℓ

(
2
√
E/s

)
]
, (23)

where

s =
~Ω

N + 7/2
, (24)

and jl(x) and nl(x) are spherical Bessel and spherical Neumann functions. If addi-
tionally

E ≫ 1

4
s =

~Ω

4(N + 7/2)
, (25)

one can use asymptotic expressions for spherical Bessel and Neumann functions in
Eq. (23) to get a very simple expression for the function fNℓ(E):

fNℓ(E) ≈ −2

√
E

s
+
πℓ

2
. (26)

The universal function fNℓ(E) and its low-energy approximations (23) and (26)
are shown in Fig. 1. The basis space in shell model applications in conventionally
labeled by the maximal oscillator excitation quanta Nmax, and we use Nmax in Fig. 1
to distinguish functions fNℓ(E) corresponding to different basis sizes. Obviously,

N = Nmax + ℓ (27)
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Figure 1: The function fNℓ(E) (symbols) for different N and ℓ and its low-energy
approximations f l.e.

ℓ (E) [see Eq. (23)] and −2
√
E/s+ πℓ/2 [see Eq. (26)].
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in the two-body scattering problem. The approximation (23) is seen to be very accu-
rate at low energies even for small Nmax. This low-energy approximation, as expected,
deviates from the function fNℓ(E) as the energy E increases; the energy interval where
the approximation (23) accurately describes fNℓ(E) increases with N or Nmax in accor-
dance with inequality (22). In the case ℓ = 0, the simple expression (26) is equivalent
to the Eq. (23) and therefore describes the function fNℓ(E) with the same accuracy.
For ℓ > 0 the simplified approximation (26) deviates from the approximation (23) and
the function fNℓ(E) at low energies, it can only be used in a relatively small energy
interval defined by inequalities (22) and (25).

Due to Eq. (23), equation (19) at low energies can be reduced to

tan δℓ(Eν) =
jℓ
(
2
√
Eν/s

)

nℓ

(
2
√
Eν/s

) . (28)

This equation reveals the scaling at low energies: the oscillator basis parameters N

and ~Ω are not independent, they are entering equations relating the S-matrix and
phase shifts with the eigenenergies of the Hamiltonian matrix in the oscillator basis
not separately but only through the scaling variable s combining them in a particular
manner. The scaling is useful within our approach for selecting eigenenergies Eν ob-
tained with different N and ~Ω for the further analysis of phase shifts and S-matrix
poles: the convergence of the results obtained by diagonalization of the Hamiltonian
in oscillator basis is achieved within some interval of ~Ω values starting from some N;
the converged results for Eν should describe the same phase shifts with some accuracy,
therefore, due to the scaling (28), these converged Eν plotted as functions of the scal-
ing parameter s should lie approximately on the same curve. By plotting Eν vs s we
can pick up for further analysis only those Eν which form some curve as is illustrated
later.

The scaling in variational oscillator-basis calculations of bound states was proposed
in Refs. [2,3]. We extend here the scaling property of the oscillator-basis calculations
to the continuum states. We prefer to use the scaling parameter s in energy units
rather than the scaling parameter λsc of Refs. [2, 3, 6, 13] in momentum units or the
scaling parameter

L =
√

2(N + 7/2) r0 (29)

in the units of length suggested in Ref. [5]. The parameter L includes a small correc-
tion to the scaling proposed in Refs. [2, 3] which was suggested in Ref. [5] based on
numerical results. We obtain this correction automatically in our approach. Having
this correction in mind, we get

s ∼ λ2sc ∼ 1/L2; (30)

in other words, we propose generically the same scaling as discussed in Refs. [2–11,13]
but using another scaling parameter and extending the scaling to continuum states.

We derive the scaling property in a very different approach than that utilized in
Refs. [2–5]. Therefore it is interesting to compare these scalings in more detail. One
can analytically continue the Eqs. (19) and (20) to the complex energy or complex
momentum plane, in particular, one can use these expressions at negative energies cor-

responding to bound states. Using asymptotic expressions of the functions C
(+)
N+2,ℓ(E)

and C
(−)
N+2,ℓ(E) at large N and negative energy E (see Ref. [40]), we obtain from

Eq. (20):

S(Eν) = (−1)ℓ exp

(
−4i

√
Eν

s

)
, Eν < 0. (31)
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On the other hand, the S-matrix S(Eν) at negative energies Eν in the vicinity of the
pole associated with the bound state at energy Eb < 0 can be expressed as [42]

S(Eν) =
Dℓ

iκν − ikb
, (32)

where Eν = −~
2
κ

2
ν

2m , Eb = −~
2k2

b

2m , momenta κν and kb are supposed to be positive,
and Dℓ can be expressed through the asymptotic normalization constant Aℓ [42]:

Dℓ = (−1)ℓ+1 i |Aℓ|2. (33)

Combining Eqs. (31)–(33), we obtain:

κν − kb = −|Aℓ|2 exp

(
− 4κν~√

2ms

)
. (34)

This expression can be used for extrapolating the eigenenergies Eν (or respective
momenta κν) obtained in a finite oscillator basis to the infinite basis space supposing
that Eν → Eb as N→∞.

The respective expression for extrapolating the oscillator basis eigenenergies de-
rived in Refs. [2–5] rewritten in our notations, takes the form:

Eν − Eb = Cℓ exp

(
− 4kb~√

2ms

)
. (35)

There is some similarity, however there is also an essential difference between Eqs. (34)
and (35). Both equations have similar exponents in the right-hand-side, however the
exponent in our Eq. (34) involves momentum κν associated with the eigenenergy Eν

while Eq. (35) involves momentum kb associated with the converged energy Eb in the
limit N→∞. In the vicinity of the S-matrix pole [see Eq. (32)] κν should not differ
much from kb; we note however that kb is conventionally treated as an additional

fitting parameter (see Refs. [2–11]), i. e., it is supposed that Eb 6= −~
2k2

b

2m , and hence
there may be an essential difference between κν and kb in applications. Even more
important is that the exponent in the right-hand-side controls the difference between
the energies Eν and Eb in Eq. (35) while in our Eq. (34) the exponent controls the
difference between the momenta κν ∼

√
|Eν | and kb ∼

√
|Eb|. We plan to examine in

detail in a separate publication which of the Eqs. (34) and (35) describes better the
results of diagonalizations of realistic Hamiltonians in the oscillator basis for negative
eigenenergies Eν and which of them is more accurate in extrapolating the results for
bound states obtained in finite oscillator bases to the infinite basis space.

Equations (19) and (20) can be used to obtain the phase shifts and S-matrix in
some range of energies covered by eigenenergies Eν obtained with various N and ~Ω.
To interpolate the energy dependences of the phase shifts and S-matrix within and to
extrapolate them outside this interval, we need accurate formulas for the phase shifts
and S-matrix as functions of energy which we discuss in the next subsection.

2.3 Phase shifts and S-matrix at low energies

The scattering S-matrix as a function of the complex momentum k is known [42, 43]
to have the following symmetry properties:

S(−k) =
1

S(k)
, S(k∗) =

1

S∗(k)
, S(−k∗) = S∗(k), (36)

where star is used to denote the complex conjugation. The S-matrix can have poles
either in the lower part of the complex momentum plane or on the imaginary mo-
mentum axis [42, 43]. The poles in the lower part of the complex momentum plane
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at k = κr ≡ kr− iγr (kr, γr > 0) due to the symmetry relations (36) are accompanied
by the poles at k = −κ∗r ≡ −kr− iγr and are associated with resonances at the energy

Er =
~2

2m
(k2r − γ2r ) (37)

and with the width

Γ =
2~2

m
krγr. (38)

Bound states at energy Eb = −~2k2b/2m are in correspondence with the poles on
the positive imaginary momentum axis at k = ikb (kb > 0), however some positive
imaginary momentum poles can appear to be the so-called false or redundant poles [42]
which do not represent any bound state. The poles at negative imaginary momentum
at k = −ikv (kv < 0) are associated with virtual states at energy Ev = ~2k2v/2m.

If the S-matrix has a pole close to the origin either in the lower part of the complex
momentum plane or on the imaginary momentum axis, it can be expressed at low
energies as

S(k) = Θ(k)Sp(k), (39)

where Θ(k) is a smooth function of k and the pole term Sp(k) in the case of a bound
state or false pole (p = b), virtual (p = v) or a resonant state (p = r) takes the
form [43]:

Sb(k) = −k + ikb
k − ikb

, (40)

Sv(k) = −k − ikv
k + ikv

, (41)

Sr(k) =
(k + κr)(k − κ∗r)

(k − κr)(k + κ∗r)
. (42)

The S-matrix is expressed through the phase shifts δℓ(k) as

S(k) = e2iδℓ(k), (43)

hence the respective phase shifts

δℓ(k) = φ(k) + δp(k), (44)

where the pole contribution δp(k) from the bound state takes the form

δb(E) = π − arctan

√
E

|Eb|
, (45)

where π appears due to the Levinson theorem [43]. The contributions from the false,
virtual and resonant poles are

δf (E) = − arctan

√
E

|Ef |
, (46)

δv(E) = arctan

√
E

Ev
, (47)

δr(E) = − arctan
a
√
E

E − b2 , (48)
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where the resonance energyEr and width Γ can be expressed through the parameters a
and b as

Er = b2 − a2/2, (49)

Γ = a
√

4b2 − a2. (50)

Due to Eq. (43), the S-matrix symmetries (36) require the phase shift δℓ(E) to be
an odd function of k and its expansion in Taylor series of

√
E ∼ k includes only odd

powers of
√
E:

δℓ(E) = c
√
E + d

(√
E
)3

+ ... (51)

More, since δℓ ∼ k2ℓ+1 in the limit k → 0, c = 0 in the case of p-wave scattering,
c = d = 0 in the case of d-wave scattering, etc.

In applications to the non-resonant nα scattering in the 1
2

+
state (ℓ = 0), we

therefore are using the following parametrization of the phase shifts:

δ0(E) = π − arctan

√
E

|Eb|
+ c
√
E + d

(√
E
)3

+ f
(√
E
)5
. (52)

The bound state pole contribution here is associated with the so-called Pauli-forbidden

state. There are resonances in the nα scattering in the 1
2

−
and 3

2

−
states (ℓ = 1);

hence we parametrize these phase shifts as

δ1(E) = − arctan
a
√
E

E − b2 −
a

b2

√
E + d

(√
E
)3
. (53)

This form guarantees that δ1 ∼ k3 in the limit of E → 0.

3 Model problem

To test our SS-HORSE technique, we calculate the phase shifts and resonant param-
eters of nα scattering in a two-body approach treating neutron and α as structureless
particles whose interaction is described by a Woods–Saxon type potential WSB

Vnα =
V0

1 + exp [(r −R0)/α0]
+ (l · s)

1

r

d

dr

Vls
1 + exp [(r −R1)/α1]

, (54)

with parameters fitted in Ref. [44]: V0 = −43 MeV, Vls = −40 MeV · fm2, R0=2.0 fm,
α0=0.70 fm, R1=1.5 fm, α1=0.35 fm. The matrix in the oscillator basis of the relative
motion Hamiltonian with this interaction is diagonalized using ~Ω values ranging

from 2.5 to 50 MeV in steps of 2.5 MeV and Nmax up to 20 for natural parity states 3
2

−

and 1
2

−
and up to 19 for unnatural parity states 1

2

+
.

3.1 Partial wave 3

2

−

The lowest eigenstates E0 obtained by diagonalization of the model Hamiltonian with
the WSB potential are presented in Fig. 2 as a function of the scaling parameter s.
It is seen that the eigenstates obtained with large enough Nmax values form a single
curve in Fig. 2; however the eigenstates obtained with smaller Nmax start deviating
from this curve at smaller ~Ω which correspond to smaller s values reflecting the
convergence patterns of calculations in the finite oscillator basis. This feature is even
more pronounced in the plot of the phase shifts obtained directly from eigenstates E0
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Figure 2: The lowest 3
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−
eigenstates E0 of the model Hamiltonian with WSB potential

obtained with various Nmax and ~Ω plotted as a function of the scaling parameter s.

using Eq. (19) (see Fig. 3). We need to exclude from the further SS-HORSE analysis
the eigenstates deviating from the common curves in Figs. 2 and 3.

As we already mentioned, the scaling property of our SS-HORSE formalism has
much in common with those proposed in Refs. [2, 3]. Using the nomenclature of
Refs. [2,3], we should use only eigenenergies E0 which are not influenced by infra-red
corrections. According to Refs. [2, 3], these eigenenergies are obtained with Nmax

and ~Ω fitting inequality

Λ ≡
√
m~Ω(Nmax + ℓ+ 3/2) > Λ0, (55)

where Λ0 depends on the interaction between the particles. The value of Λ0 =
385 MeV/c seems to be adequate for the potential WSB resulting in a reasonable
selection of eigenenergies E0. The selection of eigenenergies according to this crite-
rion is illustrated by the shaded area in Fig. 4 where we plot eigenenergies E0 obtained
with various Nmax as functions of ~Ω. These selected eigenstates plotted as a func-
tion of the scaling parameter s in Fig. 5 and the respective SS-HORSE phase shifts
in Fig. 6 are seen to produce smooth single curves.
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phase shifts obtained directly from the WSB eigenstates E0 using

Eq. (19).
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Figure 4: The lowest 3
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−
eigenenergies E0 of the model WSB Hamiltonian obtained

with various Nmax as functions of ~Ω and selection of eigenstates for the SS-HORSE
analysis according to inequality Λ > 385 MeV/c. The shaded area shows the se-
lected E0 values. Solid lines are solutions of Eq. (56) for energies E0 with parame-
ters a, b and d obtained by the fit.

