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Computations of Medium-Mass Isotopes 
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FIG. 4. Proton (top) and neutron (bottom) radii obtained
from IM-SRG and SCGF calculations with EM [20–22] and
NNLOsat [26] interactions. For protons, experimental values
from Table I are displayed.

oxygen chain, the heaviest one for which experimental in-
formation on both binding energies and radii is available
up to the neutron drip line. We showed that analysing
(p,p) scattering data allows one to obtain information
on nuclear sizes of unstable isotopes within 0.1 fm. The
combined comparison of measured charge/matter radii
and binding energies with state-of-the-art ab initio cal-
culations o↵ers unique insight on nuclear forces. On the
one hand, EM, a current standard for nuclear theory em-
ploying only 2-, 3- and 4-body observables in the fit of
the low-energy constants thus sticking to the (strict) re-
ductionist strategy, yields an excellent reproduction of
binding energies but significantly underestimates charge
and matter radii. On the other hand, unconventional
NNLOsat , while maintaining a good energy systematics,
clearly improves the description of absolute radii, though
leaving room for refinement for what concerns isotope
shifts. Given the alternative fitting procedure, such an
output raises questions about the choice of observables
that should be included in the fit and the resulting pre-
dictive power whenever this strategy is followed.

More precise information on oxygen radii, e.g. rch via
laser spectroscopy measurements, would allow confirming
our (p,p) analysis and further refining the present discus-
sion. Future, similar studies in heavier isotopes will also
preciously contribute to the systematic development of
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FIG. 5. Matter radii from our analysis and Ref. [33, 36]
compared to ab initio calculations with EM [20–22] and
NNLOsat [26] interactions. Bands span results from GGF
and MR-IMSRG many-body schemes.

nuclear forces. From the many-body point of view, the
consistent inclusion of higher-body terms in the charge
radius operator is envisaged and might eventually a↵ect
the present discussion. Finally, we stress that a simulta-
neous reproduction of binding energies and radii in stable
and neutron-rich nuclei is mandatory for reliable struc-
ture but even more for reaction calculations. Scattering
amplitudes and nucleon-nucleus interactions evolve as a
function of the size, which should be consistently taken
into account specially when more microscopic reaction
approaches are considered.

The Espace de Structure et de réactions Nucléaires
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Ab-Initio SCGF approaches 



The FRPA Method in Two Words 
Particle vibration coupling is the main cause driving the distribution of 
particle strength—on both sides of the Fermi surface…�

n� p�

≡!parEcle! ≡!hole!

…these modes are all resummed 
exactly and to all orders in a  

ab-initio many-body expansion.!

“Extended”!
Hartree!Fock!

R(2p1h) Σ!(ω) = R(2h1p) 

• A complete expansion requires all 
types of particle-vibration coupling 

• The Self-energy Σ!(ω)
yields both 
single-particle states and scattering 

CB et al.,  
Phys. Rev. C63, 034313 (2001) 
Phys. Rev. A76, 052503 (2007) 
Phys. Rev. C79, 064313 (2009) 



•  Global picture of nuclear dynamics 
•  Reciprocal correlations among effective modes 
•  Guaranties macroscopic conservation laws 

gII(ω)�

pp/hh-RPA; two-nucleon transfer�

Π(ph)(ω)�
ph-RPA; response, giant resonances 

optical potential 

Dyson 
Eq.�

Single-
particle 
motion�

S(r,ω)�

Self-Consistent Green’s Function Approach 
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Isovector response 
for 32Ar, 34Ar�
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[C. B., K. Langanke, et al., Phys Rev. C77, 024304 (2008)] 
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Binding energy 
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neutron)
removal�

neutron)
addi2on�

sca;ering�

56Ni�

W.!Dickhoff,!CB,!Prog.!Part.!Nucl.!Phys.!53,!377!(2004)!
!CB,!M.Hjorth/Jensen,!Pys.!Rev.!C79,!064313!(2009)!

One-nucleon spectral function 

Distribution of particle and 
hole neutron states in 56Ni!

Sp,h(r,!) = ⌥ 1

⇡
Im g(r = r0;!)



Gorkov and its implementation  



Gorkov and symmetry breaking approaches 

"  This!approach!leads!to!the!following!Feynman!diagrams:!

V.!Somà,!CB,!T.!Duguet,!,!Phys.!Rev.!C!89,!024323!(2014)!
V.!Somà,!CB,!T.!Duguet,!Phys.!Rev.!C!87,!011303R!(2013)!
V.!Somà,!T.!Duguet,!CB,!Phys.!Rev.!C!84,!064317!(2011)!

"  Auxiliary!many/body!state!

Introduce!a!“grand/canonical”!poten@al!

minimizes! under!the!constraint!

"  Ansatz!

Mixes!various!par@cle!numbers!
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B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
Instead of targeting the actual ground state |ΨN

0 ⟩ of
the system, one considers a symmetry breaking state |Ψ0⟩
defined as a superposition of the true ground states of the
(N − 2)-, N -, (N + 2)-, ... particle systems, i.e.

|Ψ0⟩ ≡
even
∑

N

cN |ψN
0 ⟩ , (14)

where cN denote complex coefficients. The sum over even
particle number is said to respect the (even) number-
parity quantum number. Together with such a state, one
considers the grand-canonical-like potential Ω = H−µN ,
with µ being the chemical potential and N the particle-
number operator, in place of H [26]. The state |Ψ0⟩ is
chosen to minimize

Ω0 = ⟨Ψ0|Ω|Ψ0⟩ (15)

under the constraint

N = ⟨Ψ0|N |Ψ0⟩ , (16)

i.e. it is not an eigenstate of the particle number operator
but it has a fixed number of particle on average. Equation
(15), together with the normalization condition

⟨Ψ0|Ψ0⟩ =
even
∑

N

|cN |2 = 1 , (17)

determines coefficients cN , while Eq. (16) fixes the chem-
ical potential µ.
By choosing |Ψ0⟩ as the targeted state the initial prob-

lem of solving the many-body system with N nucleons is
replaced with another problem, whose solution approxi-
mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the
ground state of the system. The presence of a condensate
(ideally) implies that pairs of nucleons can be added or
removed from the ground-state of the system with the
same energy cost, independently of N . Such an hypoth-
esis translates into the fact that the binding energies of
the systems with N,N±2, N±4, ... particles differ by 2µ;
i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of Ω such that their
binding energies fulfill

... ≈ EN+2
0 − EN

0 ≈ EN
0 − EN−2

0 ≈ ... ≈ 2µ , (18)

with µ independent of N . If the assumption is valid,
the energy obtained by solving the auxiliary many-body
problem provides the energy of the initial problem as

Ω0 =
∑

N ′

|cN ′ |2ΩN ′

0 ≈ EN
0 − µN , (19)

which follows from Eqs. (15) and (18).

C. Gorkov propagators

In order to access all one-body information contained
in |Ψ0⟩, one must generalize the single-particle propaga-
tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known

as Gorkov propagators [27]

i G11
ab(t, t

′) ≡ ⟨Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0⟩ , (20a)

i G12
ab(t, t

′) ≡ ⟨Ψ0|T {aa(t)āb(t′)} |Ψ0⟩ , (20b)

i G21
ab(t, t

′) ≡ ⟨Ψ0|T
{

ā†a(t)a
†
b(t

′)
}

|Ψ0⟩ , (20c)

i G22
ab(t, t

′) ≡ ⟨Ψ0|T
{

ā†a(t)āb(t
′)
}

|Ψ0⟩ , (20d)

where single-particle operators associated with the dual
basis are as defined in Eq. (1) and where the modified
Heisenberg representation is defined as

aa(t) = a(Ω)
a (t) ≡ exp[iΩt] aa exp[−iΩt] , (21a)

a†a(t) =
[

a(Ω)
a (t)

]†

≡ exp[iΩt] a†a exp[−iΩt] . (21b)

Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
gators Gg1g2

ab carry two additional labels g1 and g2 that
span Gorkov’s space. When g1 = 1 (g1 = 2) a particle is
annihilated in the block of a (created in the block of ā)
and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated
in the block of b̄). Green’s functions G11 and G22 are
called normal propagators while off-diagonal ones, G12

and G21, are denoted as anomalous propagators.
Expanding the bra and the ket in Eq. (20) through

Eq. (14), Gorkov propagators can be expressed as linear
combinations of Green’s functions in the systems with
N,N ± 2, N ± 4, ... particles in the case of G11 and G22

G11
ab(t, t

′) = −i ⟨Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0⟩

= −i
even
∑

N

c∗NcN ⟨ψN
0 |T

{

aa(t)a
†
b(t

′)
}

|ψN
0 ⟩

≡
even
∑

N

c∗NcN G11 (N,N)
ab (t, t′) , (22)

G22
ab(t, t

′) = −i ⟨Ψ0|T
{

ā†a(t)āb(t
′)
}

|Ψ0⟩

= −i
even
∑

N

c∗NcN ⟨ψN
0 |T

{

ā†a(t)āb(t
′)
}

|ψN
0 ⟩

≡
even
∑

N

c∗NcN G22 (N,N)
ab (t, t′) , (23)
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′) ≡ ⟨Ψ0|T {aa(t)āb(t′)} |Ψ0⟩ , (20b)

i G21
ab(t, t

′) ≡ ⟨Ψ0|T
{
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but it has a fixed number of particle on average. Equation
(15), together with the normalization condition

⟨Ψ0|Ψ0⟩ =
even
∑

N

|cN |2 = 1 , (17)

determines coefficients cN , while Eq. (16) fixes the chem-
ical potential µ.
By choosing |Ψ0⟩ as the targeted state the initial prob-

lem of solving the many-body system with N nucleons is
replaced with another problem, whose solution approxi-
mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the
ground state of the system. The presence of a condensate
(ideally) implies that pairs of nucleons can be added or
removed from the ground-state of the system with the
same energy cost, independently of N . Such an hypoth-
esis translates into the fact that the binding energies of
the systems with N,N±2, N±4, ... particles differ by 2µ;
i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of Ω such that their
binding energies fulfill

... ≈ EN+2
0 − EN

0 ≈ EN
0 − EN−2

0 ≈ ... ≈ 2µ , (18)

with µ independent of N . If the assumption is valid,
the energy obtained by solving the auxiliary many-body
problem provides the energy of the initial problem as

Ω0 =
∑

N ′

|cN ′ |2ΩN ′

0 ≈ EN
0 − µN , (19)

which follows from Eqs. (15) and (18).

C. Gorkov propagators

In order to access all one-body information contained
in |Ψ0⟩, one must generalize the single-particle propaga-
tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known

as Gorkov propagators [27]

i G11
ab(t, t

′) ≡ ⟨Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0⟩ , (20a)

i G12
ab(t, t

′) ≡ ⟨Ψ0|T {aa(t)āb(t′)} |Ψ0⟩ , (20b)

i G21
ab(t, t

′) ≡ ⟨Ψ0|T
{

ā†a(t)a
†
b(t

′)
}

|Ψ0⟩ , (20c)

i G22
ab(t, t

′) ≡ ⟨Ψ0|T
{

ā†a(t)āb(t
′)
}

|Ψ0⟩ , (20d)

where single-particle operators associated with the dual
basis are as defined in Eq. (1) and where the modified
Heisenberg representation is defined as

aa(t) = a(Ω)
a (t) ≡ exp[iΩt] aa exp[−iΩt] , (21a)

a†a(t) =
[

a(Ω)
a (t)

]†

≡ exp[iΩt] a†a exp[−iΩt] . (21b)

Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
gators Gg1g2

ab carry two additional labels g1 and g2 that
span Gorkov’s space. When g1 = 1 (g1 = 2) a particle is
annihilated in the block of a (created in the block of ā)
and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated
in the block of b̄). Green’s functions G11 and G22 are
called normal propagators while off-diagonal ones, G12

and G21, are denoted as anomalous propagators.
Expanding the bra and the ket in Eq. (20) through

Eq. (14), Gorkov propagators can be expressed as linear
combinations of Green’s functions in the systems with
N,N ± 2, N ± 4, ... particles in the case of G11 and G22
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|ψN
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B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
Instead of targeting the actual ground state |ΨN

0 ⟩ of
the system, one considers a symmetry breaking state |Ψ0⟩
defined as a superposition of the true ground states of the
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with the normalization condition 

Energy independent eigenvalue problem 
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Gorkov equations 
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Approaches in GF theory 
Truncation 
scheme:!

Dyson formulation 
(closed shells)!

Gorkov formulation 
(semi-/doubly-magic)!

