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Framework

@ Large-scale shell-model calculations are, at present, a
consolidated tool to investigate nuclear properties.

@ The new physics coming from RIBs facilities provides a
challenging ground, since they are approaching the nuclear
driplines.

@ The computational complexity of dealing with large model
spaces and many interacting valence nucleons is the main
problematic to be tackled.
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Large-scale shell model
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Large-scale shell model:
shell model calculations
performed within a
model space made up
by a number of orbitals
larger than usual.

An extended model
space enables to study
exotic (for shell model)
properties: collective
motion, deformation,
clustering, etc.
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Collective behavior
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Novel collective feaures

Shape evolution

in Ni isotopes

A

(@ " Ni 0]

PHYSICAL REVIEW C 89, 031301(R) (2014)

Novel shape evolution in exotic Ni isotopes and configuration-dependent shell structure

Yusuke Tsunoda,' Takaharu Otsuka,"** Noritaka Shimizu,? Michio Honma,* and Yutaka Utsuno’®
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Islands of inversion
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Shell evolution

Study of the
N = 82 shell

PHYSICAL REVIEW C 91, 021303(R) (2015) evo I uti O n aS a
Quenching of the neutron N = 82 shell gap near '*’Sr with monopole-driving core excitations .
A —— function of the
1School of Physics and Mechanical and Electrical Engineering, Zhoukou Normal University, Henan 466000, People’s Republic of China
" Department of Physics and Astronomy, Shanghat Jiao Tong Universivy, Shanghai 200240, People’s Republic of China neutron shell

SDepartment of Physics, Kyushu Sangyo University, Fukuoka 813-8503, Japan
“IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China

@ 6 proton orbitals: £20
0f5/2, 1p3/2, 112,
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@ 7 neutron orbitals:
0g7/2, 1052, 1032, o
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@ |In calculations [1] both proton model space is spanned by the four orbitals
0772, 1p3 /2, 1p1 /2, 0f5 /2 and the five neutron ones
1032, 1P1 /2,052,089 2, 105 2 outside “®Ca core, and the shell model basis is
truncated so to retain up to 14p — 14h excitations across the Z = 28 and N = 40
gaps.

@ |In calculations [2] both proton and neutron model spaces are spanned by the six
orbitals 0f7/2, 1,03/2, 1p1 /25 Of5/2, Ogg/27 1d5/2 outside “°Ca core. In the
m-scheme the dimension of the basis is ~ 102, reduced to 50 by the
importance sampling of the shell-model basis performed within the Monte Carlo
Shell Model (MCSM) approach.

@ |In calculations [3] only neutron N = 20 cross-shell excitations are taken into
account. Shell model basis has a dimension up to 1010

@ In calculations [4] only one valence-neutron is allowed to occupy the 177 /2, 2ps3 /2.
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Calculations with a large number of valence nucleons need to employ
reduction/truncation schemes.

Those schemes need to be under control, convergence properties
and theoretical error estimates are an important tool to understand
the reliability of the shell-model calculations.
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The realistic shell model

@ The derivation of the shell-model hamiltonian using the
many-body theory may provide a reliable approach

@ The model space may be “shaped” according to the
computational needs of the diagonalization of the shell-model
hamiltonian

@ In such a case, the effects of the neglected degrees of freedom
are taken into account by the effective hamiltonian H.
theoretically
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An example: °F

19,

F
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@ 9 protons & 10 neutrons
interacting

@ spherically symmetric m
field (e.g. harmonic osci

@ 1 valence proton & 2 val
neutrons interacting in a
truncated model space

ean
llator)

ence

The degrees of freedom of the core nucleons and the excitations of
the valence ones above the model space are not considered explicitly.J 2
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Effective shell-model hamiltonian

The shell-model hamiltonian has to take into account in an effective
way all the degrees of freedom not explicitly considered ’

Two alternative approaches

@ phenomenological

@ microscopic

Vv (+ Viywn) = many-body theory = H.;

V.

The eigenvalues of H.i belong to the set of eigenvalues of the full
= nuclear hamiltonian

{ \ N?
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Workflow for a realistic shell-model calculation

@ Choose a realistic NN potential (NNN)

©@ Determine the model space better tailored to study the system
under investigation

© Derive the effective shell-model hamiltonian by way of the
many-body theory

© Calculate the physical observables (energies, e.m. transition
probabilities, ...)
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Realistic nucleon-nucleon potential: Vi

Strong short-range
repulsion

Several realistic potentials y?/datum ~ 1:
CD-Bonn, Argonne V18, Nijmegen, ...
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Realistic nucleon-nucleon potential: Vi

Strong short-range
repulsion

Several realistic potentials y?/datum ~ 1:
CD-Bonn, Argonne V18, Nijmegen, ...

How to handle the short-range repulsion ?