The low-energy resonant nα scattering phase shifts in the 3
2

−
state are described

by Eq. (53). We need to fit the parameters a, b and d of this equation. Combining
Eqs. (19), (27) and (53) we derive the following relation for resonant nα scattering in

the 3
2

−
state which can be also used for the 1

2

−
state (ℓ = 1 in both cases):

−SNmax+3, 1(E0)

CNmax+3, 1(E0)
= tan

(
− arctan

a
√
E0

E0 − b2
− a

b2

√
E0 + d

(√
E0

)3
)
. (56)

We assign some values to the parameters a, b and d and solve this equation to

find a set of E0 values, E(i)0 = E0(N i
max, ~Ωi), i = 1, 2, ..., D, for each combination
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Figure 5: The 3
2

−
WSB eigenstates E0 selected according to Λ > 385 MeV/c plotted

as a function of the scaling parameter s. The solid curve depicts solutions of Eq. (56)
for energies E0 with parameters a, b and d obtained by the fit with the respective
selection of eigenstates.
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Figure 6: The 3
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−
WSB phase shifts obtained using Eq. (19) directly from eigen-

states E0 selected according to Λ > 385 MeV/c (symbols). The solid curve depicts
the phase shifts of Eq. (53) with parameters a, b and d obtained by the fit with
the respective selection of eigenstates; the dashed curve is obtained by a numerical
integration of the Schrödinger equation.

of Nmax and ~Ω [note, ~Ω enters definitions of functions SN,ℓ(E) and CN,ℓ(E), see

Eqs. (9)–(11)]. The resulting set of E(i)0 is compared with the set of selected eigenval-

ues E
(i)
0 obtained by the Hamiltonian diagonalization with respective Nmax and ~Ω

values, and we minimize the rms deviation,

Ξ =

√√√√ 1

D

D∑

i=1

(
E

(i)
0 − E

(i)
0

)2
, (57)

to find the optimal values of the parameters a, b and d. The obtained parameters are
listed in the first row of Table 1. The resonance energy Er and width Γ obtained by
Eqs. (49) and (50) are also presented in Table 1. Note the accuracy of the fit: the
rms deviation of 156 fitted energy eigenvalues is only 37 keV.

The behavior of E0 as functions of ~Ω dictated by Eq. (56) with the fitted optimal
parameters for various Nmax values is depicted by solid curves in Figs. 4 and 5. It is
seen that these curves accurately describe the selected eigenvalues E0 obtained by the
Hamiltonian diagonalization. Note however a small deviation of the curve in Fig. 5
from the diagonalization results at large energies obtained with Nmax = 2 where the
scaling become inaccurate, see Eq. (22). The phase shifts δ1(E) obtained by Eq. (53)
with fitted parameters are shown in the Fig. 6. It is seen that the SS-HORSE phase
shifts are in excellent correspondence with the exact results obtained by numerical

integration of the Schrödinger equation. The 3
2

−
resonance energy and width are also

well reproduced by our SS-HORSE technique (see Table 1).
In the above analysis we used oscillator bases with Nmax values up to Nmax = 20.

Such large Nmax are accessible in two-body problems but are out of reach in modern
many-body shell model applications. Therefore it is very important to check whether
a reasonable accuracy of SS-HORSE phase shift and resonance parameter calculations
can be achieved with significantly smaller Nmax.

We remove from the set of selected 3
2

−
eigenstatesE

(i)
0 those obtained withNmax >

6 and use this new selection illustrated by Figs. 7 and 8 to calculate phase shifts and
resonant parameters. All eigenenergies from this selection lie outside the resonance
region as is seen in Fig. 9 where we plot the phase shifts as a function of energy.
The SS-HORSE fit (see Table 1) nevertheless accurately reproduces the exact phase
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Figure 7: Selection of the lowest 3
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WSB eigenstates E0 obtained with Nmax ≤ 6.

See Fig. 4 for details.
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Table 1: 3
2

−
resonance in nα scattering with model WSB potential: fitting param-

eters a, b, d of Eq. (56), resonance energy Er and width Γ, rms deviation of fitted
energies Ξ and the number of these fitted energies D for different selections of eigen-
values in comparison with exact results for Er and Γ obtained by numerical location
of the S-matrix pole. For the Nmax ≤ 6 selection, Ξ and D for all energies from the
previous selection are shown within brackets.

Selection
a b2 d · 103 Er Γ Ξ

D
(MeV

1
2 ) (MeV) (MeV− 3

2 ) (MeV) (MeV) (keV)

Λ > 385 MeV/c 0.412 0.948 5.41 0.863 0.785 37 156
Nmax ≤ 6 0.411 0.948 5.30 0.863 0.782 70(38) 38(156)

Exact 0.836 0.780

shifts (see Fig. 9) even in the resonance region and the 3
2

−
resonance energy Er

and width Γ (see Table 1). To get such accuracy, it is very important to use the
adequate phase shift parametrization (53) which guarantees the low-energy phase shift
behaviour δℓ ∼ k2ℓ+1 and an accurate description of the resonance region by the pole
term (48): our previous study [38] has clearly demonstrated that it is impossible to
reproduce the resonant parameters and phase shifts in a wide enough energy interval
without paying special attention to the low-energy phase shift description and by using
the less accurate Breit–Wigner resonant phase shifts instead of the pole term (48)
even when large Nmax eigenstates E0 are utilized to say nothing about the selection
of eigenstates obtained with small Nmax.

Solid lines in Figs. 4 and 7 present the eigenenergies E0 for various Nmax values
as functions of ~Ω obtained from the respective phase shift parametrization. It is
seen that we accurately describe not only the eigenenergies from the shaded area
utilized in the fit but also those corresponding to a wider range of ~Ω values. It
is even more interesting that in the case of Fig. 7 where fitted are only the states
with Nmax ≤ 6, we also reproduce the eigenenergies obtained with much larger Nmax

values with nearly the same rms deviation as in the case of the previous selection
(see Table 1) when those larger Nmax eigenenergies were included in the fit. In other
words, our SS-HORSE fit to the diagonalization results in small basis spaces makes it
possible to ‘predict’ the diagonalization results obtained with much larger oscillator
bases. This is very important for many-body shell-model applications and suggests a
very efficient method of extrapolating the shell-model results in continuum to larger
basis spaces.

3.2 Partial wave 1

2

−

The lowest 1
2

−
eigenstates of the model Hamiltonian with the WSB potential are

shown as functions of ~Ω for various Nmax in Fig. 10 and as functions of the scaling
parameter s in Fig. 11. All eigenenergies in this case seem to lie approximately on the
same curve in Fig. 11; however the plot of the SS-HORSE phase shifts corresponding
to these eigenstates (see Fig. 12) clearly indicates deviations from the common curve
for eigenstates obtained with small Nmax values. We have already mentioned that the
phase shifts are more sensitive to the convergence patterns and are somewhat more
instructive for the selection of the eigenenergies.

As in the case of the 3
2

−
partial wave, we start with the Λ > 385 MeV/c selection of

eigenenergies as is illustrated by Fig. 13 and by the shaded area in Fig. 10. The fitting
method described in the previous subsection results in the parameters listed in the first
row of Table 2. We obtain a reasonable fit with a small enough rms deviation of the
156 selected eigenenergies of 80 keV. The obtained phase shifts depicted in Fig. 14 are
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Figure 10: The lowest 1
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WSB eigenstates E0 as functions of ~Ω and their Λ >

385 MeV/c selection. See Fig. 4 for details.
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WSB eigenstatesE0 as a function of the scaling parameter s.
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Figure 13: The Λ > 385 MeV/c selected 1
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WSB eigenstates E0 as a function of the

scaling parameter s. See Fig. 5 for details.
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Figure 14: The 1
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WSB phase shifts generated by the Λ > 385 MeV/c selected

eigenstates E0. See Fig. 6 for details.

very close to the exact phases from numerical integration of the Schrödinger equation
with the WSB potential up to the energy E of approximately 17 MeV. At higher
energies we see some difference between the exact and SS-HORSE phases shifts which
are completely governed in this energy region by the Nmax = 2 eigenenergies which
are not expected to be close to convergence for the energy extrapolations and S-
matrix description within the HORSE extension of the Hamiltonian. We note also

Table 2: Parameters of the 1
2

−
WSB resonance. See Table 1 for details.

Selection
a b2 d · 103 Er Γ Ξ

D
(MeV

1
2 ) (MeV) (MeV− 3

2 ) (MeV) (MeV) (keV)

Λ > 385 MeV/c 1.780 3.636 3.18 2.05 6.00 80 156
Nmax ≤ 6 1.822 3.818 2.77 2.16 6.30 75(84) 38(156)

Exact 1.66 5.58
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Figure 15: Selection of the lowest 1
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−
WSB eigenstates E0 obtained with Nmax ≤ 6.

See Fig. 4 for details.

that contrary to the 3
2

−
resonance we observe approximately 0.5 MeV differences

between the resonance energy Er and width Γ results obtained by the SS-HORSE
technique and by numerical location of the respective S-matrix pole. We suppose

that these differences originate from the fact that the 1
2

−
resonance pole associated

with this wide resonance is located far enough from the real energy axis; therefore the
phase shifts even in the resonant region can be influenced by other S-matrix poles
not accounted for by our phase shift parametrization (53).

We examine also a possibility of describing the 1
2

−
phase shifts and resonance

parameters by using only the eigenstates obtained with Nmax ≤ 6 for our SS-HORSE
analysis. We retain only these eigenstates from our previous selection as is shown by
the shaded area in Fig. 15; this eigenstate selection is also illustrated by Fig. 16. The
energies E0 of all selected eigenstates are larger than the resonance region as is seen
in Fig. 17. Nevertheless we reproduce the phase shifts and resonance parameters (see
Fig. 17 and Table 2) nearly with the same accuracy as with the previous much more
complete eigenstate selection. More, we accurately ‘predict’ eigenenergies in larger
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WSB eigenstates E0 obtained with Nmax ≤ 6 as a

function of the scaling parameter s. See Fig. 5 for details.
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Figure 17: The 1
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−
WSB phase shifts generated by the selected eigenstates E0 ob-

tained with Nmax ≤ 6. See Fig. 6 for details.

model spaces (see solid lines in Fig. 15) nearly with the same rms deviation as the fit
involving those eigenstates as is indicated in Table 2.

3.3 Partial wave 1

2

+

There are no resonances in the nα scattering in the 1
2

+
partial wave. However, as it has

been indicated in Ref. [14], the nuclear shell model should generate eigenstates in non-
resonant energy intervals in continuum to be consistent with scattering observables.
Therefore it is interesting to test with the WSB potential the ability of the SS-HORSE

approach to describe the 1
2

+
non-resonant nα scattering.

The low-energy nα scattering phase shifts in the 1
2

+
state are described by Eq. (52).

We shall see that to get the same quality fit as in the case of the odd-parity resonant
scattering, we need in this case terms up to the 5th power of

√
E in the Taylor

expansion of the background phase; therefore we preserve in Eq. (52) more terms
than in Eq. (53). c, d and f are fitting parameters in Eq. (52). The WSB potential
supports a bound state at energy Eb which mimics the Pauli-forbidden state in the nα
scattering. We however treat Eb as an additional fitting parameter as a preparation
to many-body NCSM calculations where it is impossible to obtain the energy of the
Pauli-forbidden state. This bound state appears as the lowest state with negative
energy obtained by the Hamiltonian diagonalization and is unneeded for our SS-
HORSE analysis for which we use the first excited state E1 > 0 which is the lowest
state in the continuum.

The excitation quantaNmax is conventionally used to define the many-body NCSM
basis space while the total oscillator quanta N is entering our SS-HORSE equations.

The 1
2

+
states in 5He are unnatural parity states, hence Nmax takes odd values within

NCSM, the minimal oscillator quanta N0 = 1 in the five-body nα system, and

N = Nmax +N0 (58)

is even. To retain a correspondence with NCSM, we are using Nmax to define the oscil-
lator basis also in our model two-body problem. We note that in this case the Nmax is
formally related to N according to Eq. (27) where ℓ = 0, and Nmax should be even for
even N. To have a closer correspondence with NCSM, we use Eq. (58) with N0 = 1
within our model two-body problem instead of Eq. (27) to relate Nmax to N, i. e.,

due to our NCSM-like definition, the 1
2

+
eigenstates are labelled below by odd Nmax
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values. Note, the definitions (27) and (58) result in the same Nmax in the case of

odd-parity 3
2

−
and 1

2

−
nα partial waves.

Combining Eqs. (19), (52) and (58), we derive for the nα scattering in the 1
2

+

partial wave:

−SNmax+3, 0(Eν)

CNmax+3, 0(Eν)
= tan

(
π − arctan

√
Eν

|Eb|
+ c
√
Eν + d

(√
Eν

)3
+ f

(√
Eν

)5
)
, (59)

where ν = 1. We assign some values to the fitting parameters Eb, c, d and f and

solve Eq. (59) to find a set of E1 values, E(i)1 = E1(N i
max, ~Ωi), i = 1, 2, ..., D, for

each combination of Nmax and ~Ω and minimize the rms deviation from the selected
eigenvalues E

(i)
1 obtained by the Hamiltonian diagonalization, see Eq. (57) where

the subindex 0 should be replaced by 1, to find the optimal values of the fitting
parameters.

The lowest continuum 1
2

+
eigenstates E1 of the model WSB Hamiltonian are

shown as functions of ~Ω for various Nmax in Fig. 18 and as a function of the scaling
parameter s in Fig. 19. All eigenenergies in this case seem to lie approximately on
the same curve in Fig. 19; however, as in the case of odd parity partial waves, the
deviations from the common curve are much more pronounced in the plot of the SS-
HORSE phase shifts corresponding to these eigenstates (see Fig. 20) which clearly
indicates the need to select eigenstates for the SS-HORSE fitting.

As in the case of the odd parity states, we use the Λ > 385 MeV/c selection of
eigenenergies as is illustrated by Fig. 21 and by the shaded area in Fig. 18. The
obtained fitting parameters of Eq. (59) are presented in Table 3. It is interesting that
the fitted energy Eb differs essentially from the exact value which is the energy of the

bound state in the WSB potential. The SS-HORSE 1
2

+
phase shifts nevertheless are

seen in Fig. 22 to be nearly indistinguishable from the exact ones up to the energies of
about 70 MeV where the SS-HORSE phase shifts governed by Nmax = 1 eigenstates
slightly differ from exact. We note that the WSB bound state has a large binding
energy, the respective S-matrix pole is far enough from the real momentum axis and
hence has a minor influence on the phase shifts. This result indicates that one should
not take seriously the energies of bound states obtained by the fit to the scattering
data only, at least for well-bound states.
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Figure 18: The lowest continuum 1
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+
WSB eigenstates E1 as functions of ~Ω and

their Λ > 385 MeV/c selection. Solid lines are solutions of Eq. (59) for energies E1

with parameters Eb, c, d and f obtained by the fit with this selection of eigenstates.
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Figure 19: The lowest continuum 1
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+
WSB eigenstates E1 as a function of the scaling

parameter s.
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Figure 20: The 1
2

+
phase shifts obtained directly from the WSB eigenstates E1 using

Eq. (19).