1st order:! Hartree-Fock! HF-Bogolioubov!

2nd order:! 2nd order! 2nd order (w/ pairing)!
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3rd and all-orders 
sums, 
P-V coupling:!

ADC(3) 
FRPA 
etc…!

G-ADC(3) 
 …work in progress 
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Inclusion of NNN forces  

- Third order PT diagrams with 3BFs: 
6

(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

(l) (m) (n)

(o) (p) (q)

FIG. 5. 1PI, skeleton and interaction irreducible self-energy diagrams appearing at 3rd-order in perturbative expansion (7),
making use of the e↵ective hamiltonian of Eq. (9).

this boils down to the equation of motion of the operators
in interaction picture [6]:

i~ @

@t
aI
↵

(t) = [aI
↵

(t), Ĥ
0

] = "
↵

aI
↵

(t) . (18)

By taking the derivative of G(0) and using Eq. (18), we
arrive at

⇢

i~ @

@t
� "

↵

�

G(0)

↵↵

0(t � t0) = �(t � t0)�
↵↵

0 , (19)

where the delta functions come from the derivative of the
step-function decomposition of the time-ordered product
in. Eq. (19) gives the inverse operator of G(0).

The same procedure applied to the exact propagator,
G(t� t0), requires the time-derivative of the annihilation
operators in the Heisenberg picture. For the hamiltonian

- Second order PT 
diagrams with 3BFs: 

4

b

eV =
1

4
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↵�,��

(11)
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↵�✏,��⌘
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#
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a†
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a
�
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�

;

In Eq. (10), the two-time two-particle/two-hole propaga-
tor

GII

�⌘,�✏

(t � t0) = G4�pt

�⌘,�✏

(t+, t; t0, t0+) (12)

is an appropriate time ordering of Eq. (3) and the con-
tracted propagators yield the exact 1B and 2B reduced
density matrices:

⇢1B
��

= h N

0

| a†
�

a
�

| N

0

i = �i~G
��

(t � t+) , (13)

⇢2B
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= h N
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| a†
�

a†
✏

a
⌘

a
�

| N

0

i = i~GII

�⌘,�✏

(t � t+) . (14)

The e↵ective Hamiltonian (9) not only regroups Feyn-
man diagrams in a more e�cient way but it also allow
to extract the e↵ective 1B and 2B terms from higher or-
der interactions. Averaging the 3BF over one and two
spectator particles in the medium is expected yield the
most important contributions to the many-body dynam-
ics [27, 30]. We note that Eqs. (10) and (11) are exact
and are derived rigorously from the pertubative expan-
sion. Details of the proof are discussed in App. B. As
long as only interaction irreducible diagrams are used to-
gether with eH, this gives a systematic way to generate
e↵ective in medium interactions, it ensures that symme-
try factors are correct and no diagram is over counted.

This approach can be seen as a generalisation of the
normal ordering of the Hamiltonian with respect to the
reference state |�N

0

i, that has already been used in nu-
clear physic applications with 3BFs [27, 30, 39]. If the
unperturbed propagators G(0) and GII,(0) were used in

Eqs. (10) and (11), the e↵ective operators
b

eU and
b

eV would
trivially reduced to the contracted 1B and 2B terms of
normal ordering. In the present case, however, the con-
traction is performed with respect to the exact correlated
density matrices and the e↵ective Hamiltonian eH can be
thought as reordered with respect the the many-body
ground-state | N

0

i, which takes into account the correla-
tions of the system. Note that, following the procedure of
App. B, the full contraction of the original hamiltonian,
H, will yield to the exact ground state energy
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in accordance with our analogy between the eH = H
0

+ eH
1

and the usual normal ordered hamiltonian. In the latter,
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FIG. 3. 1PI, skeleton and interaction irreducible self-energy
diagrams appearing at 2nd-order in the perturbative expan-
sion of Eq. (7), making use of the e↵ective hamiltonian of
Eq. (9).

the 0B contraction part is simply the expectation value
of H with respect to the reference state.

A. Self-energy expansion up to third order

For a 2B Hamiltonian, the only possible interaction
reducible contribution is the extended Hartree-Fock dia-
gram. This is the second term on the right hand side of
Eq. (10) and Fig. (1). It appears only at first order in
any SCGF expansion and it is routinely included in most
GF calculations with 2B forces. Thus, regrouping dia-
grams in terms of e↵ective interactions, such as Eqs. (10)
and (11), becomes useful only when 3BF or higher terms
are present. Here, we are interested in the new diagrams
that need to be considered when one includes 3BFs. To
this purpose we derive and list all interaction irreducible
contributions to the proper self-energy, up to third order
in perturbation theory.

At first order, only one interaction irreducible contri-
bution is present which exactly corresponds to eU :

⌃?,(1)

↵�

= eU
↵�

, (16)

Being a self-energy insertion itself, eU will not appear in
any other skeleton diagram. In spite of the fact that
it only contributes to Eq. (16), the e↵ective 1B poten-
tial is very important because it defines in full the en-
ergy independent part of the self energy, hence it rep-
resents the (static) mean field seen by every particle.
Through Eq. (10), we see that this potential incorpo-
rates three separate terms, including the Hartree-Fock
potentials due to both 2B and 3BFs and higher order
interaction reducible contributions due to the dressed G
and GII propagators. Thus, the full calculation of ⌃?,(1)

requires an iterative procedure to evaluate these propa-
gators self-consistently.

At second order there are only the two interaction ir-
reducible diagrams shown in Fig. 3. Diagram 3a is the
well known contribution due to only 2BFs that freely
propagates two-particle–one-hole (2p1h) and two-hole–
one-particle (2h1p) states. Fig. 3b is the new diagram
arising from explicit 3BF interactions, which may ex-
pected to be less important: this describes contributions
from 3p2h and 3h2p excitations at higher excitation en-
ergies and, moreover, 3BFs are generally weaker than
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any other skeleton diagram. In spite of the fact that
it only contributes to Eq. (16), the e↵ective 1B poten-
tial is very important because it defines in full the en-
ergy independent part of the self energy, hence it rep-
resents the (static) mean field seen by every particle.
Through Eq. (10), we see that this potential incorpo-
rates three separate terms, including the Hartree-Fock
potentials due to both 2B and 3BFs and higher order
interaction reducible contributions due to the dressed G
and GII propagators. Thus, the full calculation of ⌃?,(1)

requires an iterative procedure to evaluate these propa-
gators self-consistently.

At second order there are only the two interaction ir-
reducible diagrams shown in Fig. 3. Diagram 3a is the
well known contribution due to only 2BFs that freely
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imental data on the energy of the first-excited state is
needed to further test the validity of both models.

Very recently, ab initio calculations of open-shell nu-
clei have become possible in the Ca region [48] on the
basis of the self-consistent Gorkov-Green‘s function for-
malism [49]. State-of-the-art chiral two- (NN) [50, 51]
and three-nucleon (3N) [52] interactions adjusted to two-
, three- and four-body observables (up to 4He) are em-
ployed, without any further modification, in the com-
putation of systems containing several tens of nucleons.
We refer to Ref. [48] for further details. In the present
study, Gorkov-Green’s function calculations of the low-
est 1/2+ and 3/2+ states in 43�51K have been performed
by removing a proton from 44�52Ca. Similarly to Fig. 5,
the upper panel of Fig. 6 compares the results to exper-
imental data. The inversion of the states at N = 28 is
not obtained in the calculation, because odd-A spectra
are systematically too spread out [48]. This shortcom-
ing actually correlates with the systematic overbinding of
neighboring even-A ground-states. Still, one observes the
correct relative evolution of the 1/2+ state with respect to
the 3/2+ when going from 43K to 47K and then from 47K
to 49K. As a matter of fact, rescaling the theoretical re-
sults to the experimental ones at, e.g. 47K, demonstrates
that the relative evolution of the two states is quantita-
tively well reproduced. This result is very encouraging for
those first-ever systematic ab initio calculations in mid-
mass nuclei. Indeed, it allows one to speculate that cor-
recting in the near future for the systematic overbinding
produced in the Ca region by currently available chiral
EFT interactions, and thus the too spread out spectra of
odd-A systems, might bring the theoretical calculation in
good agreement with experiment. Although this remains
to be validated, it demonstrates that systematic spec-
troscopic data in mid-mass neutron-rich nuclei provide
a good test case to validate/invalidate specific features
of basic inter-nucleon interactions and innovative many-
body theories.

To complement the above analysis, the lower panel
of Fig. 6 provides the evolution of proton 1d

3/2 and
2s

1/2 shells. These two e↵ective single-particle energies
(ESPEs) recollects [49] the fragmented 3/2+ and 1/2+

strengths obtained from one-proton addition and removal
processes on neighboring Ca isotones. Within the present
theoretical description, the evolution of the observable
(i.e. theoretical-scheme independent) lowest-lying 1/2+

and 3/2+ states does qualitatively reflect the evolution
of the underlying non-observable (i.e. theoretical-scheme
dependent) single-particle shells. As such, the energy gap
between the two shells decreases from 4.81MeV in 43K to
2.39MeV in 47K, which is about 50% reduction. Adding
4 neutrons in the ⌫2p

3/2 causes the energy di↵erence to
increase again to 4.49MeV.

FIG. 6. (color online) Upper panel: energy di↵erence between
the lowest 1/2+ and 3/2+ states obtained in 43�51K from ab
initio Gorkov-Green‘s function calculations and experiment.
Lower panel: ⇡d

3/2 and ⇡s
1/2 e↵ective single-particle energies

in 43�51K.

B. Even-A

The configuration of the even-K isotopes arises from
the coupling between an unpaired proton in the sd shell
with an unpaired neutron. Di↵erent neutron orbits are
involved: starting from 38K where a hole in the ⌫1d

3/2

is expected, then gradually filling the ⌫1f
7/2 and finally,

the ⌫2p
3/2 for 48,50K.

In order to investigate the composition of the ground-
state wave functions of the even-K isotopes, we first com-
pare the experimental magnetic moments to the empiri-
cal values. Based on the additivity rule for the magnetic
moments (g factors) and assuming a weak coupling be-
tween the odd proton and the odd neutron, the empirical
magnetic moments can be calculated using the following
formula [53]: µ

emp

= g
emp

· I, with

g
emp

= g(j⇡)+g(j⌫)
2

+ g(j⇡)�g(j⌫)
2

j⇡(j⇡+1)�j⌫(j⌫+1)

I(I+1)

, (5)

where g(j⇡) and g(j⌫) are the g factors of the nuclei with
an odd proton or neutron from the corresponding orbit
and I the total spin. The calculations were performed
using the measured g factors of the neighboring isotopes
with the odd-even and even-odd number of particles in j⇡
and j⌫ , respectively. For the empirical values of unpaired
protons, results from Table III were used. The g factors
for the odd neutrons were taken from the corresponding
Ca isotones [54–57]. The obtained results with the list of
isotopes used for di↵erent configurations are presented in
Table VI.
A comparison between the experimental and empiri-

cal g factors is shown in Fig. 7. For 38K, the empirical
value calculated from 39K and 39Ca provides excellent

J. Papuga, et al., Phys. Rev. Lett. 110, 172503 (2013);  
J. Papuga, CB, et al., Phys. Rev. C 90, 034321 (2014) 
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discussed by Smirnova et al. in Ref. [11], where a degen-
eracy of the ⇡2s

1/2 and ⇡1d
3/2 levels is predicted to occur

at N = 28 and returns to a ”normal” ordering (⇡2s
1/2

below ⇡1d
3/2) approaching N = 40 (Fig 1(c) in Ref. [11]).

The reordering of the orbitals is driven by the monopole
part of the proton-neutron interaction, which can be de-
composed into three components: the central, vector and
tensor. Initially Otsuka et al. [12] suggested that the
evolution of the ESPEs is mainly due to the tensor com-
ponent. However, in more recent publications [11, 13, 14]
several authors have shown that both the tensor term as
well as the central term have to be considered.