@ Brueckner G matrix
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Realistic nucleon-nucleon potential: Vi

Strong short-range
repulsion

Several realistic potentials y?/datum ~ 1:
CD-Bonn, Argonne V18, Nijmegen, ...

How to handle the short-range repulsion ?
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@ EFT inspired approaches
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Realistic nucleon-nucleon potential: Vi

Strong short-range
repulsion

Several realistic potentials y?/datum ~ 1:
CD-Bonn, Argonne V18, Nijmegen, ...

How to handle the short-range repulsion ?

@ Brueckner G matrix

@ EFT inspired approaches
° Vlowfka SRG
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Realistic nucleon-nucleon potential: Vi

Strong short-range
repulsion

Several realistic potentials y?/datum ~ 1:
CD-Bonn, Argonne V18, Nijmegen, ...

How to handle the short-range repulsion ?
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Realistic nucleon-nucleon potential: Vi

Strong short-range
repulsion

Several realistic potentials y?/datum ~ 1:
CD-Bonn, Argonne V18, Nijmegen, ...

How to handle the short-range repulsion ?

@ Brueckner G matrix

@ EFT inspired approaches

° Vlowfka SRG
@ chiral potentials

HEM)

il
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The shell-model effective hamiltonian

A-nucleon system Schrédinger equation

H‘\Uu> == EI/|W7/>

with
H:H0+H1—Z (Ti+ U+ > (VN -

= i<j

Model space
d

;) =[a]a] ... aflilc) = P =" ;) (®;

i=1

v

Model-space eigenvalue problem

— Hcﬂ‘P‘\U(\> - E(YP‘W(\>
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The shell-model effective hamiltonian

— —1
pHp | pHQ | 1= XX pup | PHa
QHP | QHQ | b o 0 | aQua
Hetr = PHP

. o _ 0 0
Suzuki & Lee = X = ¢ Wlthw—(QwP O)

1
Heff —
(W) = PH; P + PH; Q 7QHQOH1P
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@) 1 —QHO ©) e
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The shell-model effective hamiltonian

Folded-diagram expansion

Q-box vertex function

Q(e) = PH{P + PH; Q QH; P

1
e — QHQ

= Recursive equation for H.; = iterative techniques
(Krenciglowa-Kuo, Lee-Suzuki, ...)

He—0-0 [a+a [a[a-& [afafa-,
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The perturbative approach to the shell-model H¢'f

~ 1
The Q-box can be calculated perturbatively
1 B i (QH; Q)"
e— QHQ — (e — QHy Q)1

The diagrammatic expansion of the Q-box
St T Ty Ty T s
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Q-box perturbative expansion: 1-body diagrams
DRBA 94 b e
ela g
L Bel el
iy B b
T R R
e G e
- REIEEE
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Q-box perturbative expansion: 2-body diagrams
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Q-box perturbative expansion: 2-body diagrams
RLEE B R
HeEEEE
L B e o e e o o
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e T el e Hmv % @w il
el el et I el H@QJW'
del ot bl el o A B e =l
P <ol o el il - 2

uigi Coraggio INFN, Napoli

Nuclear Theory in the Supercomputing Era - NTSE-2016



Benchmark calculation

A benchmark calculation has been performed for light p-shell
nuclei, comparing realistic shell-model calculations with those
of NCSM, starting from chiral two-body potential N°LO.

® 2+
¥ 3+
* 0+

=1 \\ (a) not translationally invariant

6.0T

%”" i Hamiltonian

= (b) purely intrinsic hamiltonian
4.0

-6.0

0 (;) (t’:) NC:SM

77N\ L.C., A. Covello, A. Gargano, N. ltaco, and T. T. S. Kuo, Ann. Phys. 327 ,
2125-2151 (2012)
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TE®)
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Our recipe for realistic shell model

@ Input Vyn: View_ i derived from the high-precision NN CD-Bonn
potential with a cutoff: A = 2.6 fm~".

@ H. obtained calculating the Q-box up to the 3rd order in Vjoyw_«.

@ Effective electromagnetic operators are consistently derived by
way of the the MBPT

INFN, Napoli
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Double-step approach

However, it may occur that H.i; can be diagonalized for a certain class
of nuclei, but not for other with a larger number of valence nucleons

Recently, we have started to explore the possibility to perform a
double-step approach to the renormalization of the shell-model
hamiltonian

More precisely, after we have derived H,; in a certain model space P,
starting from this one we generate a new HJ;" acting in a truncated
subspace PV c P

(4 \ INFN
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First example: the collectivity at N = 40

24

(BITC ]

Luigi Coraggio
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The collectivity at N = 40: the model space

Within the shell-model framework the key role for the
onset/disappearance of the N = 40 collectivity is played by the
interaction between the quadrupole partners ©09g 2, ¥105 2

In order to study this phenomenon we have chosen to perform a sort
of “differential diagnosis”, employing as the proton model space the
70f7,2, m1p3 /2 Orbitals, and two different neutron model spaces:

@ Model space I: 1p3/2, 1p1 /2, 0f5 2, 0go 2
@ Model space II: 1p3/2, 1p1 /2, 0f5/2, 099 /2,1d52

(4 \ INFN
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The double-step procedure

In order to make this comparison as much consistent as possible, we
have followed this procedure

@ We have derived first H.; - within the MBPT - in a very large
model space outside the “°Ca closed core, and spanned by six
proton and neutron pfgd orbitals.