To examine a possibility of describing the low-energy 1
2

+
phase shifts using only the

diagonalization results in small basis spaces, we remove from the previous selection
the eigenenergies E1 obtained with Nmax > 5 as is illustrated by Figs. 23 and 24.
We obtain nearly the same values of the fitting parameters as is seen from Table 3.

Table 3: 1
2

+
nα scattering with model WSB potential: fitting parameters Eb, c, d

and f of Eq. (59), rms deviation of fitted energies Ξ and the number of these fitted
energies D for different selections of eigenvalues. For the Nmax ≤ 5 selection, Ξ and D
for all energies from the previous selection are shown within brackets.

Selection
Eb c d · 103 f · 105 Ξ

D
(MeV) (MeV− 1

2 ) (MeV− 3
2 ) (MeV− 5

2 ) (keV)

Λ > 385 MeV/c −6.841 −0.157 +1.19 −0.888 163 151
Nmax ≤ 5 −6.853 −0.156 +1.19 −0.888 332(163) 35(151)

Exact −9.85
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Figure 21: The Λ > 385 MeV/c selected 1
2

+
WSB eigenstates E1 as a function of

the scaling parameter s. The solid curve depicts solutions of Eq. (59) for energies E1

with parameters Eb, c, d and f obtained by the fit with this selection of eigenstates.

The largest though still small enough difference is obtained for the fitted Eb values
which, as has been already noted, does not play an essential role in the phase shifts.
Therefore it is not surprising that we get an excellent description of the exact phase
shifts presented in Fig. 25. Figure 23 demonstrates that we describe accurately not
only the eigenstates E1 involved in the fitting procedure but also those obtained in
much larger basis spaces which were not fitted. The rms deviation in the description
of energies of all Λ > 385 MeV/c selected eigenstates is exactly the same as in the
case when all these eigenstates were included in the fit.

As we already noted, the scaling of the eigenstates of finite Hamiltonian matri-
ces in oscillator basis has been proposed by S. Coon and collaborators in Refs. [2, 3]
who studied the convergence patterns of the bound states. They have demonstrated
that the eigenenergies Eν as functions of the scaling parameter λsc ∼

√
s tend to a

constant as λsc approaches 0; this constant is the convergence limit of the respective
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Figure 22: The 1
2

+
WSB phase shifts generated by the Λ > 385 MeV/c selected

eigenstates E1 (symbols). The solid curve depicts the phase shifts of Eq. (52) with
parameters Eb, c, d and f obtained by the fit with this selection of eigenstates; the
dashed curve is obtained by a numerical integration of the Schrödinger equation.
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Figure 23: Selection of the lowest 1
2

+
WSB eigenstates E1 obtained with Nmax ≤ 5.

See Fig. 4 for details.
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Figure 24: Selected lowest 1
2

+
WSB eigenstates E1 obtained with Nmax ≤ 5 as a

function of the scaling parameter s. See Fig. 21 for details.
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Figure 25: The 1
2

+
WSB phase shifts generated by the selected eigenstates E1 ob-

tained with Nmax ≤ 6. See Fig. 22 for details.
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Figure 26: The same as Fig. 5 but in a larger scale. The dashed line corresponds to
the resonance energy Er, the shaded area shows the resonance width.

eigenenergy in the infinite basis. Our study extends the scaling patterns of the har-
monic oscillator eigenstates to the case of states in the continuum. In this case the
eigenenergies should approach 0 as the basis is expanded infinitely. The solid lines
in Figs. 21 and 24 demonstrate the behaviour of eigenenergies in the continuum E1

as a function of the scaling parameter s in the case of a system which has a bound
state and does not have resonances in the low-energy region; the respective low-energy
phase shifts are described by Eq. (52), a general formula for this case. The eigenstates
are seen to be a smooth monotonic function of s (or λsc) which tends, as expected,
to zero as s→ 0.

The solid lines in Figs. 5, 8, 13 and 16 demonstrate the behaviour of the eigen-
states E0 as a function of the scaling parameter s when the low-energy phase shifts
are given by Eq. (53) which is a general formula describing a system which does not
have a bound state but has a low-energy resonance. We see again a smooth monoton-
ically increasing function of s with a large enough derivative at large s. At smaller s
when the energy approaches the resonant region, the derivative of E0(s) decreases;
this decrease of the derivative is more pronounced for narrow resonances as can be
seen by comparing Figs. 5 and 13. Figure 26 where the function E0(s) from Fig. 5
is shown in a larger scale together with the resonant region, demonstrates that the
further decrease of s strongly enhances the derivative of this function at the energies
below the resonance energy Er . When the function E0(s) leaves the resonant region
at smaller s values, the next eigenstate E1(s) (not shown in the figure) approaches
the resonant region from above.

These are the general convergence trends of the positive energy eigenstates ob-
tained in the oscillator basis.

Concluding this section, we have demonstrated using the WSB potential as an
example that the proposed SS-HORSE technique is adequate for the description of
low-energy scattering phase shifts and resonance energies Er and widths Γ. A very
encouraging sign for many-body shell-model applications is that the resonance pa-
rameters and phase shifts can be obtained nearly without loosing the accuracy by
using within the SS-HORSE approach only the Hamiltonian eigenstates obtained in
small basis spaces; more, having the low-lying energies from small basis spaces we are
able to ‘predict’ accurately the values of eigenenergies in much larger oscillator bases.
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4 SS-HORSE NCSM calculation
of resonances in nα scattering

We discuss here the application of our SS-HORSE technique to nα scattering phase
shifts and resonance parameters based on ab initio many-body calculations of 5He
within the NCSM with the realistic JISP16 NN interaction. The NCSM calculations
are performed using the code MFDn [45, 46] with 2 ≤ Nmax ≤ 18 for both parities
and with ~Ω values ranging from 10 to 40 MeV in steps of 2.5 MeV.

As it has been already noted above, for the SS-HORSE analysis we need the 5He
energies relative to the n+ α threshold. Therefore from each of the 5He NCSM odd
(even) parity eigenenergies we subtract the 4He ground state energy obtained by the
NCSM with the same ~Ω and the same Nmax (with Nmax− 1) excitation quanta, and
in what follows these subtracted energies are called NCSM eigenenergies Eν . Only
these 5He NCSM eigenenergies relatively to the n+ α threshold are discussed below.

4.1 Partial wave 3

2

−

We utilize the same Eq. (56) to fit the parameters describing the low-energy 3
2

−

and 1
2

−
phase shifts as in the model problem; the only difference is that the low-

est energy eigenstates E0 are obtained now from the many-body NCSM calculations.

These lowest 3
2

−
NCSM eigenstates are shown in Fig. 27 as functions of ~Ω for vari-

ous Nmax values. Figure 28 presents these eigenstates E0 as a function of the scaling

parameter s while Fig. 29 presents the 3
2

−
phase shifts obtained directly from them

using Eq. (19). Figures 28 and 29 clearly demonstrate the need of the eigenstate
selection since many points in these figures deviate strongly from the common curves
formed by other points. On the other hand, these figures demonstrate the convergence
achieved in large Nmax calculations: the deviation from the common curves occurs at
smaller ~Ω values as Nmax increases and all results from the largest available NCSM
basis spaces seem to lie on the single common curves with the exception of only very
few eigenenergies obtained with ~Ω < 15 MeV.

Our first selection is the eigenstates fitting inequality Λ > 600 MeV/c, the value
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Figure 27: The lowest 5He 3
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−
eigenstates E0 obtained by the NCSM with vari-

ous Nmax as functions of ~Ω. The shaded area shows the E0 values selected for the
SS-HORSE analysis according to inequality Λ > 600 MeV/c. Solid lines are solutions
of Eq. (56) for energies E0 with parameters a, b and d obtained by the fit.



Resonant states in the shell model 209

0 1 2 3 4 5 6
s [MeV]

0

5

10

15

E
 [

M
eV

]

N
max

= 2
           4
           6
           8
         10
         12
         14
         16
         18

nα, 3/2
-

JISP16

Figure 28: The lowest 5He 3
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−
eigenstates E0 as a function of the scaling parameter s.

recommended in Refs. [2, 3] for the JISP16 NN interaction. This selection is illus-
trated by the shaded area in Fig. 27; common curves are formed by the selected
eigenenergies E0 plotted as a function of the scaling parameter s in Fig. 30 and by
the phase shifts obtained directly from these eigenenergies with the help of Eq. (53)
in Fig. 31. We get an accurate fit of the selected NCSM eigenenergies with the rms
deviation of 31 keV, the obtained values of the fitting parameters a, b, d of Eq. (56)

and the 3
2

−
resonance energy Er and width Γ are presented in Table 4. The fit accu-

racy is also illustrated by solid lines in Figs. 27, 30 and 31 obtained using our fitting
parameters: these curves are seen to reproduce the selected NCSM energies E0 in
Figs. 27 and 30 and the corresponding phase shifts in Fig. 31.

The JISP16 NN interaction generates the 3
2

−
phase shifts reproducing qualita-

tively but not quantitively the results of phase shift analysis of Refs. [47] of nα scat-
tering data as is seen in Fig. 31. We obtain the resonance energy Er slightly above
the experimental value, the difference is about 0.2 MeV (see Table 4). The resonance
width Γ is also overestimated by JISP16, the difference between the JISP16 prediction
and experiment is about 0.4 MeV. We present in Fig. 31 and in the last row of Table 4
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Figure 29: The 3
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−
nα phase shifts obtained directly from the 5He eigenstates E0

using Eq. (19) and the phase shift analysis of experimental data of Refs. [47] (stars).



210 A. I. Mazur, A. M. Shirokov, I. A. Mazur and J. P. Vary

0 1 2 3 4 5 6
s [MeV]

0

5

10

15

E
 [

M
eV

]
N

max
= 6

           8
         10
         12
         14
         16
         18
SS-HORSE

nα, 3/2
-

JISP16
Λ > 600 MeV/c

Figure 30: The 5He 3
2

−
eigenstates E0 selected according to Λ > 600 MeV/c plotted

as a function of the scaling parameter s (symbols). See Fig. 5 for other details.

also the fit by Eq. (53) of the phase shift analysis of experimental data of Refs. [47]
obtained by minimizing the rms deviation of the phase shifts (column Ξ in the Ta-
ble). The fit parameters derived from the experimental data are seen to be markedly
different from those derived from JISP16 by the NCSM-SS-HORSE approach.

Returning to the 3
2

− 5He eigenstates depicted in Fig. 27, we see that the solid
curves presenting our fit in this figure describe not only the selected eigenstates from
the shaded area but also many other eigenstates not involved in the fit. This signals
that the Λ > 600 MeV/c selection is too restrictive and we can use for the SS-HORSE
analysis and fits many more NCSM eigenstates. We can use within the SS-HORSE
approach all eigenstates forming with the others a common curve in Fig. 28 and es-
pecially in Fig. 29 which is, as we have noted, more sensitive to convergence patterns.
There is however a restriction: unacceptable for the SS-HORSE are eigenstates Eν
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Figure 31: The 3
2

−
nα phase shifts obtained using Eq. (19) directly from 5He eigen-

states E0 selected according to Λ > 600 MeV/c (symbols). The solid curve depicts
the phase shifts of Eq. (53) with parameters a, b and d obtained by the fit with the
respective selection of eigenstates; stars and the dashed curve depict the phase shift
analysis of experimental data of Refs. [47] and the fit by Eq. (53).
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Table 4: 3
2

−
resonance in nα scattering from the 5He NCSM calculations with JISP16

NN interaction: fitting parameters a, b, d of Eq. (56), resonance energy Er and
width Γ, rms deviation of fitted energies Ξ and the number of these fitted energies D
for different selections of eigenvalues in comparison with the analysis of experimental
data in various approaches of Refs. [48] and [14] and with the fit by Eq. (53) of the
phase shifts δ1 extracted from experimental data in Ref. [47]. For the Nmax ≤ 4 selec-
tion, Ξ and D for all energies from the manual selection are shown within brackets.

Selection
a b2 d · 104 Er Γ Ξ

D
(MeV

1
2 ) (MeV) (MeV− 3

2 ) (MeV) (MeV) (keV)

Λ > 600 MeV/c 0.505 1.135 −0.9 1.008 1.046 31 46
Manual 0.506 1.019 +93.2 0.891 0.989 70 68
Nmax ≤ 4 0.515 1.025 +101 0.892 1.008 106(81) 11(68)

Nature:
R-matrix [48] 0.80 0.65
J-matrix [14] 0.772 0.644

Fit δ1 of Ref. [47] 0.358 0.839 +55.9 0.774 0.643 0.21◦ 26

obtained with any given Nmax from the range of ~Ω values where their energy de-
creases with ~Ω, i. e., we can select only those eigenstates with a given fixed Nmax

which derivative Eν

~Ω > 0 — Eqs. (56) and (59) do not exclude mathematically the pos-

sibility of having Eν

~Ω < 0 but such solutions can arise only with unphysical parameters
of these equations.

We would like to use within the SS-HORSE as many NCSM eigenstates as possible
in order to enlarge the energy interval where the phase shifts are fitted and to improve
the accuracy of the fit parameters. From this point of view, the selection according to
inequality Λ > Λ0 is not favorable. The Λ > Λ0 rule excludes states with ~Ω < ~Ω0

where ~Ω0 depends on Nmax and decreases as Nmax increases. As is seen from our
study of the model problem, in particular, from Figs. 3, 4, 10, 12, 18, 20, we can
utilize for the SS-HORSE the eigenstates obtained with sufficiently large Nmax and
with very small ~Ω; the same conclusion follows from our ab initio many-body study
of the system of four neutrons (tetraneutron) in the continuum [49,50]. According to
the Λ > Λ0 rule we either exclude these large Nmax – small ~Ω eigenstates or include
in the fit some small Nmax states which strongly deviate from common curves on the
plots of Eν vs s or δℓ vs E.

The ultraviolet cutoff Λ0 was introduced in Refs. [2, 3] with an idea that the os-
cillator basis should be able to describe in the many-body system the short-range
(high-momentum) behaviour of the two-nucleon interaction employed in the calcu-
lations; thus the ~Ω cannot be too small since oscillator functions with small ~Ω
have a large radius (correspond to small momentum) and are not able to catch the
short-range (high-momentum) peculiarities of a particular NN potential. We imagine
this concept to be insufficient at least in some cases. In light nuclei where binding
energies are not large, the structure of the wave function can be insensitive to the
short-range NN potential behaviour associated with high relative momentum. Much
more important is the radius of the state under consideration, e. g., we can expect
an adequate description of the ground state only if the highest oscillator function in
the basis has at least one node within the radius of this state, two nodes are required
within the radius of the first excited state, etc. Therefore the minimal acceptable ~Ω
value depends strongly on the state under consideration and may be insensitive to
the inter-nucleon interaction. This is particularly important for loosely-bound nuclear
states or for low-energy scattering states. In the case of scattering, the wave func-
tion at low energies can have a very distant first node and not only permits but just
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Figure 32: Manual selection the lowest 5He 3
2

−
eigenstates E0. See Fig. 27 for details.

requires the use of oscillator functions with very small ~Ω values and large radius.