Regarding the shell model, potassium isotopes are ex-
cellent probes for this study, with only one proton less
than the magic number Z = 20. Nevertheless, little
and especially conflicting information is available so far
for the neutron-rich potassium isotopes. Level schemes
based on the tentatively assigned spins of the ground
state were provided for 48K [15] and 49K [16]. In addi-
tion, an extensive discussion was presented by Gaudefroy
[17] on the energy levels and configurations of N = 27, 28
and 29 isotones in the shell-model framework and com-
pared to the experimental observation, where available.
However, the predicted spin of 2� for 48K, is in contra-
diction with I⇡ = (1�) proposed by Królas et al. [15].
In addition, the nuclear spin of the ground state of 50K
was proposed to be 0� [18, 19] in contrast to the recent
� decay studies where it was suggested to be 1� [20].
The ground state spin-parity of 49K was tentatively as-
signed to be (1/2+) by Broda et al. [16], contrary to
the earlier tentative (3/2+) assignment from beta-decay
spectroscopy [21]. For 51K, the nuclear spin was tenta-
tively assigned to be (3/2+) by Perrot et al. [19].

Our recent hyperfine structure measurements of potas-
sium isotopes using the collinear laser spectroscopy tech-
nique provided unambiguous spin values for 48�51K and
gave the answer to the question as to what happens with
the proton sd orbitals for isotopes beyond N = 28. By
measuring the nuclear spins of 49K and 51K to be 1/2 and
3/2 [22] respectively, the evolution of these two states in
the potassium isotopes is firmly established. This is pre-
sented in Fig. 1 for isotopes from N = 18 up to N = 32
where the inversion of the states is observed at N = 28
followed by the reinversion back at N = 32. In addition,
we have confirmed a spin-parity 1� for 48K and 0� for
50K [26]. The measured magnetic moments of 48�51K
were not discussed in detail so far and will be presented
in this article. Additionally, based on the comparison
between experimental data and shell-model calculations,
the configuration of the ground-state wave functions will
be addressed as well. Finally, ab initio Gorkov-Green’s
function calculations of the odd-A isotopes will be dis-
cussed.
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FIG. 1. (color online) Experimental energies for 1/2+ and
3/2+ states in odd-A K isotopes. Inversion of the nuclear spin
is obtained in 47,49K and reinversion back in 51K. Results are
taken from [16, 23–25]. Ground-state spin for 49K and 51K
were established [22].
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FIG. 2. (color online) Schematic representation of the setup
for collinear laser spectroscopy at ISOLDE.

II. EXPERIMENTAL PROCEDURE

The experiment was performed at the collinear
laser spectroscopy beam line COLLAPS [27] at
ISOLDE/CERN. The radioactive ion beam was produced
by 1.4-GeV protons (beam current about 1.7µA) im-
pinging on a thick UC

x

target (45 g/cm2). Ionization of
the resulting fragments was achieved by the surface ion
source. The target and the ionizing tube were heated to
around 2000 0C. The accelerated ions (up to 40 kV) were
mass separated by the high resolution separator (HRS).
The gas-filled Paul trap (ISCOOL) [28, 29] was used
for cooling and bunching of the ions. Multiple bunches
spaced by 90ms were generated after each proton pulse.
The bunched ions were guided to the setup for collinear
laser spectroscopy where they were superimposed with
the laser. A schematic representation of the beam line
for collinear laser spectroscopy is shown in Fig. 2.
A cw titanium:sapphire (Ti:Sa) laser was locked to the

4s 2S
1/2 ! 4p 2P

1/2 transition at 769.9 nm, providing
around 1mW power into the beam line. An applied
voltage of ±10 kV on the charge exchange cell (CEC)
provided the Doppler tuning for the ions, which were
neutralized through the collisions with potassium vapor.
Scanning of the hfs was performed by applying an addi-

2

discussed by Smirnova et al. in Ref. [11], where a degen-
eracy of the ⇡2s

1/2 and ⇡1d
3/2 levels is predicted to occur

at N = 28 and returns to a ”normal” ordering (⇡2s
1/2

below ⇡1d
3/2) approaching N = 40 (Fig 1(c) in Ref. [11]).

The reordering of the orbitals is driven by the monopole
part of the proton-neutron interaction, which can be de-
composed into three components: the central, vector and
tensor. Initially Otsuka et al. [12] suggested that the
evolution of the ESPEs is mainly due to the tensor com-
ponent. However, in more recent publications [11, 13, 14]
several authors have shown that both the tensor term as
well as the central term have to be considered.

Regarding the shell model, potassium isotopes are ex-
cellent probes for this study, with only one proton less
than the magic number Z = 20. Nevertheless, little
and especially conflicting information is available so far
for the neutron-rich potassium isotopes. Level schemes
based on the tentatively assigned spins of the ground
state were provided for 48K [15] and 49K [16]. In addi-
tion, an extensive discussion was presented by Gaudefroy
[17] on the energy levels and configurations of N = 27, 28
and 29 isotones in the shell-model framework and com-
pared to the experimental observation, where available.
However, the predicted spin of 2� for 48K, is in contra-
diction with I⇡ = (1�) proposed by Królas et al. [15].
In addition, the nuclear spin of the ground state of 50K
was proposed to be 0� [18, 19] in contrast to the recent
� decay studies where it was suggested to be 1� [20].
The ground state spin-parity of 49K was tentatively as-
signed to be (1/2+) by Broda et al. [16], contrary to
the earlier tentative (3/2+) assignment from beta-decay
spectroscopy [21]. For 51K, the nuclear spin was tenta-
tively assigned to be (3/2+) by Perrot et al. [19].

Our recent hyperfine structure measurements of potas-
sium isotopes using the collinear laser spectroscopy tech-
nique provided unambiguous spin values for 48�51K and
gave the answer to the question as to what happens with
the proton sd orbitals for isotopes beyond N = 28. By
measuring the nuclear spins of 49K and 51K to be 1/2 and
3/2 [22] respectively, the evolution of these two states in
the potassium isotopes is firmly established. This is pre-
sented in Fig. 1 for isotopes from N = 18 up to N = 32
where the inversion of the states is observed at N = 28
followed by the reinversion back at N = 32. In addition,
we have confirmed a spin-parity 1� for 48K and 0� for
50K [26]. The measured magnetic moments of 48�51K
were not discussed in detail so far and will be presented
in this article. Additionally, based on the comparison
between experimental data and shell-model calculations,
the configuration of the ground-state wave functions will
be addressed as well. Finally, ab initio Gorkov-Green’s
function calculations of the odd-A isotopes will be dis-
cussed.
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FIG. 1. (color online) Experimental energies for 1/2+ and
3/2+ states in odd-A K isotopes. Inversion of the nuclear spin
is obtained in 47,49K and reinversion back in 51K. Results are
taken from [16, 23–25]. Ground-state spin for 49K and 51K
were established [22].
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FIG. 2. (color online) Schematic representation of the setup
for collinear laser spectroscopy at ISOLDE.

II. EXPERIMENTAL PROCEDURE

The experiment was performed at the collinear
laser spectroscopy beam line COLLAPS [27] at
ISOLDE/CERN. The radioactive ion beam was produced
by 1.4-GeV protons (beam current about 1.7µA) im-
pinging on a thick UC

x

target (45 g/cm2). Ionization of
the resulting fragments was achieved by the surface ion
source. The target and the ionizing tube were heated to
around 2000 0C. The accelerated ions (up to 40 kV) were
mass separated by the high resolution separator (HRS).
The gas-filled Paul trap (ISCOOL) [28, 29] was used
for cooling and bunching of the ions. Multiple bunches
spaced by 90ms were generated after each proton pulse.
The bunched ions were guided to the setup for collinear
laser spectroscopy where they were superimposed with
the laser. A schematic representation of the beam line
for collinear laser spectroscopy is shown in Fig. 2.
A cw titanium:sapphire (Ti:Sa) laser was locked to the

4s 2S
1/2 ! 4p 2P

1/2 transition at 769.9 nm, providing
around 1mW power into the beam line. An applied
voltage of ±10 kV on the charge exchange cell (CEC)
provided the Doppler tuning for the ions, which were
neutralized through the collisions with potassium vapor.
Scanning of the hfs was performed by applying an addi-
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$   Error bar in predictions are 
from extrapolating the many-

body expansion to convergence 
of the model space. 

Two-neutron separation energies 
for neutron rich K isotopes 

Measurements  
           @ ISOLTRAP !

The top panel in Fig. 5 shows the experimental and
computed HFB S2n values for the potassium and calcium
isotopic chains. The theoretical S2n are computed for nuclei
of even neutron number. Self-consistent quasiparticle
blocking of the odd protons is performed for the potassium
isotopes, by using the procedure described in Ref. [27].
A strength of the pairing interaction of −200 MeV fm3

reproduces the very smooth S2n trend observed in Ref. [11].
It describes correctly the experimental values on average
but underestimates the drop at the crossing of the magic
neutron numbers. A reduction of the strength of the pairing
interaction (solid lines) leads to a significant improvement
of the description of the experimental S2n trend. The
addition of the tensor term with the SLy5 interaction leads
to a change in the wrong direction. However, a recent
work [28] has shown that the effect of the tensor term in
mean-field calculations strongly depends on the way it is
constrained to experimental data.
In addition to the empirical HFB approach, it is now

possible to perform calculations up to the medium mass
region using ab initio methods (see, e.g., Refs. [29–36]).

Thus, new mass calculations have been performed in the
ab initio GGF framework [31,37,38] that allow for the
study of open-shell nuclei. This method is particularly
suited for the present purpose due to the ease of calculating
odd-even systems, which also makes it a unique tool to
investigate neighboring isotopic chains.
In our calculations, the only input are two- and three-

body interactions fitted to properties of systems with
A ¼ 2, 3, and 4, without any further adjustments of the
parameters. GGF calculations have recently addressed
the region around Z ¼ 20 [31] and are extended here for
the first time beyond N ¼ 32 for potassium.
The present calculations made use of two- and three-

nucleon forces derived within chiral effective field theory at
next-to-next-to- and next-to-next-to-next-to-leading order
(N2LO and N3LO), respectively [39,40], extended to the
low-momentum scale λ ¼ 2.0 fm−1 by means of free-space
similarity renormalization-group techniques. The many-
body treatment is set by a second-order truncation in the
GGF self-energy expansion [37]. Model spaces up to 14
harmonic oscillator shells were employed, and three-body
interactions were restricted to basis states with E3max ≤ 16.
Infrared extrapolations of the calculated ground state
energies were subsequently performed following
Ref. [41]. We note that, in the present case, this procedure
is formally defective due to the different truncations of one-
and three-body model spaces. Nevertheless, we find that
the trend expected from Ref. [41] is qualitatively repro-
duced, although with larger extrapolation uncertainties.
This is in agreement with other calculations [35]. As an
example, we obtain binding energies of 439.52(0.71) MeV
for 51K and 443.31(0.85) MeV for 53K. This overbinding of
about 0.7 MeV=A is a general feature of currently available
chiral interactions, and it is a constant effect through-
out the whole isotopic chain that cancels in separation
energies [31,35,36].
GGF results for S2n of 47;49;51;53K and 48;50;52;54Ca are

shown in the bottom panel in Fig. 5 and are all resulting
from the infrared extrapolation. Different sources of
uncertainty affect the present theoretical results (see
Refs. [31,38] for a detailed discussion). In particular, this
method breaks particle-number symmetry (like HFB
theory) and generates the correct expectation values for
the proton and neutron numbers only on average, with a
finite variance. However, the associated errors are expected
to cancel with good accuracy for energy differences (such
as S2n). The uncertainties indicated in Fig. 5 are uniquely
those originating from the extrapolation fit and range
between 0.4 and 1.5 MeV with increasing mass number.
In general, GGF calculations are in fair agreement with
measured S2n, with the mismatch at 53K being on the order
of the truncation error. The significant drop from 51K to 53K
is qualitatively reproduced but overestimated by theory,
which also leads to an overestimation of the empirical shell
gap for potassium. In contrast to the N ¼ 28 gap, which is
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FIG. 5 (color online). Two-neutron separation energies for the
isotopic chains of potassium (left axes) and calcium (right axes);
note the shifted scales. Open symbols, data from Ref. [21]; filled
symbols, calcium data from Ref. [11] and new mass data from
this work. Top: With S2n values from HFB calculations using the
SLy4 (green lines) and the SLy5 (red lines) interaction, with
volume-type delta pairing of strength V0 ¼ −150 MeV fm3

(solid lines) or V0 ¼ −200 MeV fm3 (dashed lines). Bottom:
With S2n values obtained from ab initio Gorkov-Green function
theory (see the text for details).
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- Constrain NN phase shifts 

- Constrain radii and energies 
up to A≤24 
 
# Provides saturation up to 
large masses! 
 

Emergent properties of nuclei from ab initio coupled-cluster calculations 8

Figure 2. (Color online) Ground-state energies per nucleon (top) and di↵erences
between theoretical and experimental charge radii (bottom) for selected nuclei
and results from ab initio computations. The red diamonds mark results based
on the chiral interaction NNLOsat. The blue shaded columns indicate which
nuclei where included in the optimization of NNLOsat, while the white columns
are predictions. References: a [81, 82], b [63], c [83], d [84], e [85], f [49], g [86],
h [87], i [88],j [23],k [89].