@ Then, we derive from this “mother hamiltonian” two new effective
hamiltonians - again using MBPT - defined in the smaller model
spaces (I) and (Il).

© Single-particle energies are taken for experimental data.

L. C., A. Covello, A. Gargano, and N. ltaco, Phys. Rev. C 89, 024319 (2014)
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Collectivity at N = 40

Titanium isotopes
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Chromium isotopes
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Collectivity at N = 40

Iron isotopes Nickel isotopes
42
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Collectivity at N = 40
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A second example: quadrupole collectivity around
Z =50

Our interest: to study the quadrupole collectivity due to Z = 50
cross-shell excitations in even-mass isotopic chains above #Sr.

Model space of the “mother hamiltonian”:

Proton orbitals | Neutron orbitals

1Py 2

0992

1 d5/2 1 d5/2
0g7/2 0g7,2
1 d3/2 1 d3/2
25, /2 2s; /2
0hi1 2 0hy1)2

A
INFN
(W
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A modest proposal

A “Poor Man’s Approach” to lighten the computational complexity of
diagonalizing the “mother hamiltonian” H”° defined in a large
shell-model space:

@ First step: analyze the evolution of the effective single-particle
energies (ESPE) of the “mother hamiltonian”, and locate the
relevant degrees of freedom (single-particle orbitals).

@ Second step: perform a unitary transformation of the “mother
hamiltonian” into a reduced model space, so to obtain an
effective hamiltonian that is computationally.

Single-particle energies, effective two-body matrix elements, and
effective electromagnetic operators are all derived from theory

L. C., A. Covello, A. Gargano, N. Itaco, and T. T. S. Kuo, Phys. Rev. C 91,
= 041301 (2015)

-
[ a \ INFN
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® L. C., A. Gargano, and N. Itaco, Phys. Rev. C 93, 064328 (2016)
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Single-particle properties with H”®

Nalaja Nplbib

(alep|b)

orbital proton s.p.e.
1p1/2 0.0
0992 1.5
0972 5.7
1ds/2 6.4
1d3/2 8.8
251/2 8.7
0h41 /2 10.2
orbital | neutron s.p.e.
105)2 0.0
097/2 1.5
281/2 2.2
1d3/2 3.4
0h41 /2 5.1

0992 0992
0992 0972
0992 1052
097/2 0g7/2
0972 1ds52
097/2 103>
1 d5/2 1 d5/2
1 d5/2 1 d3/2
1 d5/2 231/2
1 d3/2 1 d3/2
1d3/2 251/2
0h11/2 0hy1/2

1.62
1.67
1.60
1.73
1.74
1.76
1.73
1.72
1.76
1.74
1.76
1.72

Nalaja_Nplpjp

(alen|b)

097,2 0g7/2
097/2 1052
097/2 1032
1 d5/2 1 d5/2
1 d5/2 1 d3/2
1d5/2 231/2
1 d3/2 1 d3/2
1 d3/2 251/2

0h11 2 0h11 2

0.94
0.96
0.95
0.94
0.97
0.79
0.96
0.79
0.87
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Proton ESPE
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Neutron ESPE
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Truncating the model space

@ The evolution of proton and neutron ESPE suggests a possible
reduction of both model spaces.

@ By way of a unitary transformation we can derive a HZ! defined
in a reduced proton model space spanned only by 4 orbitals
1p1/2,099/2,097/2, 1052 and a neutron one spanned by both the
5 original orbitals or by only 2 orbitals 0g7/2, 1ds».

@ The physics of two valence-nucleon systems is exactly
preserved.

-
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(W

Luigi Coraggio INFN, Napoli

Nuclear Theory in the Supercomputing Era - NTSE-2016



The second step

Let us sketch out the derivation of H*".

The eigenvalue problem for H® is:
H5 ) = ey k=1,..,N

H® is the sum of the unperturbed single-particle hamiltonian Hy and
the residual two-body potential V

H® =Hy+ V .

The model space is splitted up in two subspaces P*” and Q%°".
Since Hy is diagonal:

Ho = PHoP + QHQ .