We cannot formulate a simple rule or formula for selecting eigenstates accept-
able for the SS-HORSE analysis, instead we pick up manually individual states with
eigenenergies E0 lying to the right from the minimum of the ~Ω dependence for
each Nmax in Fig. 27 and lying on or close to the common curve in Figs. 28 and 29.
These manually selected eigenstates and the respective phase shifts are presented in
Figs. 32, 33 and 34. The results of the fit with this selection of eigenstates are pre-
sented in the second line of Table 4. We obtain an accurate fit with the rms deviation
of eigenenergies of 70 keV; this number however depends on the selection criteria like
the acceptable distance from the common curve formed by other points in Figs. 33
and 34. Comparing Figs. 27 and 32 we see that our manual selection makes it possi-
ble to describe eigenenergies with small Nmax which were far from theoretical curves
in Fig. 27. These small Nmax states have large energies, and their inclusion in the
SS-HORSE analysis extends the description of the phase shifts in the high-energy
region in Fig. 34 pushing them closer to the phase shift analysis of the experimental
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Figure 33: Manually selected 5He 3
2

−
eigenstates E0 plotted as a function of the

scaling parameter s (symbols). See Fig. 5 for other details.
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Figure 34: The 3
2

−
nα phase shifts generated by the manually selected 5He eigen-

states E0. See Fig. 31 for details.

nα scattering data in this region as compared with Fig. 31. These changes in the
phase shift behavior at larger energies correspond to a drastic change of the fitting
parameter d which is the coefficient of the highest power term in the expansion (53).
At smaller energies including the resonance region, the phase shifts obtained from the
fits with the manual and with the Λ > 600 MeV/c selections are nearly the same,
and we get close values of the respective fitting parameters a and b and hence small
changes of the resonance energy Er and width Γ due to the switch from one selection
to the other.

It is very interesting to investigate whether we can get reasonable phase shifts
and resonance parameters using only the NCSM eigenstates from small basis spaces.
From our manually selected eigenstates we select only those obtained with Nmax = 2
and 4. This selection and the results obtained by the fit are depicted in Figs. 35, 36
and 37. All eigenenergies E0 involved in this fit are significantly above the resonant
region (see Fig. 37). Nevertheless we obtain from these 11 small-Nmax eigenstates
nearly the same phase shifts as those from all 68 manually selected eigenstates and
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Figure 35: Selection of the lowest 5He 3
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−
eigenstates E0 obtained in NCSM with

Nmax ≤ 4. See Fig. 27 for details.
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Figure 36: Selected lowest 5He 3
2

−
eigenstates E0 obtained in NCSM with Nmax ≤ 4

as a function of the scaling parameter s. See Fig. 5 for other details.
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Figure 37: The 3
2

−
nα phase shifts generated by the selected 5He eigenstates E0

obtained in NCSM with Nmax ≤ 4. See Fig. 31 for details.

very close values of fit parameters and of the resonance energy and width presented in
Table 4. Figure 35 demonstrates that, as in the case of the model problem, with these
eigenstates E0 from many-body NCSM calculations with Nmax ≤ 4 we can accurately
‘predict’ the 5He eigenstates obtained in much larger basis spaces and in a wider range
of ~Ω. The rms deviation Ξ of all manually selected eigenstates by this Nmax ≤ 4 fit
is only 81 keV as compared with 70 keV from the fit to all those eigenstates.

4.2 Partial wave 1

2

−

The lowest 1
2

−
eigenstates of 5He from the NCSM calculations with JISP16 NN

interaction are presented in Fig. 38 as functions of ~Ω and in Fig. 39 as a function
of the scaling parameter s, Fig. 40 presents the respective nα phase shifts. The
eigenenergies in Figs. 39 and 40 tend to form single common curves demonstrating the
convergence of many-body NCSM calculations, however we see that many eigenstates
diverge from the common curves and lie far from them thus demonstrating the need
to select the states for the SS-HORSE analysis.
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Figure 38: The lowest 5He 1
2

−
eigenstates E0 as functions of ~Ω and their Λ >

600 MeV/c selection. See Fig. 27 for details.
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Figure 39: The lowest 5He 1
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−
eigenstates E0 as a function of the scaling parameter s.
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−
nα phase shifts obtained directly from the 5He eigenstates E0

using Eq. (19). See Fig. 29 for other details.
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Figure 41: The 5He 1
2

−
eigenstates E0 selected according to Λ > 600 MeV/c as a

function of the scaling parameter s. See Fig. 5 for other details.

As in the case of the 3
2

−
partial wave, we start from the Λ > 600 MeV/c eigen-

state selection recommended for the JISP16 NN interaction in Refs. [2, 3] which is
illustrated in Figs. 38 and 41, the respective phase shifts are shown in Fig. 42. The
selected states form reasonably smooth common curves in Figs. 41 and 42 making
possible an accurate fit of parameters in Eq. (53); the obtained fitted parameters

can be found in Table 5. We get a good description of the 1
2

−
resonance energy

and width however the phase shift behaviour extracted from the experimental nα
scattering data is reproduced qualitatively but not quantitatively (see Fig. 42). Note
however that the fit parameters derived from the experimental data and JISP16 re-
sults (Table 5) are close with the exception of the parameter d which contribution is
very small at energies below 20 MeV. Figure 38 shows that we reproduce not only
the eigenstate energies from the shaded area that were fitted but also many other
eigenstates not included in the fit, especially small-Nmax eigenstates, thus suggesting
to perform a manual eigenstate selection which will involve many more eigenenergies
in the SS-HORSE analysis.
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Figure 42: The 1
2

−
nα phase shifts generated by the Λ > 600 MeV/c selected 5He

eigenstates E0. See Fig. 31 for details.
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Table 5: Parameters of the 1
2

−
resonance in nα scattering from the 5He NCSM

calculations with JISP16 NN interaction. See Table 4 for details.

Selection
a b2 d · 104 Er Γ Ξ

D
(MeV

1
2 ) (MeV) (MeV− 3

2 ) (MeV) (MeV) (keV)

Λ > 600 MeV/c 1.680 3.443 −3.6 2.031 5.559 61 46
Manual 1.699 3.299 21.3 1.856 5.456 11 60
Nmax ≤ 4 2.460 6.734 −0.15 3.710 11.24 109(893) 9(60)

4 ≤ Nmax ≤ 6 1.718 3.310 25.0 1.834 5.511 25(92) 10(60)

Nature:
R-matrix [48] 2.07 5.57
J-matrix [14] 1.97 5.20

Fit δ1 of Ref. [47] 1.622 3.276 +46.3 1.960 5.249 0.038◦ 26

Our manual selection of the lowest 1
2

−
eigenstates in 5He is shown in Figs. 43

and 44 while the respective nα phase shifts are presented in Fig. 45, the results of the

fit are given in Table 5. As in the case of the 3
2

−
nα partial wave, the inclusion of

the additional eigenstates in the fit does not affect the phase shifts at smaller energies
including the resonance region. However, including the additional eigenstates pushes
the phase shifts up in the direction of the phase shift analysis at larger energies. The
1
2

−
resonance energy and width and the parameters of the phase shift fit by Eq. (53)

are seen from Table 5 to change only slightly with the exception of the parameter d
responsible for the phase shift behaviour at higher energies.

It is very interesting and important to examine whether it is possible to get a

reasonable description of the resonance and phase shifts in the 1
2

−
nα scattering

using only eigenstates obtained in many-body NCSM calculations in small bases. In

the case of the 3
2

−
nα scattering we manage to derive very good phase shifts from

the Nmax ≤ 4 NCSM eigenstates. Therefore we try the Nmax ≤ 4 eigenstate selection

also in the 1
2

−
partial wave, see Figs. 46, 47 and 48. This selection clearly fails to

reproduce the phase shifts and resonance parameters which differ essentially from the

converged results obtained with the manual selection of the 1
2

− 5He eigenstates (see
Fig. 31 and Table 5); we see also in Fig. 46 that the fit to the Nmax ≤ 4 eigenstates
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Figure 43: Manual selection the lowest 5He 1
2

−
eigenstates E0. See Fig. 27 for details.
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Figure 44: Manually selected 5He 1
2

−
eigenstates E0 plotted as a function of the

scaling parameter s (symbols). See Fig. 5 for other details.
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Figure 45: The 1
2

−
nα phase shifts generated by the manually selected 5He eigen-

states E0. See Fig. 31 for details.
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−
eigenstates E0 obtained in NCSM with

Nmax ≤ 4. See Fig. 27 for details.
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Figure 47: Selected lowest 5He 1
2

−
eigenstates E0 obtained in NCSM with Nmax ≤ 4

as a function of the scaling parameter s. See Fig. 5 for other details.

from the shaded area fails to ‘predict’ the eigenenergies E0 obtained with larger Nmax

values. That is not surprising because the plots of the Nmax ≤ 4 eigenenergies as a
function of the scaling parameter s (Fig. 47) and of the respective phase shifts as a
function of energy (Fig. 48) do not form smooth common curves.

However an entirely different result is obtained by selecting for the SS-HORSE

analysis the 5He 1
2

−
NCSM results from basis spaces with 4 ≤ Nmax ≤ 6. For the

4 ≤ Nmax ≤ 6 selection we pick up 10 eigenstates with the smallest Nmax values out

of 60 manually selected before 1
2

−
eigenstates. This eigenstate selection and the re-

spective results are illustrated by Figs. 49, 50 and 51. The selected eigenenergies
are seen to form sufficiently smooth curves in Figs. 50 and 51. The parameter fit
results in nearly the same phase shifts (Fig. 51) as in the case of the manual eigen-
state selection, we get also very close values of the resonance energy and width and
fitting parameters listed in Table 5. Figure 49 demonstrates that by using only 10
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Figure 48: The 1
2

−
nα phase shifts generated by the selected 5He eigenstates E0

obtained in NCSM with Nmax ≤ 4. The dash-dotted curve depicts the phase shifts
obtained by the fit to all manually selected eigenstates. See Fig. 31 for other details.
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Figure 49: Selection of the lowest 5He 1
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−
eigenstates E0 obtained in NCSM with

4 ≤ Nmax ≤ 6. See Fig. 27 for details.
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Figure 50: Selected lowest 5He 1
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−
eigenstates E0 obtained in NCSM with

4 ≤ Nmax ≤ 6 as a function of the scaling parameter s. See Fig. 5 for other details.
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Figure 51: The 1
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−
nα phase shifts generated by the selected 5He eigenstates E0

obtained in NCSM with 4 ≤ Nmax ≤ 6. See Fig. 31 for details.
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small-Nmax eigenstates from the shaded area we accurately ‘predict’ the energies of
many higher-Nmax eigenstates: the rms deviation Ξ of energies of all 60 manually
selected eigenstates is 92 keV (see Table 5). Of course, 92 keV is much larger than
the Ξ value of 11 keV obtained in the full fit to all these 60 eigenenergies, but it is still
an indication of a good quality ‘prediction’ of many-body eigenenergies E0 obtained
with much larger bases in a wide range of ~Ω values.

4.3 Partial wave 1

2

+

In this subsection we examine a possibility to describe neutron-nucleus non-resonant
scattering using as input for the SS-HORSE analysis the results of many-body shell
model calculations. The SS-HORSE fit is done in the same manner as in the case of
resonant scattering. The difference is that the non-resonant low-energy nα scattering

phase shifts in the 1
2

+
state are described by Eq. (52) instead of Eq. (53) which

parameters are fitted using Eq. (59) instead of Eq. (56). The parameter Eb of this
equation mimics the Pauli-forbidden state in the nα scattering. As compared with

the discussion of the 1
2

+
scattering by the model WSB potential which supports the

Pauli-forbidden state, this bound state does not appear as a result of the NCSM
5He calculations. Therefore we should use for the SS-HORSE fit the lowest 1

2

+
state

obtained by the NCSM with the eigenenergy E0 and set ν = 0 in Eq. (59).

These lowest 1
2

+ 5He eigenstates E0 are shown as functions of ~Ω for various Nmax

in Fig. 52 and as a function of the scaling parameter s in Fig. 53. We see a tendency of
eigenstates to approach the common curve at smaller ~Ω values with increasing Nmax

which signals that the convergence is achieved at smaller energies in larger basis
spaces. This tendency is much more pronounced in the plot of the SS-HORSE phase
shifts corresponding to the NCSM eigenstates in Fig. 54. This figure however also
clearly indicates the need to select eigenstates for the SS-HORSE fitting.

We start with selecting eigenstates according to the inequality Λ > 600 MeV/c
as is illustrated by Figs. 52 and 55, the respective phase shifts are shown in Fig. 56,
and the obtained fitting parameters are presented in Table 6. We obtain a reason-
able accuracy of the fit with the rms deviation of the fitted energies of 85 keV. We
reproduce reasonably the phase shift behaviour by the JISP16 NN interaction. We
note that at energies Ecm > 25 MeV the fit by Eq. (52) of the results of the phase

shift analysis start going up with the energy. This seems unphysical, however the 1
2

+
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Figure 52: The lowest 5He 1
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+
eigenstates E0 as functions of ~Ω and their Λ >

600 MeV/c selection. See Fig. 18 for details.
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Figure 53: The lowest 5He 1
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eigenstates E0 as a function of the scaling parameter s.
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Figure 54: The 1
2

+
nα phase shifts obtained directly from the 5He eigenstates E0

using Eq. (19). See Fig. 29 for other details.

Table 6: 1
2

+
nα scattering from the 5He NCSM calculations with JISP16 NN interac-

tion: fitting parameters Eb, c, d and f of Eq. (59), rms deviation of fitted energies Ξ
and the number of these fitted energies D for different selections of eigenvalues in
comparison with the fit by Eq. (52) of the phase shifts δ0 extracted from experimen-
tal data in Ref. [47]. For the 5 ≤ Nmax ≤ 7 selection, Ξ and D for all energies from
the manual selection are shown within brackets.