3. Continuum e↵ects

Recently, e↵orts have been made in formulating an ab initio theory that unifies both
structure and reactions in nuclei [91, 92, 93, 94, 95, 96]. To describe reactions in
nuclei one needs to account for decay channels in which coupling to both bound-
and scattering states are important. The coupling to the continuum impacts also the
level ordering of unbound states and shell-structure in nuclei. Understanding how shell
structure evolve in neutron-rich nuclei is of great experimental and theoretical interest,
in particular since shell structures impact the limits of stability known as the dripline
(that is the limit where adding another neutron or proton to a bound isotope does
not produce a particle stable ground-state), and thereby the number of nuclei that
can exist. As the neutron-to-proton ratio varies it has been found in several isotopes
that the magic numbers 2, 8, 20, 28, 50, . . . of the shell-model of Goeppert-Mayer and
Jensen can be less magic than expected, while the appearance of new magic numbers
in other isotopes have been observed. In this section we discuss and present new
results for unbound states in the neutron-rich oxygen and calcium isotopes, with an
emphasis on the role of coupling to the particle continuum and state-of-the-art chiral
nucleon-nucleon and three-nucleon interactions.

3.1. Coupled-cluster calculations based on a Gamow-Hartree-Fock basis

As discussed in the previous section, coupled-cluster calculations based on chiral
nucleon-nucleon and 3NFs can now accurately describe bulk properties such as binding
energies and radii of light- and medium-mass nuclei. To provide experiment with



- New fits of chiral interactions (NNLOsat) 
highly improve comparison to data 
 
- Deficiencies remain for neutron rich 
isotopes 

structure calculations [3, 4]. Many-body techniques have
themselves undergone major progress and extended their
domain of applicability both in mass and in terms of ac-
cessible (open-shell) isotopes for a given element [5–15].
As a result, today the structure of light and medium-
mass nuclei has become a testing ground for our basic
understanding of nuclear forces.

An emblematic case that has received considerable at-
tention is the one of oxygen binding energies, where sev-
eral calculations have established the crucial role played
by 3N forces in the reproduction of the neutron drip
line at 24O (i.e. in explaining the so-called “oxygen
anomaly”) [6, 16–19]. The excellent agreement between
experimental data and theoretical calculations based on
a next-to-next-to-next-to-leading order (N3LO) 2N and
N2LO 3N chiral interaction (EM) [20–22] was greeted as
a milestone for ab initio methods and modern models
of inter-nucleon interactions, even though a consistent
description of nuclear radii could not be achieved at the
same time [23]. Since then, this mismatch has remained a
puzzle. Subsequent calculations of heavier systems [7–9]
and infinite nuclear matter [24, 25] confirmed the system-
atic underestimation of charge radii, a sizeable overbind-
ing and too spread-out spectra, all pointing to an incor-
rect reproduction of the saturation properties of nuclear
matter. This led to the development of a novel nuclear
interaction, labelled NNLOsat [26], which includes con-
tributions up to N2LO in the chiral EFT expansion (both
in 2N and 3N sector) and di↵ers from EM in two main as-
pects. First, the optimisation of the (“low-energy”) cou-
pling constants is performed simultaneously for 2N and
3N terms [27], while EM and accompanying 3N forces are
optimised sequentially. Second, experimental constraints
from light nuclei (namely energies and charge radii in
some C and O isotopes) are included in the fit of such
low-energy constants in addition to observables from few-
body systems. This second aspect represents a departure
from the usual reductionist strategy of ab initio calcula-
tions followed by EM, in which parameters in the A-body
sector are fixed uniquely by observables in A-body sys-
tems. Although first applications point to good predic-
tive power for ground-state properties [26, 28], the per-
formance of the NNLOsat potential remains to be tested
along isotopic chains and for excited states.

In the present work we employ two di↵erent
many-body approaches, self-consistent Green’s function
(SCGF) and in-medium similarity renormalisation group
(IM-SRG). Each of them is available in two versions.
The first is based on standard expansion schemes and
thus applicable only to closed-shell nuclei. It is referred
to as Dyson-SCGF (DGF) [29] and single-reference IM-
SRG (SR-IM-SRG) [30] respectively. The second version
builds on Bogoliubov-type reference states and thus allow
for a proper treatment of pairing correlations, resulting in
the description of systems displaying an open-shell char-
acter. Such version is labelled Gorkov-SCGF (GGF) [5]
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FIG. 1. Oxygen binding energies. Results from SCGF
and IMSRG calculations performed with EM [20–22] and
NNLOsat [26] interactions are displayed along with available
experimental data.

and multi-reference IM-SRG (MR-IM-SRG) [6] respec-
tively. For the MR-IM-SRG, the reference state is first
projected on good proton and neutron numbers. Hav-
ing di↵erent ab initio approaches at hand is crucial to
benchmark theoretical results and infer as unbiased as
possible information on the input of such calculations,
i.e. inter-nucleon forces. Moreover, while DGF (here in
the ADC(3) approximation scheme), SR- and MR-IM-
SRG feature a comparable content in terms of many-body
expansion, GGF currently includes a lower amount of
many-body correlations, which allows testing the many-
body convergence [7].

We first compute total binding energies EB for oxygen
isotopes 14�24O for the two sets of 2N and 3N interactions
with the four many-body schemes. EM is further evolved
to a low-momentum scale � = 1.88�2.0 fm�1 by means of
SRG techniques [31]. Results are displayed in Fig. 1. For
both interactions, di↵erent many-body calculations yield
values of EB spanning intervals of up to 10 MeV, from 5
to 10% of the total. Compared to experimental binding
energies, EM and NNLOsat perform similarly, following
the trend of available data along the chain both in ab-
solute and in relative terms. Overall, results shown in
Fig. 1 confirm previous findings for EM and validate the
use along the isotopic chain for NNLOsat .

While nuclear masses have been experimentally deter-
mined for the majority of known light and medium-mass
nuclei, measurements of charge and matter radii are typ-
ically more challenging. Charge radii for stable isotopes
have been accessed in the past by means of electron scat-
tering [32]. In addition to charge rms radii, analytical
forms of fitted experimental charge densities can be ex-
tracted from (e,e) cross sections. Standard forms include
2- or 3-parameter Fermi (2pF or 3pF) profiles [33]. For
extended sets of (e,e) data (in terms of momentum trans-
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FIG. 4. Proton (top) and neutron (bottom) radii obtained
from IM-SRG and SCGF calculations with EM [20–22] and
NNLOsat [26] interactions. For protons, experimental values
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oxygen chain, the heaviest one for which experimental in-
formation on both binding energies and radii is available
up to the neutron drip line. We showed that analysing
(p,p) scattering data allows one to obtain information
on nuclear sizes of unstable isotopes within 0.1 fm. The
combined comparison of measured charge/matter radii
and binding energies with state-of-the-art ab initio cal-
culations o↵ers unique insight on nuclear forces. On the
one hand, EM, a current standard for nuclear theory em-
ploying only 2-, 3- and 4-body observables in the fit of
the low-energy constants thus sticking to the (strict) re-
ductionist strategy, yields an excellent reproduction of
binding energies but significantly underestimates charge
and matter radii. On the other hand, unconventional
NNLOsat , while maintaining a good energy systematics,
clearly improves the description of absolute radii, though
leaving room for refinement for what concerns isotope
shifts. Given the alternative fitting procedure, such an
output raises questions about the choice of observables
that should be included in the fit and the resulting pre-
dictive power whenever this strategy is followed.

More precise information on oxygen radii, e.g. rch via
laser spectroscopy measurements, would allow confirming
our (p,p) analysis and further refining the present discus-
sion. Future, similar studies in heavier isotopes will also
preciously contribute to the systematic development of
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nuclear forces. From the many-body point of view, the
consistent inclusion of higher-body terms in the charge
radius operator is envisaged and might eventually a↵ect
the present discussion. Finally, we stress that a simulta-
neous reproduction of binding energies and radii in stable
and neutron-rich nuclei is mandatory for reliable struc-
ture but even more for reaction calculations. Scattering
amplitudes and nucleon-nucleus interactions evolve as a
function of the size, which should be consistently taken
into account specially when more microscopic reaction
approaches are considered.
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formation on both binding energies and radii is available
up to the neutron drip line. We showed that analysing
(p,p) scattering data allows one to obtain information
on nuclear sizes of unstable isotopes within 0.1 fm. The
combined comparison of measured charge/matter radii
and binding energies with state-of-the-art ab initio cal-
culations o↵ers unique insight on nuclear forces. On the
one hand, EM, a current standard for nuclear theory em-
ploying only 2-, 3- and 4-body observables in the fit of
the low-energy constants thus sticking to the (strict) re-
ductionist strategy, yields an excellent reproduction of
binding energies but significantly underestimates charge
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clearly improves the description of absolute radii, though
leaving room for refinement for what concerns isotope
shifts. Given the alternative fitting procedure, such an
output raises questions about the choice of observables
that should be included in the fit and the resulting pre-
dictive power whenever this strategy is followed.

More precise information on oxygen radii, e.g. rch via
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nuclear forces. From the many-body point of view, the
consistent inclusion of higher-body terms in the charge
radius operator is envisaged and might eventually a↵ect
the present discussion. Finally, we stress that a simulta-
neous reproduction of binding energies and radii in stable
and neutron-rich nuclei is mandatory for reliable struc-
ture but even more for reaction calculations. Scattering
amplitudes and nucleon-nucleus interactions evolve as a
function of the size, which should be consistently taken
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We present a systematic study of both nuclear radii and binding energies in (even) oxygen isotopes from
the valley of stability to the neutron drip line. Both charge and matter radii are compared to state-of-the-art
ab initio calculations along with binding energy systematics. Experimental matter radii are obtained
through a complete evaluation of the available elastic proton scattering data of oxygen isotopes. We show
that, in spite of a good reproduction of binding energies, ab initio calculations with conventional nuclear
interactions derived within chiral effective field theory fail to provide a realistic description of charge and
matter radii. A novel version of two- and three-nucleon forces leads to considerable improvement of the
simultaneous description of the three observables for stable isotopes but shows deficiencies for the most
neutron-rich systems. Thus, crucial challenges related to the development of nuclear interactions remain.

DOI: 10.1103/PhysRevLett.117.052501

Our present understanding of atomic nuclei faces the
following major questions. Experimentally, we aim (i) to
determine the location of the proton and neutron drip lines
[1,2], i.e., the limits in neutron numbers N upon which, for
fixed proton number Z, with decreasing or increasing N,
nuclei are not bound with respect to particle emission, and
(ii) to measure nuclear structure observables offering sys-
tematic tests of microscopic models. While nuclear masses
have been experimentally determined for the majority of
known light and medium-mass nuclei [3], measurements of
charge and matter radii are typically more challenging.
Charge radii for stable isotopes have been accessed in the
past bymeans of electron scattering [4]. In recent years, laser
spectroscopy experiments allow extending such measure-
ments to unstable nuclei with lifetimes down to a few
milliseconds [5]. Matter radii are determined by scattering
with hadronic probes which requires a modelization of the
reaction mechanism. Theoretically, intensive works have
also been performed towards linking a universal description
of atomic nuclei to elementary interactions [6–8] amongst
constituent nucleons and, ultimately, to the underlying
theory of strong interactions, quantum chromodynamics
(QCD). If accomplished, this ab initio description would be
beneficial both for a deep understanding of known nuclei
(stable and unstable, totalling around 3300) and to predict on
reliable bases the features of undiscovered ones (few more
thousands are expected). Many of the latter are not, in the
foreseeable future, experimentally at reach, yet they are
crucial to understanding nucleosynthesis phenomena,
modelled using large sets of evaluated data and of calculated
observables.
The reliability of first-principles calculations depends

upon a consistent understanding of fundamental

observables: ground-state characteristics of nuclei related
to their existence (masses, expressed as binding energies)
and sizes (expressed as root mean square—rms—radii).
Special interest resides in the study of masses and sizes for
a given element along isotopic chains. Experimentally, their
determination is increasingly difficult as one approaches
the neutron drip line; as of today, the heaviest element with
available data on all existing bound isotopes is oxygen
(Z ¼ 8) [3]. Using theoretical simulations, the link between
nuclear properties and internucleon forces can be explored
for different N=Z values, thus, critically testing both our
knowledge of nuclear forces and many-body theories.
In this work, we focus on oxygen isotopes for which, in

spite of the tremendous progress of recent ab initiomethods,
a simultaneous reproduction of masses and radii has not yet
been achieved. We present important findings from novel
ab initio calculations along with a complete evaluation of
matter radii, rm, for stable and neutron-rich oxygen isotopes.
Here, rm are deduced via a microscopic reanalysis of proton
elastic scattering data sets. They complement charge radii
rch, offering an extended comparison through the isotopic
chain that allows testing state-of-the-art many-body calcu-
lations. We show that a recent version of two- and
three-nucleon (2N and 3N) forces leads to considerable
improvement in the critical description of radii.
A viable ab initio strategy consists in exploiting the

separation of scales between QCD and (low-energy)
nuclear dynamics, taking point nucleons as degrees of
freedom. For decades, realistic 2N interactions were built
from fitting scattering data, see, e.g., [6]. However, model
limitations were seen through discrepancies with exper-
imental data, like underbinding of finite nuclei and inad-
equate saturation properties of extended nuclear matter.
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This suggests that 
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many-body truncations 
beyond 2nd order Gorkov 
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(work in progress!) 
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FIG. 1. (Color online) Single-particle spectral distributions for
the addition and removal of a proton to/from closed-subshell oxygen
isotopes. States above the Fermi surface (EF ) are indicated by the
shaded areas and yield the spectra of the resulting odd-even fluorine
isotopes. The spectra below EF are for odd-even nitrogen isotopes in
the final state (this appears inverted in the plot, with higher excitation
energies pointing downward). Fragments with different angular
momentum and parity are shown with different colors, as indicated,
and the bar lengths provide the calculated spectroscopic factors. These
results are obtained from ADC(3) and the full NN + 3NF interaction
with λSRG = 2.0 fm−1.
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FIG. 2. (Color online) Same as Fig. 1 but for the addition and
removal of a neutron. Both particle (shaded areas) and hole spectra
correspond to odd-even oxygen isotopes.

(A − 1)-nucleon wave functions in the continuum and the
bound |"A

0 ⟩ ground state.
The fragments of the spectral distribution provide the

excitation spectrum for the neighboring odd-even isotopes.
For example, the two dominant quasihole peaks in 24O in
Fig. 2 correspond to the 1/2+ ground state and the 5/2+

excitation of 23O. Our calculated excitation energy for the
5/2+ state is 2.74 MeV, close to the experimental value of
2.79(13) MeV [64]. The 3/2+ state of 23O can be calculated
from the quasiparticle spectra of 22O. For this we obtain
5.0 MeV excitation energy, which is larger than the experi-
mental value of 4.0 MeV [62]. In both cases, the theoretical
result agrees with the ab initio configuration interaction (CI)
calculations of Refs. [32,33], which use the same NN + 3NF
full Hamiltonian. As mentioned above, satellite peaks (that
is, nondominant ones) are not necessarily well described in
nucleon-attached and nucleon-removal methods at the ADC(3)
level. This because they require leading-order configurations
of 2p1h/2h1p type or higher. The first 1/2+ excited state of 21O,
seen as a hole on 22O, is of this type and has a spectroscopic
factor ≈9% of the independent particle model. In spite of this,
the ADC(3) excitation energy is 1.78 MeV, which is again in
great agreement with CI calculations based on the same Hamil-
tonian (and slightly off the experimental value of 1.22 MeV
[65]). Instead, the calculated spectroscopic factor the the 3/2+

excited state is only <1% and this is unlikely to be converged
with respect to the many-body truncation in the ADC(3). For
this state, we obtain an excitation energy of 940 keV that
disagrees with both the experiment and the ab initio CI results,
as expected. These results give a further confirmation of the
performance of the present chiral Hamiltonian with the single
sd shell. Furthermore, we note that the comparison with Refs.
[32,33] provides a successful benchmark of the accuracy of
ADC(3) for calculating dominant quasiparticle states. We then
use the latter to discuss the single-particle structure across both
p and sd shells.

Figure 3 shows the details of the evolution of the
dominant proton quasiparticle and quasihole peaks in the
sd and p shells for increasing neutron number. These
are corrected for the effects of the c.m. motion accord-
ing to Eqs. (12). The dashed lines are obtained from the
NN + 3N -induced interaction and represent the spectrum
predicted by the initial N3LO NN force. In general, the
addition of original 3NFs (solid lines) has the effect of
consistently increasing the spin-orbit splittings between the
1/2−–3/2− and the 3/2+–5/2+ dominant peaks. The s1/2 orbit
remain largely unaffected. The overall changes introduced
by leading-order 3NFs are reported in Tables I and II
for both protons and neutrons. The evolution of quasiparticle
energies for the addition and the removal of a neutron is
displayed in Fig. 4. In this case, the 1/2− and 3/2− strength (in
the p shell) is strongly fragmented for masses above A = 20
and no clear dominant peak is predicted. The original 3NFs still
have the effect of increasing the splitting between spin-orbit
partner states. However, this is in addition to the stronger
repulsion on the d3/2 orbit that is at the origin of the anomalous
dripline at 24O [16].

Worth mentioning are the splittings between the 1/2− and
the 3/2− quasiholes in 16O. For protons, this is predicted to be
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FIG. 1. (Color online) Single-particle spectral distributions for
the addition and removal of a proton to/from closed-subshell oxygen
isotopes. States above the Fermi surface (EF ) are indicated by the
shaded areas and yield the spectra of the resulting odd-even fluorine
isotopes. The spectra below EF are for odd-even nitrogen isotopes in
the final state (this appears inverted in the plot, with higher excitation
energies pointing downward). Fragments with different angular
momentum and parity are shown with different colors, as indicated,
and the bar lengths provide the calculated spectroscopic factors. These
results are obtained from ADC(3) and the full NN + 3NF interaction
with λSRG = 2.0 fm−1.
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FIG. 2. (Color online) Same as Fig. 1 but for the addition and
removal of a neutron. Both particle (shaded areas) and hole spectra
correspond to odd-even oxygen isotopes.

(A − 1)-nucleon wave functions in the continuum and the
bound |"A

0 ⟩ ground state.
The fragments of the spectral distribution provide the

excitation spectrum for the neighboring odd-even isotopes.
For example, the two dominant quasihole peaks in 24O in
Fig. 2 correspond to the 1/2+ ground state and the 5/2+

excitation of 23O. Our calculated excitation energy for the
5/2+ state is 2.74 MeV, close to the experimental value of
2.79(13) MeV [64]. The 3/2+ state of 23O can be calculated
from the quasiparticle spectra of 22O. For this we obtain
5.0 MeV excitation energy, which is larger than the experi-
mental value of 4.0 MeV [62]. In both cases, the theoretical
result agrees with the ab initio configuration interaction (CI)
calculations of Refs. [32,33], which use the same NN + 3NF
full Hamiltonian. As mentioned above, satellite peaks (that
is, nondominant ones) are not necessarily well described in
nucleon-attached and nucleon-removal methods at the ADC(3)
level. This because they require leading-order configurations
of 2p1h/2h1p type or higher. The first 1/2+ excited state of 21O,
seen as a hole on 22O, is of this type and has a spectroscopic
factor ≈9% of the independent particle model. In spite of this,
the ADC(3) excitation energy is 1.78 MeV, which is again in
great agreement with CI calculations based on the same Hamil-
tonian (and slightly off the experimental value of 1.22 MeV
[65]). Instead, the calculated spectroscopic factor the the 3/2+

excited state is only <1% and this is unlikely to be converged
with respect to the many-body truncation in the ADC(3). For
this state, we obtain an excitation energy of 940 keV that
disagrees with both the experiment and the ab initio CI results,
as expected. These results give a further confirmation of the
performance of the present chiral Hamiltonian with the single
sd shell. Furthermore, we note that the comparison with Refs.
[32,33] provides a successful benchmark of the accuracy of
ADC(3) for calculating dominant quasiparticle states. We then
use the latter to discuss the single-particle structure across both
p and sd shells.

Figure 3 shows the details of the evolution of the
dominant proton quasiparticle and quasihole peaks in the
sd and p shells for increasing neutron number. These
are corrected for the effects of the c.m. motion accord-
ing to Eqs. (12). The dashed lines are obtained from the
NN + 3N -induced interaction and represent the spectrum
predicted by the initial N3LO NN force. In general, the
addition of original 3NFs (solid lines) has the effect of
consistently increasing the spin-orbit splittings between the
1/2−–3/2− and the 3/2+–5/2+ dominant peaks. The s1/2 orbit
remain largely unaffected. The overall changes introduced
by leading-order 3NFs are reported in Tables I and II
for both protons and neutrons. The evolution of quasiparticle
energies for the addition and the removal of a neutron is
displayed in Fig. 4. In this case, the 1/2− and 3/2− strength (in
the p shell) is strongly fragmented for masses above A = 20
and no clear dominant peak is predicted. The original 3NFs still
have the effect of increasing the splitting between spin-orbit
partner states. However, this is in addition to the stronger
repulsion on the d3/2 orbit that is at the origin of the anomalous
dripline at 24O [16].

Worth mentioning are the splittings between the 1/2− and
the 3/2− quasiholes in 16O. For protons, this is predicted to be
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FIG. 1. (Color online) Single-particle spectral distributions for
the addition and removal of a proton to/from closed-subshell oxygen
isotopes. States above the Fermi surface (EF ) are indicated by the
shaded areas and yield the spectra of the resulting odd-even fluorine
isotopes. The spectra below EF are for odd-even nitrogen isotopes in
the final state (this appears inverted in the plot, with higher excitation
energies pointing downward). Fragments with different angular
momentum and parity are shown with different colors, as indicated,
and the bar lengths provide the calculated spectroscopic factors. These
results are obtained from ADC(3) and the full NN + 3NF interaction
with λSRG = 2.0 fm−1.
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FIG. 2. (Color online) Same as Fig. 1 but for the addition and
removal of a neutron. Both particle (shaded areas) and hole spectra
correspond to odd-even oxygen isotopes.

(A − 1)-nucleon wave functions in the continuum and the
bound |"A

0 ⟩ ground state.
The fragments of the spectral distribution provide the

excitation spectrum for the neighboring odd-even isotopes.
For example, the two dominant quasihole peaks in 24O in
Fig. 2 correspond to the 1/2+ ground state and the 5/2+

excitation of 23O. Our calculated excitation energy for the
5/2+ state is 2.74 MeV, close to the experimental value of
2.79(13) MeV [64]. The 3/2+ state of 23O can be calculated
from the quasiparticle spectra of 22O. For this we obtain
5.0 MeV excitation energy, which is larger than the experi-
mental value of 4.0 MeV [62]. In both cases, the theoretical
result agrees with the ab initio configuration interaction (CI)
calculations of Refs. [32,33], which use the same NN + 3NF
full Hamiltonian. As mentioned above, satellite peaks (that
is, nondominant ones) are not necessarily well described in
nucleon-attached and nucleon-removal methods at the ADC(3)
level. This because they require leading-order configurations
of 2p1h/2h1p type or higher. The first 1/2+ excited state of 21O,
seen as a hole on 22O, is of this type and has a spectroscopic
factor ≈9% of the independent particle model. In spite of this,
the ADC(3) excitation energy is 1.78 MeV, which is again in
great agreement with CI calculations based on the same Hamil-
tonian (and slightly off the experimental value of 1.22 MeV
[65]). Instead, the calculated spectroscopic factor the the 3/2+

excited state is only <1% and this is unlikely to be converged
with respect to the many-body truncation in the ADC(3). For
this state, we obtain an excitation energy of 940 keV that
disagrees with both the experiment and the ab initio CI results,
as expected. These results give a further confirmation of the
performance of the present chiral Hamiltonian with the single
sd shell. Furthermore, we note that the comparison with Refs.
[32,33] provides a successful benchmark of the accuracy of
ADC(3) for calculating dominant quasiparticle states. We then
use the latter to discuss the single-particle structure across both
p and sd shells.