Selection
Eb c d · 103 f · 105 Ξ

D
(MeV) (MeV− 1

2 ) (MeV− 3
2 ) (MeV− 5

2 ) (keV)

Λ > 600 MeV/c −5.996 −0.171 −8.02 6.48 85 41
Manual −6.733 −0.183 −13.0 30.8 120 53

5 ≤ Nmax ≤ 7 −3.347 −0.151 63.0 −86.7 168(259) 13(53)

Fit δ0 of Ref. [47] −13.75 −0.156 −429 220 0.018◦ 26
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Figure 55: The 5He 1
2

+
eigenstates E0 selected according to Λ > 600 MeV/c as a

function of the scaling parameter s. See Fig. 21 for other details.

phases extracted from the nα scattering data are available only up to Ecm = 20 MeV;
the phase shift analysis at higher energies is needed to obtain a more realistic fit in
this energy interval where the NCSM-SS-HORSE phase shifts look more realistic.

Figure 52 demonstrates that it would be reasonable to perform a manual selection
and to include in the fit more eigenstates thus extending the energy interval of the

fitted phase shifts. Our manual selection of the lowest 1
2

+ 5He eigenstates and the
respective phase shifts are presented in Figs. 57, 58, 59 and Table 6. Some of the
fitting parameters are profoundly altered due to the inclusion of additional eigenstates
in the fit, however the resulting phase shifts are nearly the same with an exception
of the energies Ecm > 30 MeV where these additional eigenstates push the phase
shifts slightly up. The phase shift analysis is unavailable at these energies, therefore
it is impossible to judge whether this adjustment of the phase shifts improves the
description of the experiment.
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Figure 56: The 1
2

+
nα phase shifts generated by the Λ > 600 MeV/c selected 5He

eigenstates E0 (symbols). The solid curve depicts the phase shifts of Eq. (52) with
parameters Eb, c, d and f obtained by the fit with this selection of eigenstates; stars
and the dashed curve depict the phase shift analysis of experimental data of Refs. [47]
and the fit by Eq. (52).
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Figure 57: Manual selection the lowest 5He 1
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+
eigenstates E0. See Fig. 18 for details.
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Figure 58: Manually selected 5He 1
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+
eigenstates E0 plotted as a function of the

scaling parameter s (symbols). See Fig. 21 for details.
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+
nα phase shifts generated by the manually selected 5He eigen-

states E0. See Fig. 56 for details.
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Figure 60: Selection of the lowest 5He 1
2

+
eigenstates E0 obtained in NCSM with

5 ≤ Nmax ≤ 7. See Fig. 18 for details.

It is interesting and important to examine the possibility of describing the eigenen-
ergies and non-resonant phase shifts obtained in many-body calculations in large basis
spaces by SS-HORSE fits based on results in much smaller basis spaces. As in the

case of 1
2

−
states, we do not succeed by choosing the eigenstates from the smallest

available NCSM basis spaces with Nmax = 3 and 5: note, in both cases the results

from the smallest basis space with Nmax = 2 for 1
2

−
and Nmax = 3 for 1

2

+
states

are not included in our respective manual selections. However picking up eigenstates

obtained with 5 ≤ Nmax ≤ 7 from the manual selection of the 5He 1
2

+
eigenstates, we

obtain reasonable phase shifts and ‘predictions’ for the eigenstates with larger Nmax,
see Figs. 60, 61 and 62. It is interesting that we get similar phase shifts with three dif-

ferent selections of the 1
2

+
eigenstates while the respective fitting parameters shown in

Table 6 differ essentially. The rms deviation of all 53 manually selected 1
2

+
eigenstates

resulting from the fit to 13 eigenstates from the 5 ≤ Nmax ≤ 7 selection is 259 keV
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Figure 61: Selected lowest 5He 1
2

+
eigenstates E0 obtained in NCSM with

5 ≤ Nmax ≤ 7 as a function of the scaling parameter s. See Fig. 21 for details.
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Figure 62: The 1
2

+
nα phase shifts generated by the selected 5He eigenstates E0

obtained in NCSM with 5 ≤ Nmax ≤ 7. See Fig. 56 for details.

that is much worse than the ‘predictions’ of the odd parity eigenstates. We suppose

that this is related to the fact that the 1
2

+
eigenstates lie higher in energy than the

3
2

−
and 1

2

−
eigenstates and the SS-HORSE fits, especially those to the small-Nmax

eigenstates, involve the phase shifts at higher energies where our low-energy phase
shift expansions become less accurate and require higher order terms in Taylor series
and more fitting parameters.

5 Conclusions

We develop a SS-HORSE approach allowing us to obtain low-energy scattering phase
shifts and resonance energy and width in variational calculations with the oscillator
basis, in the nuclear shell model in particular. The SS-HORSE technique is based on
the general properties of the oscillator basis and on the HORSE (J-matrix) formalism
in scattering theory, it utilizes general low-energy expansions of the S-matrix including
the poles associated with the bound and resonant states.

The SS-HORSE approach is carefully verified using a model two-body problem
with a Woods–Saxon type potential and is shown to be able to obtain accurate scat-
tering phase shifts and resonance energy and width even with small oscillator bases.
Next the SS-HORSE method is successfully applied to the study of the nα scatter-
ing phases and resonance based on the NCSM calculations of 5He with the realistic
JISP16 NN interaction.

Within the SS-HORSE approach we obtain and generalize to the states lying above
nuclear disintegration thresholds the scaling property of variational calculations with
oscillator basis suggested in Refs. [2, 3] which states that the eigenenergies do not
depend separately on ~Ω and the maximal oscillator quanta N of the states included
in the basis but only on their combination s (or the scaling parameter λsc as sug-
gested in Refs. [2, 3], s ∼ λ2sc). We demonstrate a typical behavior of eigenstates
in the continuum as functions of s in cases when the system has or does not have
a low-energy resonance. The scaling property is useful for extrapolating the results
obtained in smaller basis spaces to larger bases, and we demonstrate using both the
model problem and many-body NCSM calculations that we are able to ‘predict’ ac-
curately the eigenenergies obtained in large bases using the results from much smaller
calculations.
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We anticipate that the suggested SS-HORSE method will be useful in numerous
shell model studies of low-energy nuclear resonances.

We plan to extend the SS-HORSE approach to the case of scattering of charged
particles in future publications. We intend also to examine an application of the SS-
HORSE method to the study of S-matrix poles corresponding to bound states and to
develop the SS-HORSE extrapolation of the variational bound state energies to the
infinite basis space.

Acknowledgements

We are thankful to L. D. Blokhintsev and Pieter Maris for valuable discussions.
This work was supported in part by the Russian Foundation for Basic Research un-
der Grant No. 15-02-06604-a and by the U.S. Department of Energy under grants
No. DESC0008485 (SciDAC/NUCLEI) and DE-FG02-87ER40371. Computational
resources were provided by the National Energy Research Scientific Computing Cen-
ter (NERSC) which is supported by the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231.

References

[1] P. Maris, J. P. Vary and A. M. Shirokov, Phys. Rev. C 79, 014308 (2009).

[2] S. A. Coon, M. I. Avetian, M. K. G. Kruse, U. van Kolck, P. Maris and J. P. Vary,
Phys. Rev. C 86, 054002 (2012).

[3] S. A. Coon, in Proc. Int. Workshop Nucl. Theor. Supercomputing Era
(NTSE-2012), Khabarovsk, Russia, June 18–22, 2012, eds. A. M. Shirokov
and A. I. Mazur. Pacific National University, Khabarovsk, 2013, p. 171,
http://www.ntse-2012.khb.ru/Proc/S_Coon.pdf.

[4] R. J. Furnstahl, G. Hagen and T. Papenbrock, Phys. Rev. C 86, 031301 (2012).

[5] S. N. More, A. Ekström, R. J. Furnstahl, G. Hagen and T. Papenbrock, Phys.
Rev. C 87, 044326 (2013).

[6] S. A. Coon and M. K. G. Kruse, in Proc. Int. Conf. Nucl. Theor. Supercom-
puting Era (NTSE-2013), Ames, IA, USA, May 13–17, 2013, eds. A. M. Shi-
rokov and A. I. Mazur. Pacific National University, Khabarovsk, 2014, p. 314,
http://www.ntse-2013.khb.ru/Proc/Coon.pdf.

[7] M. K. G. Kruse, E. D. Jurgenson, P. Navrátil, B. R. Barrett and W. E. Ormand,
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Electromagnetic deuteron form factors

in point form relativistic quantum mechanics

N. A. Khokhlov

Komsomolsk-na-Amure State Technical University

Abstract

A study of electromagnetic structure of the deuteron in the framework of
relativistic quantum mechanics is presented. The deuteron form factors depen-
dencies on the transferred 4-momentum Q up to 7.5 fm−1 are calculated. We
compare results obtained with different realistic deuteron wave functions stem-
ming from Nijmegen-I, Nijmegen-II, JISP16, CD-Bonn, Paris and Moscow (with
forbidden states) potentials. A nucleon form factor parametrization consistent
with modern experimental analysis was used as an input data.

Keywords: Deuteron; nucleon; electromagnetic form factors

1 Introduction

Elastic ed scattering observables are directly expressed within the Born approxima-
tion of one-photon exchange mechanism through electromagnetic (EM) deuteron form
factors (FFs) [1–3]. Therefore this process allows to extract the EM FF dependencies
on the transferred 4-momentum Q in the space-like region. Relativistic effects may
be essential even at low Q [2, 3]. There are different relativistic models of deuteron
EM FFs [4–8].

We apply the point-form (PF) relativistic quantum mechanics (RQM) to the elas-
tic electron-deuteron scattering in a Poincaré-invariant way. The RQM concepts and
an exhaustive bibliography are presented in the review by Keister and Polyzou [9].
The PF is one of the three forms of RQM proposed by Dirac [10]. The other two are
the instant and front forms. These forms are associated with different subgroups of
the Poincaré group which may be free of interactions. A general method of allowing
for interactions in generators of the Poincaré group was derived in Ref. [11]. It was
shown that all the forms are unitary equivalent [12]. Though each form has certain
advantages, there are important simplifying features of the PF [13]. In the PF, all
generators of the homogeneous Lorentz group (space-time rotations) are free of inter-
actions. Therefore the spectator approximation (SA) preserves its spectator character
in any reference frame (r. f.) only in the PF [14–16]. In the case of electromagnetic
NN process, it means that the NN interaction does not affect the photon-nucleon
interaction and therefore the sum of one-particle EM current operators is invariant
under transformations from one r. f. to another. Two equivalent SAs for EM current
operator of a composite system in PF RQM were derived in Refs. [13,15]. The PF SA
was applied to calculation of deuteron, pion and nucleon EM FFs [7,17–21] providing
reasonable results.

The present paper is an extension of our previous investigations where we have
described the elastic NN scattering up to laboratory energy of 3 GeV [22], brems-
strahlung in pp scattering pp → ppγ [23], deuteron photodisintegration γD → np

Proceedings of the International Conference ‘Nuclear Theory in the Super-
computing Era — 2014’ (NTSE-2014), Khabarovsk, Russia, June 23–27, 2014.
Eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2016, p. 230.
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[24–26] and exclusive deuteron electrodisintegration [27]. Here we demonstrate that
the developed approach is applicable to the elastic eD scattering.

2 Potential model in PF of RQM

A system of two particles is described within PF RQM by the wave function which
is an eigenfunction of the mass operator M̂ . We may represent this wave function
as a product of external and internal parts. The internal wave function |χ〉 is also
an eigenfunction of the mass operator and for a system of two nucleons with masses
m1 ≈ m2 ≈ m = 2m1m2/(m1 +m2) satisfies the equation

M̂ |χ〉 ≡
[
2
√
q2 + m2 + Vint

]
|χ〉 = M |χ〉, (1)

where Vint is an operator commuting with the full angular momentum operator and
acting on internal variables (spins and relative momentum) only, q is a momentum
operator of one of particles in the center of mass (c. m.) frame (relative momentum),
M̂ is a system mass operator and M is its eigenvalue. Here we adopt a natural system
of units with ~ = c = 1. A rearrangement of Eq. (1) gives

[
q2 +mV

]
|χ〉 = q2|χ〉, (2)

where the operator

mV =
1

4

(
2
√
q2 +m2Vint + 2Vint

√
q2 +m2 + V 2

int

)
, (3)

as well as Vint, acts on internal variables only, and the eigenvalue of the operator
q2 +mV is

q2 =
M2

4
−m2. (4)

Equation (2) is identical in form to a Schrödinger equation. Relativistic corrections
affect the deuteron binding energy ε only and may be easily accounted for by replacing
the experimental deuteron binding of 2.2246 MeV by an effective value of 2.2233 MeV.
The origin of this relativistic correction is easy to understand [28–30]. Clearly,

M = 2m− ε, (5)

and hence Eq. (4) can be rewritten as

q2 = −mε
(

1− ε

4m

)
. (6)

Comparing Eq. (6) with the nonrelativistic relation

q2 = −mε, (7)

one identifies the factor
(
1− ε

4m

)
as a relativistic correction to the deuteron binding

energy. It is interesting and important to note that there is no similar correction in
the scattering domain since q2 = mElab/2 is a precise relativistic relationship (Elab

is the laboratory energy) used in the partial wave analysis [28].

The difference between the experimental and effective deuteron binding energies
is negligible for our problem. Therefore, due to the formal identity between Eq. (2)
and Schrödinger equation, we can use non-relativistic deuteron wave functions in our
calculations.
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3 eD elastic scattering

We sketch here some PF RQM results needed for our calculations. We use formalism
and notations of Ref. [15].

We consider the pn system and neglect the difference between neutron and proton
masses. Let pi be the 4-momentum of nucleon i, P ≡ (P 0,P) = p1 + p2 is the system
4-momentum, M is the system mass and G = P/M is the system 4-velocity. The
wave function of two particles with 4-momentum P is expressed through a tensor
product of external and internal parts,

|P, χ〉 = U12 |P 〉 ⊗ |χ〉, (8)

where the internal wave function |χ〉 fits Eqs. (1)–(2). The unitary operator

U12 = U12(G,q) =

2∏

i=1

D[si;α(pi/m)−1α(G)α(qi/m)] (9)

relates the “internal” Hilbert space with the Hilbert space of two-particle states [15].
D[s;u] is a SU(2) operator corresponding to the element u ∈ SU(2), s are the SU(2)
generators. In our case of spin s = 1/2 particles, we deal with the fundamental rep-
resentation, i. e., si ≡ 1

2σi [σ = (σx, σy, σz) are the Pauli matrices] and D[s;u] ≡ u.