Figure 3 shows the details of the evolution of the
dominant proton quasiparticle and quasihole peaks in the
sd and p shells for increasing neutron number. These
are corrected for the effects of the c.m. motion accord-
ing to Eqs. (12). The dashed lines are obtained from the
NN + 3N -induced interaction and represent the spectrum
predicted by the initial N3LO NN force. In general, the
addition of original 3NFs (solid lines) has the effect of
consistently increasing the spin-orbit splittings between the
1/2−–3/2− and the 3/2+–5/2+ dominant peaks. The s1/2 orbit
remain largely unaffected. The overall changes introduced
by leading-order 3NFs are reported in Tables I and II
for both protons and neutrons. The evolution of quasiparticle
energies for the addition and the removal of a neutron is
displayed in Fig. 4. In this case, the 1/2− and 3/2− strength (in
the p shell) is strongly fragmented for masses above A = 20
and no clear dominant peak is predicted. The original 3NFs still
have the effect of increasing the splitting between spin-orbit
partner states. However, this is in addition to the stronger
repulsion on the d3/2 orbit that is at the origin of the anomalous
dripline at 24O [16].

Worth mentioning are the splittings between the 1/2− and
the 3/2− quasiholes in 16O. For protons, this is predicted to be
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the addition and removal of a proton to/from closed-subshell oxygen
isotopes. States above the Fermi surface (EF ) are indicated by the
shaded areas and yield the spectra of the resulting odd-even fluorine
isotopes. The spectra below EF are for odd-even nitrogen isotopes in
the final state (this appears inverted in the plot, with higher excitation
energies pointing downward). Fragments with different angular
momentum and parity are shown with different colors, as indicated,
and the bar lengths provide the calculated spectroscopic factors. These
results are obtained from ADC(3) and the full NN + 3NF interaction
with λSRG = 2.0 fm−1.
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removal of a neutron. Both particle (shaded areas) and hole spectra
correspond to odd-even oxygen isotopes.
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excitation spectrum for the neighboring odd-even isotopes.
For example, the two dominant quasihole peaks in 24O in
Fig. 2 correspond to the 1/2+ ground state and the 5/2+

excitation of 23O. Our calculated excitation energy for the
5/2+ state is 2.74 MeV, close to the experimental value of
2.79(13) MeV [64]. The 3/2+ state of 23O can be calculated
from the quasiparticle spectra of 22O. For this we obtain
5.0 MeV excitation energy, which is larger than the experi-
mental value of 4.0 MeV [62]. In both cases, the theoretical
result agrees with the ab initio configuration interaction (CI)
calculations of Refs. [32,33], which use the same NN + 3NF
full Hamiltonian. As mentioned above, satellite peaks (that
is, nondominant ones) are not necessarily well described in
nucleon-attached and nucleon-removal methods at the ADC(3)
level. This because they require leading-order configurations
of 2p1h/2h1p type or higher. The first 1/2+ excited state of 21O,
seen as a hole on 22O, is of this type and has a spectroscopic
factor ≈9% of the independent particle model. In spite of this,
the ADC(3) excitation energy is 1.78 MeV, which is again in
great agreement with CI calculations based on the same Hamil-
tonian (and slightly off the experimental value of 1.22 MeV
[65]). Instead, the calculated spectroscopic factor the the 3/2+

excited state is only <1% and this is unlikely to be converged
with respect to the many-body truncation in the ADC(3). For
this state, we obtain an excitation energy of 940 keV that
disagrees with both the experiment and the ab initio CI results,
as expected. These results give a further confirmation of the
performance of the present chiral Hamiltonian with the single
sd shell. Furthermore, we note that the comparison with Refs.
[32,33] provides a successful benchmark of the accuracy of
ADC(3) for calculating dominant quasiparticle states. We then
use the latter to discuss the single-particle structure across both
p and sd shells.

Figure 3 shows the details of the evolution of the
dominant proton quasiparticle and quasihole peaks in the
sd and p shells for increasing neutron number. These
are corrected for the effects of the c.m. motion accord-
ing to Eqs. (12). The dashed lines are obtained from the
NN + 3N -induced interaction and represent the spectrum
predicted by the initial N3LO NN force. In general, the
addition of original 3NFs (solid lines) has the effect of
consistently increasing the spin-orbit splittings between the
1/2−–3/2− and the 3/2+–5/2+ dominant peaks. The s1/2 orbit
remain largely unaffected. The overall changes introduced
by leading-order 3NFs are reported in Tables I and II
for both protons and neutrons. The evolution of quasiparticle
energies for the addition and the removal of a neutron is
displayed in Fig. 4. In this case, the 1/2− and 3/2− strength (in
the p shell) is strongly fragmented for masses above A = 20
and no clear dominant peak is predicted. The original 3NFs still
have the effect of increasing the splitting between spin-orbit
partner states. However, this is in addition to the stronger
repulsion on the d3/2 orbit that is at the origin of the anomalous
dripline at 24O [16].

Worth mentioning are the splittings between the 1/2− and
the 3/2− quasiholes in 16O. For protons, this is predicted to be
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FIG. 1. (Color online) Single-particle spectral distributions for
the addition and removal of a proton to/from closed-subshell oxygen
isotopes. States above the Fermi surface (EF ) are indicated by the
shaded areas and yield the spectra of the resulting odd-even fluorine
isotopes. The spectra below EF are for odd-even nitrogen isotopes in
the final state (this appears inverted in the plot, with higher excitation
energies pointing downward). Fragments with different angular
momentum and parity are shown with different colors, as indicated,
and the bar lengths provide the calculated spectroscopic factors. These
results are obtained from ADC(3) and the full NN + 3NF interaction
with λSRG = 2.0 fm−1.
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FIG. 2. (Color online) Same as Fig. 1 but for the addition and
removal of a neutron. Both particle (shaded areas) and hole spectra
correspond to odd-even oxygen isotopes.

(A − 1)-nucleon wave functions in the continuum and the
bound |"A

0 ⟩ ground state.
The fragments of the spectral distribution provide the

excitation spectrum for the neighboring odd-even isotopes.
For example, the two dominant quasihole peaks in 24O in
Fig. 2 correspond to the 1/2+ ground state and the 5/2+

excitation of 23O. Our calculated excitation energy for the
5/2+ state is 2.74 MeV, close to the experimental value of
2.79(13) MeV [64]. The 3/2+ state of 23O can be calculated
from the quasiparticle spectra of 22O. For this we obtain
5.0 MeV excitation energy, which is larger than the experi-
mental value of 4.0 MeV [62]. In both cases, the theoretical
result agrees with the ab initio configuration interaction (CI)
calculations of Refs. [32,33], which use the same NN + 3NF
full Hamiltonian. As mentioned above, satellite peaks (that
is, nondominant ones) are not necessarily well described in
nucleon-attached and nucleon-removal methods at the ADC(3)
level. This because they require leading-order configurations
of 2p1h/2h1p type or higher. The first 1/2+ excited state of 21O,
seen as a hole on 22O, is of this type and has a spectroscopic
factor ≈9% of the independent particle model. In spite of this,
the ADC(3) excitation energy is 1.78 MeV, which is again in
great agreement with CI calculations based on the same Hamil-
tonian (and slightly off the experimental value of 1.22 MeV
[65]). Instead, the calculated spectroscopic factor the the 3/2+

excited state is only <1% and this is unlikely to be converged
with respect to the many-body truncation in the ADC(3). For
this state, we obtain an excitation energy of 940 keV that
disagrees with both the experiment and the ab initio CI results,
as expected. These results give a further confirmation of the
performance of the present chiral Hamiltonian with the single
sd shell. Furthermore, we note that the comparison with Refs.
[32,33] provides a successful benchmark of the accuracy of
ADC(3) for calculating dominant quasiparticle states. We then
use the latter to discuss the single-particle structure across both
p and sd shells.

Figure 3 shows the details of the evolution of the
dominant proton quasiparticle and quasihole peaks in the
sd and p shells for increasing neutron number. These
are corrected for the effects of the c.m. motion accord-
ing to Eqs. (12). The dashed lines are obtained from the
NN + 3N -induced interaction and represent the spectrum
predicted by the initial N3LO NN force. In general, the
addition of original 3NFs (solid lines) has the effect of
consistently increasing the spin-orbit splittings between the
1/2−–3/2− and the 3/2+–5/2+ dominant peaks. The s1/2 orbit
remain largely unaffected. The overall changes introduced
by leading-order 3NFs are reported in Tables I and II
for both protons and neutrons. The evolution of quasiparticle
energies for the addition and the removal of a neutron is
displayed in Fig. 4. In this case, the 1/2− and 3/2− strength (in
the p shell) is strongly fragmented for masses above A = 20
and no clear dominant peak is predicted. The original 3NFs still
have the effect of increasing the splitting between spin-orbit
partner states. However, this is in addition to the stronger
repulsion on the d3/2 orbit that is at the origin of the anomalous
dripline at 24O [16].

Worth mentioning are the splittings between the 1/2− and
the 3/2− quasiholes in 16O. For protons, this is predicted to be
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Bubble nuclei...   34Si prediction 
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FIG. 7. Point-proton density distributions of 34Si and 36S
computed using two di↵erent chiral interactions, both in two
versions (with and without three-nucleon forces).
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FIG. 8. Charge density distribution of 36S computed with
four di↵erent (2N+3N) interactions. The experimental charge
density of 36S is also visible [17].
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Validated by charge distributions and 
neutron quasiparticle spectra:!
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- 34Si is unstable, charge distribution still unknown 
 
- Suggested central depletion from mean-field 
simulations 
 
- Ab-initio theory confirms predictions!

[Simon Lecluse, V. Somà, T. Duguet, CB, P. Navrátil] 
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Study of nuclear interactions 
from Lattice QCD 

Other+paths+in+LQCD,+see:!

the physical pion mass. It will be interesting to learn how
the various thresholds for binding evolve with the light-
quark masses. Providing accurate binding energies for any
given light-quark masses will require the inclusion of
electromagnetic effects, the leading contributions of which
can be determined at the classical level and simply added
to the results of the LQCD calculations. A deeper under-
standing of the origin of the binding energies calculated
in this work will require a series of nuclear few-body
calculations, which are beyond the scope of the present
work. In particular, it is important to understand the rela-
tive contribution from the two-body, three-body, and
higher-body contributions to the A ! 3 nuclei and hyper-
nuclei, which can only be accomplished using modern few-
body techniques.

Our results suggest that quenching in LQCD calcula-
tions produces significantly larger errors in the binding
of nuclei than it does in the hadron masses. While the
differences could be attributable to finite lattice spacing
effects and the different quark discretizations, their size is
not too surprising given the modifications to the long-
range component of the nucleon-nucleon interaction
attributable to quenching. It was shown in Ref. [56] that
the hairpin interactions that arise in quenched and partially
quenched theories generate exponential contributions to
the nucleon-nucleon interaction in addition to the usual
Yukawa interactions at long distances. Therefore, one
anticipates significant modifications to the binding of
nuclei, especially for finely tuned systems.

By diversifying and refining the source structure used
to generate the correlation functions, the continuum states
in each channel can be explored. In the case of two-body
continuum states, such as nþ 3He in the 4He channel, the
established scattering formalism of Lüscher will allow for
the scattering phase shifts in nþ 3He to be rigorously
determined from QCD below the inelastic threshold. For
the three-body and higher-body continuum states, further

formal developments are required to rigorously determine
multibody S-matrix elements.
Lattice QCD has evolved to the point where first-

principles calculations of light nuclei are now possible,
as demonstrated by the calculations at unphysically heavy
light-quark masses presented in this work. The experimen-
tal program in hypernuclear physics, and the difficulties
encountered in accurately determining rates for low-energy
nuclear reactions, warrant continued effort in, and develop-
ment of, the application of LQCD to nuclear physics.
Clearly, calculations at smaller lattice spacings at the
SU(3) symmetric point are required to remove the system-
atic uncertainties in the nuclear binding energies at these
quark masses. While not providing quantities that can be
directly compared with experiment, these calculations pro-
vide valuable information about the quark-mass depen-
dence of spectrum of the lightest nuclei, and hence the
nuclear forces, and will shed light on the fine-tunings that
are present in nuclear physics. To impact directly the
experimental program in nuclear and hypernuclear phys-
ics, analogous calculations must be performed at lighter
quark masses, ideally at their physical values.
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APPENDIX A: CASIMIRS OF SU(3)

To classify the states of the nuclei into irreps of flavor-
SU(3), the quark-level sources that generate the nuclear

FIG. 19 (color online). A compilation of the nuclear energy
levels, with spin and parity J!, determined in this work.
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The four recent studies [2–4] have made a systematic
investigation of the spatial volume dependence. Our
quenched and 2þ 1 flavor results show qualitatively the
same feature that the binding energy for the 3S1 channel is
much larger than the experimental value and the bound
state is observed in the 1S0 channel. The 2þ 1 flavor results
from Refs. [3,4] at m! ¼ 0:39 GeV give nonzero negative
values for !EL in both channels on the # ð3:9 fmÞ3 box,
which are consistent with our results as shown in Table V.
Unfortunately, the extrapolation to the infinite spatial vol-
ume limit introduces large errors so that !E1 becomes
consistent with zero within the error bars. The most recent
study [4] worked at a heavier quark mass of m! ¼
0:81 GeV in 3-flavor QCD and found large values for the
binding energies: 25(3)(2) MeV for the 3S1 channel and
19(3)(1) MeV for the 1S0 channel [4]. While all recent
studies are consistent with a bound ground state for both
3S1 and

1S0 channels when quark masses are heavy, quan-
titative details still need to be clarified.

IV. CONCLUSION AND DISCUSSION

We have calculated the binding energies for the helium
nuclei, the deuteron and the dineutron in 2þ 1 flavor QCD
with m! ¼ 0:51 GeV and mN ¼ 1:32 GeV. The bound
states are distinguished from the attractive scattering states
by investigating the spatial volume dependence of the
energy shift !EL. In the infinite spatial volume limit we
obtain

&!E1¼

8
>>>>><
>>>>>:

43ð12Þð8Þ MeV for 4He;

20:3ð4:0Þð2:0Þ MeV for 3He;

11:5ð1:1Þð0:6Þ MeV for 3S1;

7:4ð1:3Þð0:6Þ MeV for 1S0:

(17)

In the present work we have discussed only the energy
shift of the nucleus from the free multinucleon state, but
there are other states we need to distinguish when the mass
number increases, e.g., the two-deuteron state in the 4He
channel. The distinction of the 4He nucleus from the
two-deuteron state is less clear than the case with the
four-nucleon state since the relative energy shift
!E1ð4HeÞ & 2!E1ð3S1Þ ¼ &19ð13Þ MeV is away from
zero in less than 1.5 standard deviations due to large
statistical error. The situation could be improved by
increasing statistics.
While the binding energy for the 4He nucleus is compa-

rable with the experimental value, those for the 3He
nucleus and the deuteron are much larger than the experi-
mental ones. Furthermore, we detect the bound state in
the1S0 channel as in the previous study with quenched
QCD, which is not observed in nature. These findings
and the enhanced binding energies at m! ¼ 0:81 GeV in
3-flavor QCD [4] tell us that a next step of primary
importance is to reduce the up-down quark mass toward
the physical values. A possible scenario in the two-nucleon
channels is as follows. The binding energy in both channels
diminishes monotonically as the up-down quark mass
decreases. At some point of the up-down quark mass the
binding energy in the 1S0 channel vanishes and the
bound state evaporates into the attractive scattering state,
while the binding energy in the 3S1 channel remains finite
up to the physical point. This is a dynamical question on
the strong interaction, and only lattice QCD could
answer it.
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Lattice QCD 

8

L=−
1

4
Gμν
a
Ga

μ ν + q̄ γμ (i∂μ − g ta Aμ
a )q−mq̄q

Lattice QCD

gluons U = e 
i a Aµ

on the links

a

L

quarks q
on the sites

4-dim

Euclid

Lattice

Well defined (reguralized)
Manifest gauge invariance 

〈O(q̄ , q ,U )〉

=∫ dU d q̄ d q e−S (q̄ , q ,U )
O(q̄ , q ,U )

=∫ dU detD(U )e−SU (U )
O(D−1(U ))

= lim
N →∞

1

N
∑
i=1

N

O(D−1(Ui))

Vacuum expectation value

 { Ui } : ensemble of gauge conf. U
 generated w/ probability det D(U) e −SU(U)

path integral

quark propagator

Fully non-perturvative
Highly predictive
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Define a general potential U(r,r’) which is and non-local but energy independent 
up to inelastic threshold, such that: 
 
 
for the Nambu-Bethe-Salpeter (NBS) wave function, 
 
 
Opera@onally,!measure!the!4/pt!func@on!on!the!QCD!Lapce!
!

!
and!extract!U(r,r’)!from:!
!
!
A!local+potenEal+V(r)!is!then!obtained!through!a!deriva@ve!expansion!of!U(r,r’), which 
must give the same observables of the LQCD simulation: 
 
 
  #!

The HAL-QCD Method 
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⇢
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NN potentials from QCD

● Left:  NN potentials in partial waves at the lightest mq.
● Repulsive core & attractive pocket & strong tensor force.
● Similar to phenomenological potentials qualitatively.
● Least χ2 fit of data which give central value of observable.
● Higher orders in velocity expansions are not available yet.

We restrict us to these leading order potentials.

● Right:  Quark mass dependence of V(r) of NN 1S0.
● Potentials become stronger as mq decrease.

e.g.  AV18

Quark mass dependence of V(r) for NN 
partial wave (1S0, 3S1, 3S1-3D1) 
 

 # Potentials become stronger mπ  
 as decreases.!

Prog.)Theor.)Exp.)Phys.)01A105)(2012)) (FiniteFT+results+by+A.+Carbone,+priv.+comm.)!
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23

● Direct ： utilize energy eigenstates (eigenvalues)
● Lüscher's finite volume method for a phase-shift
● Infinite volume extrapolation for a bound state

● HAL  ： utilize a potential V(r) + ...  of interaction

● Advantages
● No need to separate E eigenstate.

Just need to measure
● Then, potential can be extracted.
● Demand a minimal lattice volume.

No need to extrapolate to V=∞.
● Can output many observables.

V ( r⃗ ) =
1

2μ
∇ 2ψ( r⃗ , t)
ψ( r⃗ , t )

−

∂
∂ t

ψ( r⃗ , t)

ψ( r⃗ , t)
− 2MB

ψ( r⃗ , t) : 4-point function

contains NBS w.f.

ψ( r⃗ , t)

Multi-hadron in LQCD



Analysis of Brueckner HF 
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Analysis of Brueckner HF 
ScaJering+of+two+nucleons+outside+the+Fermi+sea+(!BHF):!
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Mixed SCGF–Brueckner approach 
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Solve+full+manyFbody+dynamics+in+model+space+(P+Q’)+and+the+Goldstone’s+
+++++ladders+outside+it+(i.e.+in+Q’’+only):!
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Benchmark on 4He 
Can+benchmark+the+Gmtx+ADC(3)+
method+on+light+4He,+where+exact+
soluEons+are+possible:!

1 1.5 2 2.5 3
b_HO [fm]
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-3
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-1

0

1

Eg
.s

. [
M

eV
]

Nmax = 7
Nmax = 9
Nmax = 11
Hf (G''-mtx)
"BHF"
Full ADC(3)

4He
mPS= 469 MeV

G(ω))+)
ADC(3))

)
Exact)

HALQCD!@!
mπ=469MeV!

4.7(2)!MeV! 5.09!MeV1!

!+Can+expect+accuracy+on+binding+energies+at+about+10%++!

1H.!Nemura!et+al.,!Int.!J.!Mod.!Phys.!E!23,!1461006!(2014)!

+ ADC(3) 
G00(!) = V +

Z
dkadkbV

Q̂00

! � "(ka)� "(kb) + i⌘
G00(!)

G(ω) 



Results for binding 
E!

4Fα!

16O!4He!D!

10Fα!

40Ca!

F5.09+MeV!

F15/F17+MeV!

~+F70(F80)+MeV!

(F20.4)!
(F50.9)!

2F3+M
eV!

20F30+M
eV!

4Fα!

10Fα!

F28.2+MeV!

F127+MeV!

~+F340+MeV!

(F112.8)!

(F282)!

~15+M
eV!

~60+M
eV!

HALQCD!@!
mπ=!469!MeV!!

experiment!

F2.2+MeV!

…unbound…!

NB:!All!calcula@ons!assuming!
spherical!wave!func@ons…!

C.!McIlroy,!CB,!et!al.,+in+preparaEon+



Spectral strength in 16O and 40Ca: 

-60

-50

-40

-30

-20

-10

0

10

20

30

H
F 

an
d 

BH
F 

s.
p.

 e
ne

rg
ie

s 
[M

eV
]

BHF    HF
(G-mtx)

0 20 40 60 80 100
SF [%]

-60

-50

-40

-30

-20

-10

0

10

20

30

AD
C

(3
)  

q.
p.

 fr
ag

m
en

ts
 [M

eV
] s1/2

0 20 40 60 80 100
SF [%]

-60

-50

-40

-30

-20

-10

0

10

20

30

p1/2 , p3/2

0 20 40 60 80 100
SF [%]

-60

-50

-40

-30

-20

-10

0

10

20

30

d3/2 , d5/2

0 20 40 60 80 100
SF [%]

-60

-50

-40

-30

-20

-10

0

10

20

30

f5/2 , f7/2

-30

-20

-10

0

10

20

30

40

H
F 

an
d 

BH
F 

s.
p.

 e
ne

rg
ie

s 
[M

eV
]

BHF

    HF
(G-mtx)

0 20 40 60 80 100
SF [%]

-30

-20

-10

0

10

20

30

40

AD
C

(3
) q

.p
. f

ra
gm

en
ts

 [M
eV

] s1/2

0 20 40 60 80 100
SF [%]

-30

-20

-10

0

10

20

30

40

p1/2 , p3/2

0 20 40 60 80 100
SF [%]

-30

-20

-10

0

10

20

30

40

d3/2 , d5/2

Par@cle/hole!gaps!
!
16O ! ! !!
mπ=!469!MeV:!!!~8!MeV!
Expt!(phys!mπ):!!11.5!MeV!
!
40Ca! ! !!
mπ=!469!MeV:!!!~10!MeV!
Expt!(phys!mπ):!!!7.5!MeV!
!



Summary 
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!!!� Mid-masses and chiral interactions: 

$   Leading order 3NF are crucial to predict many important features that  
are observed experimentally (drip lines, saturation, orbit evolution, etc…) 

$   Experimental binding is predicted accurately up to the lower sd shell 
(A≈30) but deteriorates for medium mass isotopes (Ca and above) with 
roughly 1 MeV/A over binding. 
 

$ New fits of chiral interaction are promising for low-energy observables 
 

$ Comparison of spectroscopic strength with experiment is much improved... 

$ Nuclear forces from Lattice-QCD approaching physical pion mass 
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FIG. 4. Proton (top) and neutron (bottom) radii obtained
from IM-SRG and SCGF calculations with EM [20–22] and
NNLOsat [26] interactions. For protons, experimental values
from Table I are displayed.

oxygen chain, the heaviest one for which experimental in-
formation on both binding energies and radii is available
up to the neutron drip line. We showed that analysing
(p,p) scattering data allows one to obtain information
on nuclear sizes of unstable isotopes within 0.1 fm. The
combined comparison of measured charge/matter radii
and binding energies with state-of-the-art ab initio cal-
culations o↵ers unique insight on nuclear forces. On the
one hand, EM, a current standard for nuclear theory em-
ploying only 2-, 3- and 4-body observables in the fit of
the low-energy constants thus sticking to the (strict) re-
ductionist strategy, yields an excellent reproduction of
binding energies but significantly underestimates charge
and matter radii. On the other hand, unconventional
NNLOsat , while maintaining a good energy systematics,
clearly improves the description of absolute radii, though
leaving room for refinement for what concerns isotope
shifts. Given the alternative fitting procedure, such an
output raises questions about the choice of observables
that should be included in the fit and the resulting pre-
dictive power whenever this strategy is followed.

More precise information on oxygen radii, e.g. rch via
laser spectroscopy measurements, would allow confirming
our (p,p) analysis and further refining the present discus-
sion. Future, similar studies in heavier isotopes will also
preciously contribute to the systematic development of
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FIG. 5. Matter radii from our analysis and Ref. [33, 36]
compared to ab initio calculations with EM [20–22] and
NNLOsat [26] interactions. Bands span results from GGF
and MR-IMSRG many-body schemes.

nuclear forces. From the many-body point of view, the
consistent inclusion of higher-body terms in the charge
radius operator is envisaged and might eventually a↵ect
the present discussion. Finally, we stress that a simulta-
neous reproduction of binding energies and radii in stable
and neutron-rich nuclei is mandatory for reliable struc-
ture but even more for reaction calculations. Scattering
amplitudes and nucleon-nucleus interactions evolve as a
function of the size, which should be consistently taken
into account specially when more microscopic reaction
approaches are considered.
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Spectroscopic factors 



Quenching of SF in stable nuclei 
Nucl. Phys. A553 (1993) 297c 

NIKHEF: A common misconception about SRC:  
 

”The quenching is constant over all 
stable nuclei, so it must be a short-
range effect” 

Actually,  NO! 
 