Matrix α(g) = (g0 + 1 + σ · g)/
√

2(g0 + 1) corresponds to a 4-velocity g. The mo-
menta of particles in their c. m. frame are

qi = L[α(G)]−1pi, (10)

where L[α(G)] is the Lorentz boost to the frame moving with 4-velocity G.
The “external” part of the wave function is defined as

〈G|P ′〉 ≡ 2

M ′ G
′0 δ3(G−G′). (11)

Its scalar product is

〈P ′′|P ′〉 =

∫
d3G

2G0
〈P ′′|G〉〈G|P ′〉 = 2

√
M ′2 + P′2 δ3(P′′ −P′), (12)

where G0(G) ≡
√

1 + G2. The internal part |χ〉 is characterized by momentum
q = q1 = −q2 of one of the particles in the c. m. frame.

According to the Bakamjian—Thomas procedure [11], the 4-momentum P̂ = ĜM̂
incorporates the interaction Vint, where M̂ is the sum of the free mass operator Mfree

and interaction, M̂ = Mfree+Vint [see Eq. (1)]. The interaction operator acts only on

internal variables. The operators Vint and V (and therefore M̂ and Mfree) commute

with S, the spin (full angular momentum) operator, and Ĝ, the 4-velocity operator.
The generators of space-time rotations are interaction-free. Most of formal non-
relativistic scattering theory results are valid in the case of two relativistic particles [9].
For example, the relative orbital angular momentum and spins are coupled in the c. m.
frame in the same manner as in the non-relativistic case.

The deuteron wave function |Pi, χi〉 is normalized,

〈Pf , χf |Pi, χi〉 = 2P 0
i δ

3(Pi −Pf )〈χf |χi〉. (13)

There is a convenient r. f. for calculation of current operator matrix elements [15]
(it coincides with the Breit r. f. in the case of elastic ed scattering). This r. f. is defined
by the following condition for all EM reactions with two nucleons:

Gf + Gi = 0, (14)
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where Gf = Pf/MD, Gi = Pi/MD are the final and initial 4-velocities of the deuteron
and MD is its mass. The matrix element of the current operator is [15]

〈Pf , χf |Ĵµ(x)|Pi, χi〉 = 2(MfMi)
1/2 exp(ı(Pf − Pi)x)〈χf |ĵµ(h)|χi〉, (15)

where ĵµ(h) defines action of current operator in the internal space of the NN system,

h =
2(MiMf )1/2

(Mi +Mf )2
k =

k

2MD
(16)

is the vector-parameter [15] (0 ≤ h ≤ 1), k is the momentum of photon in the r. f.
defined by Eq. (14), Mi = Mf = MD are the masses of the initial and final NN
system (deuteron).

The internal deuteron wave function is

|χi〉 =
1

r

∑

l=0,2

ul(r)|l, 1; J = 1MJ〉r; (17)

it is normalized: 〈χi|χi〉 = 1. We use the momentum space wave function

|χi〉 =
1

q

∑

l=0,2

ul(q) |l, 1; 1MJ〉q, (18)

where

u(q) ≡ u0(q) =

√
2

π

∫
dr sin(qr)u(r), (19)

w(q) ≡ u2(q) =

√
2

π

∫
dr

[(
3

(qr)2
− 1

)
sin(qr) − 3

qr
cos(qr)

]
w(r). (20)

Transformations from the Breit r. f. (14) to the initial and final c. m. frame of the
NN system are the boosts along vector h (axis z). Projection of the total deuteron
angular momentum onto z axis are unaffected by these boosts. The initial deuteron
moves in the Breit r. f. in the direction opposite to h. Its internal wave function with
the spirality Λi is

|Λi〉 =
1

q

∑

l=0,2

ul(q) |l, 1; 1,MJ = −Λi〉. (21)

The wave function of the final deuteron with the spirality Λf is

|Λf〉 =
1

q

∑

l=0,2

ul(q) |l, 1; 1,MJ = Λf 〉. (22)

A conventional parametrization of the deuteron (spin-1 particle) EM current op-
erator (CO) matrix element is [2, 3, 31]:

(4P 0
i P

0
f )1/2〈Pf , χf |Jµ|Pi, χi〉

= −
{
G1(Q2) (ξ∗f · ξi)−G3(Q2)

(ξ∗f ·∆P )(ξi ·∆P )

2M2
D

}
(Pµ

i + Pµ
f )

−G2(Q2) [ξµi (ξ∗f ·∆ P)− ξ∗µf (ξi ·∆P)], (23)

where (a · b) = a0b0 − (a · b), form factors Gi(Q
2), i = 1, 2, 3, are the functions

of Q2 = −∆P 2, ∆P = Pf − Pi.
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In the Breit r. f. Pf = −Pi, P
0
i = P 0

f ≡ P 0 = MD/
√

1− h2, ∆P = (0, 2Pf ),

Pµ
i + Pµ

f = (2P 0,0), Pf/P
0 = h, Pf = hMD/

√
1− h2, ∆P 2 = −4h2M2

D/(1− h2),

Q2 ≡ −∆P 2, h2 = (h · h),

〈χf |j0(h)|χi〉 = −G1(Q2)(ξ′∗ · ξ) + 2G3(Q2)
(ξ∗f · h)(ξi · h)

1− h2
+G2(Q2)[ξ0i (ξ∗f · h)− ξ0∗f (ξi · h)], (24)

〈χf |j(h)|χi〉 = G2(Q2)[ξi(ξ
∗
f · h)− ξ∗f (ξi · h)] = G2(Q2)[h× [ξi × ξ∗f ]]. (25)

It has been shown [15] that these expressions are equivalent to choosing jν as

j0(h) = GC(Q2) +
2

(1− h2)
GQ(Q2)

[
2

3
h2 − (h · J)2

]
, (26)

j(h) = − ı√
1− h2

GM (Q2) (h× J), (27)

where J is the total angular momentum (spin) of the deuteron; GC , GQ and GM are
its charge monopole, charge quadruple and magnetic dipole FFs.

Spiral deuteron polarizations in the initial and final states are

ξΛi =

{
(0,±1,−ı, 0)/

√
2 (Λ = ±),

(−Q/2, 0, 0, P0)/MD = (−h, 0, 0, 1)/
√

1− h2 (Λ = 0),
(28)

ξΛf =

{
(0,∓1,−ı, 0)/

√
2 (Λ = ±),

(Q/2, 0, 0, P0)/MD = (h, 0, 0, 1)/
√

1− h2 (Λ = 0).
(29)

A virtual photon polarization is

ǫλ =

{
(0,∓1,−ı, 0)/

√
2 (λ = ±),

(1, 0, 0, 0) (λ = 0).
(30)

FFs Gi are expressed as

GC = G1 +
2

3
ηGQ,

GQ = G1 −GM + (1 + η)G3,

G1 = GC −
2h2

3(1− h2)
GQ,

G3 = GQ

(
1− h2

3

)
−GC(1− h2) +GM (1− h2),

(31)

where η = Q2/4M2
D = h2/(1−h2). Supposing Q2 = 0, we have GQ = G1 −GM +G3

and GC = G1. Form factors GC(0) = e, GM (0) = µDe/2MD and GQ = QDe/M
2
D

provide deuteron charge, magnetic and quadruple momenta respectively.
Denoting helicity amplitudes as jλΛfΛi

≡ 〈Λf |
(
ǫλµ · jµ(h)

)
|Λi〉, we arrive at

j000(Q2) = GC +
4

3

h2

1− h2GQ, (32)

j0+−(Q2) = j0−+(Q2) = GC −
2

3

h2

1− h2GQ, (33)

j++0(Q2) + j+0−(Q2)

2
= − h√

1− h2
GM (34)

and
j++0(Q2) = j−−0(Q2) ≈ j+0−(Q2) = j−0+(Q2). (35)
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The deuteron FFs are associated with unpolarized structure functions [32]:

A(Q2) = G2
C(Q2) +

2

3
η G2

M (Q2), (36)

B(Q2) =
4

3
η (1 + η)G2

M (Q2). (37)

These quantities are extracted from the elastic eD scattering with unpolarized par-
ticles. A tensor polarization observable t20(Q2, θ) is conventionally used as an addi-
tional quantity needed for definition of all three FFs.

In the present paper, we use the EM CO obtained within SA in Ref. [15] without
expanding it in powers of h and calculate its matrix elements in the momentum
space. Therefore we use the following expansion of ĵµ(h) ≈ ĵµSA(h) [27] for the
matrix element calculations:

ĵµSA(h) =
(
1 + (A2 · s2)

)(
Bµ

1 + (Cµ
1 · s1)

)
I1(h)

+
(
1 + (A1 · s1)

)(
Bµ

2 + (Cµ
2 · s2)

)
I2(h), (38)

where Ai, B
µ
i and Cµ

i are some vector functions of h and q(q, θ, φ). In the spherical
coordinate system (q, θ, φ), the dependence of these functions on φ appears as e±imφ

(m = 0, 1, 2). The angle φ is analytically integrated out giving trivial equalities (35).

4 Results

In our calculations, we use as an input momentum space deuteron wave functions
and nucleon EM FFs. The momentum space deuteron wave functions stemming from
Nijmegen-I (NijmI), Nijmegen-I (NijmII) [33], JISP16 [34], CD-Bonn [29], Paris [35],
Argonne18 [30] (the momentum space deuteron wave function is grabbed from
Ref. [36]) and Moscow (with forbidden states) [22] potentials are shown in Figs. 1. We
use two versions of Moscow type potential: Moscow06 [22] and Moscow14. The latter
one was obtained by the author in the same manner outlined in Ref. [22] but with
deuteron asymptotic constants fitted to describe static deuteron form factors. Pa-
rameters of both Moscow potentials may be obtained upon request from the author
(e-mail: nikolakhokhlov@yandex.ru). The S wave functions of all potentials but
JISP16 change sign at q ≈ 2 fm−1, andD wave functions change sign at q ≈ 6−8 fm−1.
The S and D wave functions of Argonne18, Paris and NijmII are close at q . 5 fm−1.
The S wave functions of CD-Bonn and NijmI are close at q . 5 fm−1. The JISP16
wave functions decrease rapidly at q larger than approximately 2 fm−1 without chang-
ing sign.

Our results for deuteron EM FFs are presented in Table 1 and in Figs. 2, 3, 4. The
results for Argonne18, Paris and NijmII are close manifesting the closeness of their
wave functions at q . 5 fm−1. NijmI and CD-Bonn provide more distinct results.
Our calculations demonstrate that GM obtained with all potentials changes sign at
rather low Q that is not seen experimentally. Nevertheless CD-Bonn and NijmI result
in a reasonable description of GM at Q < 7 fm. Moscow potentials provide the best
description of charge form factor GC .

An essential factor affecting our calculations is the nucleon FF dependency on the
momentum transferred to the individual nucleon, Q2

p ≈ Q2
n 6= Q2. These FFs have

been measured at discrete values of Q2
i=p,n while we need a continuous dependency

on Qi. In our calculations, we utilize phenomenological nucleon FF dependencies
on Q2

i of Ref. [54]. It should be noted that the neutron EM FFs are extracted from

experimental data on 2~H(~e, e′n)p and other processes with deuteron and triton using
various models of mechanism of these possesses and nuclei. Therefore these FFs are
model dependent.
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Figure 1: Momentum space deuteron wave functions used in calculations.

Table 1: Static deuteron form factors. The results of relativistic (nonrelativistic)
calculations are given before (after) slash.

GM (0) = Md

mp
µd GQ(0) = M2

dQd

Exp 1.7148 25.83
NijmI 1.697/1.695 24.8/24.6
NijmII 1.700/1.695 24.7/24.5
Paris 1.696/1.694 25.6/25.2

CD-Bonn 1.708/1.704 24.8/24.4
Argonne18 1.696/1.694 24.7/24.4

JISP16 1.720/1.714 26.3/26.1
Moscow06 1.711/1.699 24.5/24.2
Moscow14 1.716/1.700 26.0/25.8
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Figure 2: Deuteron form factor GC as a function of Q. Experimental points are from
compilation [3] where they were calculated using data for A, B and t20 obtained in
Refs. [37–53].

We see a good overall agreement between the theory and experiment atQ < 5 fm−1.
Discrepancies at larger Q are comparable with differences of results for different po-
tentials. Model calculations [55] show that meson exchange currents may provide
a significant contribution to EM processes in the np-system. We do not take into
account these currents. However it is not clear how these currents can be derived
consistently with the short-range NN interaction of the QCD origin. In addition, the
EM FFs of nucleons are not described by meson degrees of freedom at intermediate
and high energies [56].

To complete this line of our investigation, we plan to calculate neutron EM FFs
compatible with Moscow potential model which has not been used for the extraction
of these FFs.

Figure 3: Deuteron form factor GQ as a function of Q. See Fig. 2 for details.
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Figure 4: Deuteron form factor GM as a function of Q. See Fig. 2 for details.
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Abstract

Nucleon-deuteron (Nd) scattering for which a rigorous formulation in terms
of Faddeev equations exists and exact solutions of these equations for any dy-
namical input can be obtained, offers a good opportunity to study the dynamical
aspects of 3NFs such as momentum, spin dependences. Since the first indica-
tion of 3NF effects in Nd elastic scattering around 100 MeV/nucleon, precise
measurements of proton-deuteron/neutron-deuteron scattering have been exten-
sively performed at 60–250 MeV/nucleon. Direct comparison between the data
and the Faddeev calculations based on realistic nucleon-nucleon forces plus 2π-
exchange three nucleon forces draws the following conclusions, (1) the 3NF is
definitely needed in Nd elastic scattering, (2) the spin dependent parts of the
3NF may be deficient, (3) the short-range components of the 3NF are probably
required for high momentum transfer region, and (4) establishment of 3NFs
in Nd breakup processes should be performed in the framework of relativistic
Faddeev calculations.

Keywords: Three-nucleon force; few-nucleon systems; nucleon-deuteron scat-
tering

1 Introduction

Experimentally, one must utilize systems with more than two nucleons (A ≥ 3) to
investigate properties of three nucleon forces (3NFs). The 3NFs arise naturally in
the standard meson exchange picture in which the main ingredient is considered to
be a 2π-exchange between three nucleons along with the ∆-isobar excitation initially
proposed by Fujita and Miyazawa in 1957 [1]. Further augmentations have led to the
Tucson–Melbourne (TM) [2], the Urbana [3] 3NFs, etc. A new impetus to study 3NFs
has come from chiral effective field theory (χEFT) descriptions of nuclear interactions.
In that framework consistent two-, three-, and many-nucleon forces are derived on the
same footing [4, 5]. The first non-zero contribution to 3NFs appears in χEFT at the
next-to-next-to-leading order (N2LO) of the chiral expansion. Generally, the 3NFs
are relatively small compared to the nucleon-nucleon (NN) forces and their effects
are easily masked. Therefore it is hard to find an evidence for them experimentally.

The first evidence for a 3NF was found in the three-nucleon bound states, 3H and
3He [6,7]. The binding energies of these nuclei are not reproduced by exact solutions
of three-nucleon Faddeev equations employing modern NN forces only, i. e., AV18 [8],
CD Bonn [9], Nijmegen I, II [10]. The underbinding of 3H and 3He can be explained by
adding a 3NF, mostly based on 2π-exchange, acting between three nucleons [6,7,11].
The importance of 3NFs has been further supported by the binding energies of light
mass nuclei and by the empirical saturation point of symmetric nuclear matter. Ab
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computing Era — 2014’ (NTSE-2014), Khabarovsk, Russia, June 23–27, 2014.
Eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
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initio microscopic calculations of light mass nuclei, such as Green’s Function Monte
Carlo [12] and no-core shell model calculations [13], highlight the necessity of including
3NFs to explain the binding energies and low-lying levels of these nuclei. As for the
density of symmetric nuclear matter, it has been reported that all NN potentials
provide saturation at a too high density, and a short-range repulsive 3NF is one
possibility to shift the theoretical results to the empirical point [14].

Three-nucleon (3N) scattering has been studied for a long time as one of the
most promising tools to explore the properties of 3NFs because this process pro-
vides a rich set of energy dependent spin observables and differential cross sections.
At lower energies (E/A ≤ 20 MeV), very high precision measurements were carried
out in proton-deuteron (pd) and neutron-deuteron (nd) scattering, including elas-
tic and breakup reactions. However, theoretically predicted 3NF effects are rather
small and a generally good description for nucleon-deuteron (Nd) elastic scattering
data is obtained by exact solutions of 3N Faddeev equations employing only NN
forces [15, 16]1. Study of the 3NF has changed since the end of 1990’s. The following
advances have made it possible to explore the 3NF effects contained in 3N scattering.

(i) Generation of the so-called realistic NN forces (e. g., AV18 [8], CD Bonn [9],
Nijmegen I, II and 93 [10]) which reproduce a rich set of experimental NN data for
laboratory energy up to 350 MeV with an accuracy of χ2 ∼ 1.

(ii) Achievement of rigorous numerical Faddeev calculations based on the re-
alistic NN potentials below the π-threshold energy (the incident nucleon energy
E/A ≤ 215 MeV) [15].

(iii) Development of experimental techniques to obtain precision data for 3N
scattering at intermediate energies (E/A ≈ 100 MeV).

In the last decade the experimental studies of intermediate-energy pd and nd
elastic scattering have been extensively performed by groups at RIKEN, KVI, RCNP,
and IUCF providing precision data for cross sections and a variety of spin observ-
ables [17–21]. This is partly due to the fact that the first indication of 3NF was
pointed out [22, 23] in the elastic channel. A compilation of recent experiments for
pd and nd elastic scattering at intermediate energies is shown in Fig. 1. It should
be noted that the experimental study of dp scattering have been recently extended
at the new facility of RIKEN RI beam factory (RIBF) [24] where polarized deuteron
beams are available up to ∼ 400 MeV/nucleon.

Complete dp breakup (d + p → p + p + n) reactions would be more interesting
because they cover different kinematic conditions. By selecting a particular kinematic
configuration, one hopes to enhance the effects which are sensitive to specific compo-
nents of 3NFs. Thus the study of dp breakup reactions has been in progress as the
second step in investigating 3NF dynamics [25–28].

The experiments for dp scattering at RIKEN [17, 27] are described in Section 2.
The recent achievements in the study of 3NFs in intermediate-energy Nd scattering
are discussed in Section 3. Section 4 presents a summary.

2 Experiment

The experiments at RIKEN have been performed with unpolarized/polarized deuteron
beams. The observables we have obtained for elastic dp scattering are: (i) differen-

tial cross section
dσ

dΩ
at 70–135 MeV/nucleon, the angles in the center of mass sys-

tem θc.m. = 10◦−180◦; (ii) all deuteron analyzing powers (Ad
y, Ayy, Axx, and Axz)

at 70–294 MeV/nucleon, θc.m. = 10◦−180◦; (iii) deuteron-to-proton polarization
transfer coefficients (Ky′

y , Ky′

xx–Ky′

yy, and Ky′

xz) at 135 MeV/nucleon, θc.m. = 90◦−180◦.
We also extended the measurement to the dp breakup reaction at 135 MeV/nucleon.
Spin observables for specific kinematical conditions have been measured.

1Exceptions are the vector analyzing powers Ay and iT11 for pd elastic scattering.
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Figure 1: Compilation of recent experiments of pd and nd elastic scattering at
65–400 MeV/nucleon. Solid blue circles denote pd experiments and solid red circles
denote nd experiments. The measurements with large circles cover a wide angular
range while those with small circles cover a limited angular range.

A schematic view of the experimental setup is shown in Fig. 2. The vector and
tensor polarized deuteron beams [29] accelerated by the cyclotrons bombarded a hy-
drogen target [liquid hydrogen or polyethylene (CH2)]. Either the scattered deuteron
or the recoil proton was momentum analyzed by the magnetic spectrograph SMART
(Swinger and Magnetic Analyzer with Rotator and Twister) [30] depending on the
scattering angle and detected at the focal plane. For the polarization transfer mea-
surement, a double scattering experiment was performed to obtain the polarizations
of elastically scattered protons from the hydrogen target [31]. One characteristic fea-
ture of the RIKEN polarized deuteron beams was that we could obtain beams which
axis was controlled in an arbitrary direction on the target making it possible to ob-
tain all the deuteron analyzing powers Ad

y, Ayy, Axx, Axz. The polarization axis of
the deuteron beams was controlled by the spin rotator Wien Filter prior to accel-
eration [32]. Due to the single-turn extraction feature of the RIKEN cyclotrons the
polarization amplitudes were maintained during acceleration. The beam polarizations
were monitored with the beam line polarimeter by using the analyzing powers for dp
elastic scattering. To obtain the absolute values of the deuteron beam polarizations,
the analyzing powers for dp elastic scattering were calibrated by the 12C(d, α)10B∗ [2+]
reaction which Ayy (0◦) is exactly −1/2 because of parity conservation [33]. In all
measurements the actual magnitudes of the polarizations were 60–80% of theoretical
maximum values.

It was essential to obtain precise absolute values of the cross section to com-
pare with the state-of-the-art Faddeev calculations. However, it is usually difficult
to know experimentally the systematic uncertainty. We performed the cross section
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Figure 2: Schematic view of the experimental setup for the measurements of dp elastic and breakup reactions at RIKEN.
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measurements with three different experimental techniques and tried to estimate the
systematic uncertainties. First, we made a measurement at RIKEN with the proton
beam at 135 MeV and a CD2–CH2 sandwiched solid target at the angles where the
pp and pd elastic scattering were simultaneously measured with the magnetic spec-
trograph SMART. Using the well-known elastic pp cross sections we can estimate the
overall systematic uncertainty for the pd cross section. Secondly, to confirm the an-
gular distribution, we performed a measurement with 135 MeV/A deuterons, a CH2

solid target, and the SMART system. In this measurement we tried to check the fluc-
tuations of the target thickness during the experiment by measuring the dp scattering
at the fixed angle θc.m. = 69.7◦ where the scattered deuterons and recoil protons were
detected in coincidence in the scattering chamber. The cross section at θc.m. = 165.1◦

was measured for that same purpose with the SMART system several times during
the experiment. We also measured the carbon background events. Finally, we per-
formed a totally independent measurement at the Research Center for Nuclear Physics
(RCNP) of Osaka University using a 135 MeV proton beam and deuterated polyethy-
lene target. The absolute normalization of the cross sections has been performed
by taking the data with a D2 gas target and the double slit system for which the
RCNP group has already established the procedure to obtain the absolute pd cross
section [18]. A very good agreement between these independent measurements allows
us to conclude that the systematic uncertainty due to the detection setup is small [17].

3 Results and discussion

Elastic Nd scattering

In Fig. 3 some representative experimental results for pd and nd elastic scattering
are compared with the Faddeev calculations with and w/o 3NFs. The red (blue)
bands are the calculations with (without) TM′99 3NF [34] which is a version of the
Tucson–Melbourne 3NF consistent with chiral symmetry [35, 36], based on modern
NN potentials, i. e., CD Bonn, AV18, Nijmegen I and II. The solid lines are the
calculations based on the AV18 potential with including the Urbana IX 3NF.

Note, so far the calculations with the next-to-next-to-leading order χEFT po-
tential have been available for three-nucleon scattering [5] up to 100 MeV/nucleon.
Since our discussion is on 3NF effects for higher energies (& 100 MeV/nucleon) we
don’t show the results on χEFT potentials here. The theoretical analysis for ener-
gies & 100 MeV/nucleon is now in progress [37].

For the cross section, specific features are seen depending on scattering angles in
the center of mass system θc.m.. (i) At forward angles θc.m. . 80◦ where the direct
processes by the NN interactions are dominant, the theoretical calculations based
on various NN potentials are well converged and the predicted 3NF effects are very
small. The experimental data are well described by the calculations except for the very
forward angles. This discrepancy comes from that fact that the calculations shown
in the figure do not take into account the Coulomb interaction between protons [38].
(ii) At middle angles θc.m. ∼ 80◦–140◦ where the cross sections take minimum, the
clear discrepancies between the data and the calculations based on the NN potentials
are found. They become larger as the incident energy increases. The discrepancies
are explained by taking into account the 2π exchange type 3NF models (TM′99 and
Urbana IX ). (iii) At backward angles θc.m. & 140◦ where the exchange processes
by the NN interactions are dominant, the differences begin to appear between the
experimental data and the calculations even including the 3NF potentials with in-
creasing the incident energy. Since this feature is clearly seen at higher energies, the
relativistic effects have been estimated by using the Lorentz boosted NN potentials
with the TM′99 [39]. However the relativistic effects have turned out to be small and
only slightly alter the cross sections (see Fig. 4).
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Figure 3: Differential cross sections and deuteron analyzing powers iT11, T22 for elastic Nd scattering at 70–294 MeV/nucleon (MeV/N). The red
(blue) bands are the calculations with (w/o) TM99 3NF based on the modern NN potentials, namely CD Bonn, AV18, Nijmegen I and II. The solid
lines are the calculations with including Urbana IX 3NF based on AV18 potential. For the cross sections, the open circles are the data of Refs. [17].
The open squares and circles are the pd and nd data at 250 MeV/nucleon [18], respectively. For the deuteron analyzing powers, the data at 70 and
135 MeV/nucleon are from Refs. [17]. The data at 250 and 294 MeV/nucleon are taken at the RIBF [24].
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Figure 4: Differential cross section and the tensor analyzing power T22 for Nd elastic
scattering at 250 MeV/nucleon. Faddeev calculations based on the CD Bonn potential
with the TM′99 3NF are shown by blue solid lines. The calculations based on the
Lorentz boosted NN potential with the 3NF are shown by red dashed lines.

As for the polarization observables, the energy dependence of the predicted 3NF
effects and the difference between the theory and the data are not always similar to
that of the cross section. The deuteron vector analyzing power iT11 has features sim-
ilar to those of the cross section. Meanwhile the tensor analyzing power T22 reveals
a different energy dependence from that of iT11. Large 3NF effects are predicted
starting from ∼ 100 MeV/nucleon. At 135 MeV/nucleon and below, adding 3NFs
worsens the description of data in a large angular region. It is contrary to what
happens at higher energies above 250 MeV/nucleon where large 3NF effects are sup-
ported by the T22 data. The relativistic effects are estimated to be small also for these
polarization observables for Nd elastic scattering (see Fig. 4).

The results obtained for Nd elastic scattering draw the following conclusions:
(i) the 3NF is definitely needed in Nd elastic scattering; (ii) the spin dependent
parts of the 3NF may be deficient; (iii) the short-range components of the 3NF are
probably required for backward scattering at higher energies.

Breakup Nd reactions

Studies in a large amount of kinematical configurations for the deuteron breakup
reactions have been reported for the cross section as well as deuteron analyzing powers
at the incident nucleon energy of 65 MeV/nucleon [25]. Generally the effects of 3NFs
are predicted to be small at 65 MeV/nucleon, and the agreement to the data is good
for all calculations both including and not including 3NFs. Focusing on particular
kinematical configurations strong effects of the Coulomb interaction are found in the
cross section.

The situation seems to change at higher energies & 100 MeV/nucleon. In recently
reported relativistic Faddeev calculations with the TM′99 3NF, large relativistic ef-
fects are predicted in specific kinematical configurations [39]. For example, the agree-
ment to the data for the polarization transfer coefficient Ky′

yy at 135 MeV/nucleon is
rather improved by taking into account the relativistic effects in the calculation with
3NF (see Fig. 5). The results of these new calculations suggest that the final expla-
nation of the breakup reactions will be achieved when both two- and three-nucleon
forces will be treated in the framework of relativistic Faddeev calculations.
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160 180 200

Figure 5: Polarization transfer coefficient Ky′

yy for 1H(~d, ~p1p2)n at 135 MeV/nucleon
shown as a function of S-curve arc-length. For descriptions of the calculations, see
Fig. 4.

4 Summary

The 3NFs are now accepted as key elements in understanding various nuclear phe-
nomena such as the binding of light mass nuclei and the equation of state for nuclear
matter properties. The Nd scattering data provide rich sources to explore the prop-
erties of 3NFs such as momentum and spin dependences. In this talk the experiments
performed with polarized deuteron beams at RIKEN are presented and recent achieve-
ments in the study of 3NFs in intermediate-energy Nd scattering are discussed.

In the last decade extensive experimental studies of pd and nd elastic scattering
at intermediate energies (E & 100 MeV) were performed at several facilities. The
energy and angular dependent results for the cross section as well as the polarization
observables show that (i) clear signatures of the 3NF effects are found in the cross
section, (ii) the spin dependent parts of the 3NF may be deficient, and (iii) short-
range components of the 3NF are probably required for description of backward
scattering at higher energies.