All calculations show that SRC have 
just a small effect at the Fermi 
surface. And the correlation to the 
experimental p-h gap is much more 
important. 
 

[W. Dickhoff, CB, Prog. Part. Nucl. Phys. 52, 377 (2004)] 



•  Short-range correlations 
oriented methods: 
–  VMC [Argonne, ’94] 

–  GF(SRC) [St.Louis-Tübingen ‘95] 
–  FHNC/SOC [Pisa ‘00] 

•  Including particle-phonon 
couplings: 
–  GF(FRPA) [St.Louis ‘01] 

 
[CB et al., Phys. Rev. C65, (02)] 

•  Experiment: 
 

Sp1/2 Sp3/2 

0.90 
0.91 

0.77 0.72 

0.89 
0.90 

0.63 0.67 ±0.07 
 (estimated 

uncertainty) 

Quenching of SF in stable nuclei 
Nucl. Phys. A553 (1993) 297c 
NIKHEF: 

SRC are present and verified experimentally!

BUT the are NOT the dominant mechanism for quenching SF!!!+
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N3LO!interac@on!+!monopole!corr.! [CB,!M.Hjorth/Jensen,!Pys.Rev.C79,!064313!(2009)]!

νf7/2!νp3/2!

r!≡ p3/2,!p1/2,!f5/2!
f!≡ f7/2!

N3LO!needs!a!monopole!
correc@on!to!fix!the!p/h!
gap:!

kM!=!0.4/0.7!MeV!

small!kM!%            $ large!kM!

Experimental!Eph!!
is!found!for!kM!=0,57!

Dependence of Spect. Fact. from p-h gap 



Quenching of absolute spectroscopic factors�

Overall quenching of spectroscopic 
factors! is driven by: 
SRC          "  ~10% 
part-vibr. coupling " dominant 
“shell-model“    " in open shell 
+

[CB,!Phys.+Rev.+LeJ.!103,!202520!(2009)]+
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…with analogous conclusions for 48Ca!



Ab-initio calculations explain (a very weak) the Z/N dependence but the 
effect is much lower than suggested by direct knockout 
 
Rather the quenching is high correlated to the gap at the Femi surface. 

Spectroscopic factor are strongly 
correlated to p-h gaps: 

Z/N asymmetry dependence of SFs - Theory 

0 10 20 30 40
60

70

80

90

100
No COM, prot O14,22,24

No COM, neut O14,22,24

SF
/(2
j+
1)

 [%
]

Sp,n [MeV]

17F
29F

25F23F

28O

24O
22O14O

16O24O

23O

22O

15O

17O
16O

ℏω=24 MeV,  !SRG=2.0 fm-1
Dys-ADC(3)

protons
neutrons

QUASIPARTICLE AND QUASIHOLE STATES OF NUCLEI . . . PHYSICAL REVIEW C 79, 064313 (2009)

This term automatically corrects for the zero point motion in
the oscillator basis but it depends explicitly on the number
of particles. In this work, we are interested in transitions to
states with different numbers of nucleons (A ± 1) and aim at
computing directly the differences between the total energies.
Therefore, the above correction should not be employed in
the present case. One may note that the separation of the
center-of-mass motion is an issue related to the choice made for
the model space, rather than the many-body method itself. For
example, expressing the propagators directly in momentum
space would allow an exact separation. In this situation, the
transformation between the center-of-mass and laboratory
frames for systems with a nucleon plus a A-nucleons [or
(A-1)-nucleons] core would also be simple.

A. Choice of κM

Equation (16) introduces a single parameter (κM ) in our
calculations. The reason for this modification is that the spec-
troscopic factors of the valence orbits are strongly sensitive to
the particle-hole gap. This sensitivity is to be expected because
collective modes in the 56Ni core are dominated by excitations
across the Fermi surface. Smaller gaps imply lower excitation
energies and higher probability of admixture with valence
orbits. To extract meaningful predictions for spectroscopic
factors it is therefore necessary to constrain the Fermi gaps
for protons and neutrons to their experimental values.

To investigate this dependency we repeated our calculations
for values of κM in the range 0.4–0.7 MeV. Figure 3 shows
the resulting neutron spectroscopic factors for the valence
p3/2 quasiparticle and f7/2 quasihole. These are plotted
as a function of the calculated particle-hole gap "Eph =
ε+

1p3/2,n=0 − ε−
0f7/2,k=0. The results correspond to model spaces

of different dimensions (eight or ten oscillator shells) and
oscillator frequencies (h̄$ = 10 or 18 MeV). The gap "Eph
increases with κM but the dependence on the model space is
weak. We notice that, once the experimental value of "Eph
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FIG. 3. (Color online) Dependence of neutron spectroscopic
factors (given as a fraction of the independent-particle model value)
for the 1p3/2 and the 0f7/2 valence orbits with respect to the ph gap
"Eph. For each model space, different points correspond to different
choices of κM in the range 0.4–0.7 MeV.

is reproduced, the spectroscopic factors are well defined and
found to be converged with respect to the given model space.

All results reported below were obtained with a fixed value
of κM = 0.57 MeV. In the Nmax = 9 model space and an
oscillator energy h̄$ = 10 MeV, this choice reproduces the
experimental gaps at the Fermi surface for both protons and
neutrons to an error within 70 keV. From Fig. 3 one infers
that the calculated spectroscopic factors are reliable to within
1–2% of the independent-particle model value.

B. Convergence with respect to the model space

Figure 4 shows the dependence of the neutron 1p3/2 particle
and the 0f7/2 hole energies with respect to the oscillator
frequency and the size of the model space. As can be seen
from this figure, the single-particle energies for these two
single-particle states tend to stabilize around eight to ten
major shells. This finding concords both with coupled-cluster
calculations that employ a G matrix as effective interaction
for 16O, see Refs. [71] and [70], and with analogous Green’s
functions studies [31]. It remains, however, to make an
extensive comparison between coupled-cluster theory and the
Green’s functions approach to find an optimal size of the
model space with a given nucleon-nucleon interaction. Finally,
we plot in Fig. 5 the neutron valence single-particle energies
for all the single-particle states in the 1p0f shell. The latter
results were obtained with our largest model space, ten major
shells with Nmax = 9 and the single-particle orbital momentum
l ! 7. As can be seen from this figure, there is still, although
weak, a dependence upon the oscillator parameter. To perform
calculations beyond ten major shells will require nontrivial
extensions of our codes.
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FIG. 4. (Color online) Dependence of the neutron 1p3/2 particle
energy and the 0f7/2 hole energy with respect to the oscillator
frequency and the size of the model space.

064313-7

A. Cipollone, CB, P Navrátil 
Phys. Rev. C92, 014306 (2015) 

56Ni+

CB, M. Hjorth-Jensen, 
Phys. Rev. C 79, 064313 (2009)!



 Z/N asymmetry dependence of SFs 
14O(d,t)13O and 14O(d,3He)13N  
transfer reactions @ SPIRAL!

Calculated spectroscopic factors are: 
    - independent of asymmetry 
    - correlated to p-h gaps!

[F. Flavigny et al,  
PRL110, 122503 (2013)] 

radii (and consequently of r0) due to different Skyrme
interactions, provided the rms radii of 15N extracted from
(e, e0p) [5] are reproduced. All the other experimental
uncertainties are accounted for by the error bars displayed
on Fig. 4. A rather flat trend is found without the need
for the large asymmetry dependence suggested by inter-
mediate energy knockout data analyzed with the eikonal
formalism [10]. For a quantitative evaluation, we fitted
the reduction factor with a linear dependence Rs¼
!"!Sþ". We obtained mean values for ! and " with
associated errors from a minimization over the 48 data sets,
considering (i) eight combinations of optical potentials for
the entrance and exit channels, (ii) three Skyrme interac-
tions to calculate the rms radii, and (iii) the two above-
mentioned shell-model calculations.

For the WS OF, the reduction factor Rs ¼ 0:538ð28Þð18Þ
(for !S ¼ 0 nuclei) is in agreement with Ref. [9] and the
slope parameter ! ¼ 0:0004ð24Þð12Þ MeV&1, therefore
consistent with zero. The first standard error obtained
over one data set depends on the experimental uncertain-
ties; the second one comes from the distribution over the 48
data sets. Within the error bars, the data do not contradict
the weak dependence found by ab initio calculations, with
!0 ¼ &0:0039 MeV&1 between the two 14O points in
Ref. [7], although the calculated !S is much reduced
compared to the experimental value.

Despite different OFs and SFs, the analysis
performed with the ab initio OF [30] provides very
similar results with Rsð!S¼0Þ¼0:636ð34Þð42Þ and !¼
&0:0042ð28Þð36ÞMeV&1, with calculated !S¼17:6MeV
[Fig. 4(b)].
In summary, we measured exclusive differential cross

sections at 18 MeV=nucleon for the 14Oðd; tÞ13O and
14Oðd; 3HeÞ13N transfer reactions and elastic scattering.
WS OFs with a constraint on HF radii and microscopic
OFs (obtained from SCFG theory) have been compared for
the first time for symmetric and very asymmetric nuclei
and gave similar results. We extracted the reduction factors
Rs over a high asymmetry range, !S ¼ '18:5 MeV, for
oxygen isotopes. From the good agreement between the
CRC calculations and the set of transfer data highlighted in
our work, the asymmetry dependence is found to be non-
existent (or weak), within the error bars. This result is in
agreement with ab initio Green’s function and coupled-
cluster calculations [7,14], but contradicts the trend
observed in nucleon knockout data obtained at incident
energies below 100 MeV=nucleon and analyzed with the
sudden-eikonal formalism. The disagreement of the two
systematic trends from knockout and transfer calls for a
better description of so-called direct reaction mechanisms
in order that a consistent picture of nuclear structure
emerges from measurements at different incident energies.
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evolved two- and three-body interactions relevant to this
study. This work was supported by LIA COPIGAL and
POLONIUM PHC under Grant No. 22470XA. Theoretical
work was supported by the UK’s STFC Grant No. ST/
J000051/1.

[1] W.H. Dickhoff and C. Barbieri, Prog. Part. Nucl. Phys. 52,
377 (2004).

[2] S. Boffi et al., Electromagnetic Response of Atomic
Nuclei, Oxford Studies in Nuclear Physics Vol. 20
(Clarendon Press, Oxford, 1996).

[3] M. Bernheim et al., Nucl. Phys. A375, 381 (1982).
[4] L. Lapikas, Nucl. Phys. A553, 297 (1993).
[5] M. Leuschner et al., Phys. Rev. C 49, 955 (1994).
[6] C. Barbieri, Phys. Rev. Lett. 103, 202502 (2009).
[7] Ø. Jensen, G. Hagen, M. Hjorth-Jensen, B. A. Brown, and

A. Gade, Phys. Rev. Lett. 107, 032501 (2011).
[8] G. J. Kramer, H. P. Blok, and L. Lapikás, Nucl. Phys.

A679, 267 (2001).
[9] J. P. Schiffer et al., Phys. Rev. Lett. 108, 022501 (2012).
[10] A. Gade et al., Phys. Rev. C 77, 044306 (2008).
[11] C. Louchart, A. Obertelli, A. Boudard, and F. Flavigny,

Phys. Rev. C 83, 011601(R) (2011).
[12] F. Flavigny, A. Obertelli, A. Bonaccorso, G. F. Grinyer, C.

Louchart, L. Nalpas, and A. Signoracci, Phys. Rev. Lett.
108, 252501 (2012).

[13] J. Lee et al., Phys. Rev. C 83, 014606 (2011).

0,2

0,4

0,6

0,8

1

R
s =

 σ
ex

p(θ
) /

 σ
th

(θ
)

14O data
16O data
18O data

-20 -10 0 10 20

∆S = ε (Sp - Sn) (MeV)

0,2

0,4

0,6

0,8

1

R
s =

 σ
ex

p(θ
) /

 σ
th

(θ
)

14O(d, t)

14O(d, 3He)

(b) SCGF

(a) WS + SM

FIG. 4 (color online). Reduction factors Rs obtained with (a) a
WS OF and the SLy4 interaction [31], averaged over four
entrance and two exit potentials, and compared to shell-model
calculations performed with the WBT interaction [37] in the
0pþ 2@! valence space; (b) a microscopic (SCGF) form factor
[30]. The detail of error bars is given in text.
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