Studies of pd breakup reactions (p + d → p + p + n) followed as the second step
in investigation of the 3NF dynamics. In the break up reactions at 65 MeV/nucleon
in a wide range of kinematical configurations the 3NF effects are predicted to be
small and the agreements to the data are generally good. At a higher energy of
135 MeV/nucleon, large 3NF effects as well as those of the relativity are predicted
for some observables in relativistic Faddeev calculations recently reported. The cal-
culations indicate that the establishment of 3NFs in the pd breakup reactions will be
achieved when both two- and three-nucleon forces will be treated in the framework
of relativistic Faddeev calculations.

As the next step of the 3NF study in few-nucleon scattering, it would be inter-
esting to see how well the theoretical approaches, e. g., inclusion of 3NFs other than
that of the 2π-exchange type and the potentials based on chiral effective field theory,
describe these data. Experimentally, it is interesting to measure spin correlation co-
efficients as well as polarization transfer coefficients for elastic pd scattering at higher
energies of 200–400 MeV/nucleon. Various kinematic configurations of the exclusive
pd breakup reactions should also be measured in order to study the properties of
3NFs as well as relativistic effects. As a first step from few- to many-body systems,
it is interesting to extend the measurements to 4N scattering systems, e. g., p+3 He
scattering, which would provide a valuable source of information on 3NFs including
their isospin dependences.
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Abstract

During the past two decades, chiral effective field theory has become a pop-
ular tool to derive nuclear forces from first principles. Two-, three-, and four-
nucleon forces have been calculated up to next-to-next-to-next-to-leading order
(N3LO) and (partially) applied in nuclear few- and many-body systems — with,
in general, a good deal of success. But in spite of these achievements, we are
still faced with some great challenges. Among them is the issue of a proper
renormalization of the two-nucleon potential, which is highly controversial in
the community. Another issue are the subleading many-body forces, where we
are faced with an “explosion” of the number of terms with increasing order that
no practitioner can ever handle. I will comment on the current status and will
provide hints for how to deal with it.

Keywords: Low-energy QCD; chiral effective field theory; nucleon-nucleon
scattering; few-nucleon forces

1 Introduction

The problem of a proper derivation of nuclear forces is as old as nuclear physics itself,
namely, almost 80 years [1]. The modern view is that, since the nuclear force is a
manifestation of strong interactions, any serious derivation has to start from quantum
chromodynamics (QCD). However, the well-known problem with QCD is that it is
non-perturbative in the low-energy regime characteristic for nuclear physics. For
many years this fact was perceived as the great obstacle for a derivation of nuclear
forces from QCD — impossible to overcome except by lattice QCD.

The effective field theory (EFT) concept has shown the way out of this dilemma.
For the development of an EFT, it is crucial to identify a separation of scales. In the
hadron spectrum, a large gap between the masses of the pions and the masses of the
vector mesons, like ρ(770) and ω(782), can clearly be identified. Thus, it is natural
to assume that the pion mass sets the soft scale, Q ∼ mπ, and the rho mass the hard
scale, Λχ ∼ mρ ∼ 1 GeV, also known as the chiral-symmetry breaking scale. This is
suggestive of considering a low-energy expansion arranged in terms of the soft scale
over the hard scale, (Q/Λχ)ν , where Q is generic for an external momentum (nucleon
three-momentum or pion four-momentum) or a pion mass. The appropriate degrees of
freedom are, obviously, pions and nucleons, and not quarks and gluons. To make sure
that this EFT is not just another phenomenology, it must have a firm link with QCD.
The link is established by having the EFT to observe all relevant symmetries of the
underlying theory, in particular, the broken chiral symmetry of low-energy QCD [2].

The early applications of chiral perturbation theory (ChPT) focused on systems
like ππ and πN , where the Goldstone-boson character of the pion guarantees that the
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expansion converges. But the past 20 years have also seen great progress in applying
ChPT to nuclear forces (see Refs. [3,4] for recent reviews and find comprehensive lists
of references therein). As a result, nucleon-nucleon (NN) potentials of high precision
have been constructed, which are based upon ChPT carried to next-to-next-to-next-
to-leading order (N3LO) [5,6], and applied in nuclear structure calculations with great
success.

However, in spite of this progress, we are not done. Due to the complexity of the
nuclear force issue, there are still many subtle and not so subtle open problems. We
will not list and discuss all of them, but just mention two, which we perceive as the
most important ones:

• The proper renormalization of chiral nuclear potentials and

• Subleading chiral few-nucleon forces.

I discussed the renormalization issue in my contribution to the NTSE-2013 [7], where
the interested reader will also find a broad introduction into the topic of nuclear
interactions. In this contribution, I will focus on nuclear many-body forces.

2 The chiral NN potential

In terms of naive dimensional analysis or “Weinberg counting”, the various orders of
the low-energy expansion which define the chiral NN potential, are given by:

VLO = V
(0)
ct + V

(0)
1π , (1)

VNLO = VLO + V
(2)
ct + V

(2)
1π + V

(2)
2π , (2)

VNNLO = VNLO + V
(3)
1π + V

(3)
2π , (3)

VN3LO = VNNLO + V
(4)
ct + V

(4)
1π + V

(4)
2π + V

(4)
3π , (4)

where the superscript denotes the order ν of the expansion. LO stands for leading
order, NLO for next-to-leading order, etc. Contact potentials carry the subscript “ct”
and pion-exchange potentials can be identified by an obvious subscript.

NN potentials have been constructed at all of the above orders, and it has been
shown [5] that at N3LO the precision is finally achieved, which is necessary and
sufficient for reliable applications in ab initio nuclear structure calculations. Thus,
the NN problem appears to be under control, at least for the time being.

3 Nuclear many-body forces

The chiral two-nucleon force (2NF) at N3LO has been applied in microscopic cal-
culations of nuclear structure with, in general, a great deal of success. However,
from high-precision studies conducted in the 1990s, it is well-known that certain few-
nucleon reactions and nuclear structure issues require three-nucleon forces (3NFs) for
their microscopic explanation. Outstanding examples are the Ay puzzle of N -d scat-
tering and the ground state of 10B. An important advantage of the EFT approach to
nuclear forces is that it creates two- and many-nucleon forces on an equal footing. In
this section, I will now explain in some detail those chiral three- and four-nucleon
forces.

3.1 Three-nucleon forces

The order of a 3NF is given by

ν = 2 + 2L+
∑

i

∆i , (5)
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Figure 1: The three-nucleon force at NNLO. From left to right: 2PE, 1PE, and
contact diagrams. Solid lines represent nucleons and dashed lines pions. Small solid
dots denote vertices of index ∆i = 0 and large solid dots are ∆i = 1.

where L denotes the number of loops and ∆i is the vertex index. We will use this
formula to analyze 3NF contributions order by order.

3.1.1 Next-to-leading order.

The lowest possible power is obviously ν = 2 (NLO), which is obtained for no loops
(L = 0) and only leading vertices (

∑
i ∆i = 0). As it turns out, the contribution from

these NLO diagrams vanishes. So, the bottom line is that there is no genuine 3NF at
NLO. The first non-vanishing 3NF appears at NNLO.

3.1.2 Next-to-next-to-leading order.

The power ν = 3 (NNLO) is obtained when there are no loops (L = 0) and
∑

i ∆i = 1;
i.e., ∆i = 1 for one vertex while ∆i = 0 for all other vertices. There are three
topologies which fulfill this condition, known as the two-pion exchange (2PE), one-
pion exchange (1PE), and contact graphs (Fig. 1).

The 1PE and contact 3NF terms involve each a new parameter, which are com-
monly denoted by D and E and which do not appear in the 2N problem. There are
many ways to pin these two parameters down. The triton binding energy and the nd
doublet scattering length 2and have been used for this purpose. But one may also
choose the binding energies of 3H and 4He, an optimal over-all fit of the properties
of light nuclei, or electroweak processes like the tritium β decay. Once D and E are
fixed, the results for other 3N, 4N, etc. observables are predictions.

The 3NF at NNLO has been applied in calculations of few-nucleon reactions, struc-
ture of light- and medium-mass nuclei [8,9], and nuclear and neutron matter [10–12]
with a good deal of success. Yet, the famous ‘Ay puzzle’ of nucleon-deuteron scattering
is not resolved. When only 2NFs are applied, the analyzing power in p-3He scattering
is even more underpredicted than in p-d. However, when the NNLO 3NF is added,
the p-3He Ay substantially improves (more than in p-d) [13] — but a discrepancy
remains. Furthermore, the spectra of light nuclei leave room for improvement.

To summarize, the 3NF at NNLO is a remarkable contribution: It represents
the leading many-body force within the scheme of ChPT; it includes terms that were
advocated already some 50 years ago; and it produces noticeable improvements in few-
nucleon reactions and the structure of light nuclei. But unresolved problems remain.
Moreover, in the case of the 2NF, we have pointed out that one has to proceed to N3LO
to achieve sufficient accuracy. Therefore, the 3NF at subleading order is needed for at
least two reasons: for consistency with the 2NF and to hopefully resolve outstanding
problems in microscopic nuclear structure and reactions.

3.1.3 Next-to-next-to-next-to-leading order.

At N3LO, there are loop and tree diagrams. For the loops (Fig. 2), we have L = 1 and,
therefore, all ∆i have to be zero to ensure ν = 4. Thus, these one-loop 3NF diagrams
can include only leading order vertices, the parameters of which are fixed from πN
and NN analysis. The long-range part of the chiral N3LO 3NF has been tested in
the triton [14] and in three-nucleon scattering [15] yielding only moderate effects and
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(a) (b) (c) (d) (e)

Figure 2: Leading one-loop 3NF diagrams at N3LO. We show one representative
example for each of five topologies, which are: (a) 2PE, (b) 1PE-2PE, (c) ring,
(d) contact-1PE, (e) contact-2PE. Notation as in Fig. 1.

no improvement of the Ay puzzle. The long- and short-range parts of this force have
been used in neutron matter calculations (together with the N3LO 4NF) producing
surprisingly large contributions from the 3NF [16]. Thus, the ultimate assessment
of the N3LO 3NF is still outstanding and will require more few- and many-body
applications. But we expect that, overall, the 3NF at N3LO is small and will most
likely not solve the outstanding problems.

3.1.4 The 3NF at N4LO.

Because the 3NF at N3LO is presumably small, it is necessary to move on to the
next order of 3NFs, which is N4LO or ν = 5 (of the ∆-less theory which we have
silently assumed so far). The loop contributions that occur at this order are obtained
by replacing in the N3LO loops one vertex by a ∆i = 1 vertex (with LEC ci), Fig. 3,
which is why these loops may be more sizable than the N3LO loops. The 2PE, 1PE-
2PE, and ring topologies have been evaluated [17]. Note that each diagram in Fig. 3
stands symbolically for a group of diagrams. We demonstrate this for the 1PE-2PE
topology, for which we display in Fig. 4 all diagrams for that topology. This applies
to each topology and, thus, provides an idea of the “explosion” of 3NF contributions
at subleading orders.

In addition to the loops, we have at N4LO three ‘tree’ topologies (Fig. 5), which
include a new set of 3N contact interactions, which have recently been derived by the
Pisa group [18]. Contact terms are typically simple (as compared to loop diagrams)
and their coefficients are essentially free. Therefore, it would be an attractive project
to test some terms (in particular, the spin-orbit terms) of the N4LO contact 3NF [18]
in calculations of few-body reactions (specifically, the p-d and p-3He Ay) and spectra
of light nuclei.

3.2 Four-nucleon forces

For four-nucleon forces (4NFs), the power is given by

ν = 4 + 2L+
∑

i

∆i . (6)

(a) (b) (c) (d) (e)

Figure 3: Sub-leading one-loop 3NF diagrams which appear at N4LO. We show one
representative example for each of five topologies, which are: (a) 2PE, (b) 1PE-2PE,
(c) ring, (d) contact-1PE, (e) contact-2PE. Notation as in Fig. 1.
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(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

(11) (12) (13) (14) (15)

(16) (17) (18)

Figure 4: The topology (b) of Fig. 3 (1PE-2PE) in detail. Notation as in Fig. 1.

Therefore, a 4NF appears for the first time at ν = 4 (N3LO), with no loops and
only leading vertices, Fig. 6. This 4NF includes no new parameters and does not
vanish [19]. It has been applied in a calculation of the 4He binding energy, where it
was found to contribute a few 100 keV [20]. It should be noted that this preliminary
calculation involves many approximations, but it provides an idea of the order of
magnitude of the 4NF, which is indeed small as compared to the full 4He binding
energy of 28.3 MeV.

(a) (b) (c)

Figure 5: 3NF tree graphs at N4LO (ν = 5) denoted by: (a) 2PE, (b) 1PE-contact,
and (c) contact. Solid triangles represent vertices of index ∆i = 3. Other notation as
in Fig. 1.
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Figure 6: Leading four-nucleon force at N3LO.

4 Conclusions

The past 20 years have seen great progress in our understanding of nuclear forces in
terms of low-energy QCD. Key to this development was the realization that low-energy
QCD is equivalent to an effective field theory (EFT) which allows for a perturbative
expansion that has become known as chiral perturbation theory (ChPT). In this
framework, two- and many-body forces emerge on an equal footing and the empirical
fact that nuclear many-body forces are substantially weaker than the two-nucleon
force is explained naturally.

In this contribution, I have focused mainly on nuclear many-body forces based
upon chiral EFT. The 3NF at NNLO has been known for a while and applied in few-
nucleon reactions, structure of light- and medium-mass nuclei, and nuclear and neu-
tron matter with some success. However, the famous ‘Ay puzzle’ of nucleon-deuteron
scattering is not resolved by the 3NF at NNLO. Thus, one important open issue are
the few-nucleon forces beyond NNLO (“sub-leading few-nucleon forces”) which, be-
sides the Ay puzzle, may also resolve some important outstanding nuclear structure
problems. As explained, this may require going even beyond N3LO. However, as
demonstrated, with each higher order, the number of diagrams increases enormously.
Thus, practitioners are faced with the problem of how to deal with this explosion of
3NF contributions. My advice is that, for a while, one should not aim at complete
calculations at given higher orders. Rather one will have to be selective and try to
identify the more important 3NF terms in the “forrest” of diagrams. The N4LO 3NF
contact terms [Fig. 5(c)] [18] are a promising and manageable starting point.

Finally, let me note that, because of lack of space, I have discussed here only the
so-called ∆-less version of ChPT. There is also the ∆-full version (see Ref. [3] for
details), in which the number of diagrams is even larger.

This work was supported by the US Department of Energy under Grant No. DE-
FG02-03ER41270.
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