(@ \ INFN
@_ (e ——
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The second step

The P-space eigenvalue problem is:
H*"\¢k) = (PHoP + V*") |¢) = Ex|dx) k=1,...,d

where |¢x) = Pluk).
The eigenvalue problem for H”® can be easily solved for the two
valence-nucleon systems (°°Zr,°°Sr,°°Y), and consequently providing

the Eg, V.
The solutions of the equation for the effective residual interaction V4"
are given by:
d
VA" = "(Ex — Eo)low)(kl
k=1

where |¢y) are biorthogonal states defined as |dx) (x| = S
(@) NN
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Results for Zr isotopes
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Results for Mo isotopes
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A closer look to Mo

6 4 4
2 2
&
T+ . o [
4
—~ 2*
@ 75~ 108 z |* 4 4
45 7 @ 8 2" )
° Hen‘ ~ 10 o 2
42 105 2 2
@ H2~10
o
9
o
o o
a) b) ) a) b) °)
[75] [45] [42]

a) H22 and H22 with double-step procedure;
b) H*5, H*2 derived by way of the many-body perturbation theory;

— . . =)
c) the hamiltonian H75, but constraining the calculations to model spaces [45], [42]. e
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Results for Ru isotopes
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Results for Pd isotopes
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Results for Cd isotopes
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Results for Sn isotopes
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Last example: open-shell nuclei around '32Sn

Our goal: to study the structure of nuclei that are currently of
exeperimental interest to detect the neutrinoless double-beta decay.

Model space of the “mother hamiltonian”:

Proton orbitals | Neutron orbitals
1 d5/2 1 d5/2
0972 0g7/2
1 d3/2 1 d3/2
2584 /2 2s4 /2
Ohy1p2 Ohy1y2

A
INFN
(W

INFN, Napoli
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Single-particle properties with H>°

Coraggio

orbital | proton s.p.e.
0g7/2 0.0 Nalaja_Nplpjp | (@l€p|b) Nalaja_Nplpjp | (@len|b)
1d5/2 0.3 Og7/2 Og7/2 1.42 Og7/2 Og7/2 1.00
1d3/2 1.5 0g7/2 1d5/2 1.40 0g7/2 1d5/2 1.03
231/2 1.5 Og7/2 1d3/2 1.40 0g7/2 1d3/2 0.98
0hy1 /2 1.8 1ds /5 105/ 1.21 105/ 105 0.63
orbital neutron s.p.e. 1 d5/2 1 d3/2 1.28 1 d5/2 1 dg/g 0.65
Og7/2 0.0 1d5/2 251/2 1.23 1d5/2 251/2 0.62
1d5/2 0.6 1d3,2 1032 1.26 1d3/2 1d3/2 0.69
1d3/2 1.5 1d3/2 251/2 1.29 1d3/2 251/2 0.68
2s1)2 1.2 0hy1 /2 0hyq /2 1.31 0hy1/2 Ohy1 2 0.68
0h11/2 2.7

(& 2
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Proton ESPE
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Results for heavy Te isotopes
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Results for heavy Xe isotopes
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The detection of the Ov3/-decay
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: e . 1| @ Third group: *°Ca, “°Zr,
E [ % o 150
0 s . 1.00‘ e e e 300 and Nd
A |
(g \ INFN
(g

Luigi Coraggio INFN, Napoli

Nuclear Theory in the Supercomputing Era - NTSE-2016



CUORE@LNGS

@ TeO, crystals used as low heat
capacity bolometers, arranged into
towers and cooled in a large cryostat
to approximately 10 m°K with a
dilution refrigerator.

@ The detectors are isolated from
backgrounds by ultrapure
low-radioactivity shielding.

@ Temperature spikes from electrons
emitted in Te 033 are collected for
spectrum analysis.

-
R\ INFN
(W
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Nuclear structure calculations

8
SM
IBM-2
N PHEB
@ (R)QRPA (Ti)
8- 4

M

Nd
154

150,

Xe

Te
136,

130

Te

70 1OOM0 11UPd TZASn
SEMO W'Ru 11SCd 128.

Sm

@ The spread of nuclear structure calculations evidences
‘ inconsistencies among results obtained with different e
o models c
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Gamow-Teller strengths for 128Te
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e GT strength
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Gamow-Teller strengths for 139Te
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Gamow-Teller strengths for 36Xe

X B(GD)
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Conclusions and outlook

@ The introduction of a double-step procedure allows a
reduction the complexity of the computational problem, and
may be useful for other large scale shell-model
calculations.

@ Quadrupole collectivities in isotopic chains outside “4Ca
and ®8Sr cores are well reproduced.

@ We are working to extend the procedure to consider also
the truncation of the degrees of freedom of filled
shell-model orbitals.

@ The calculation of effective two-body operators are in order
to improve the calculation of the electromagnetic-multipole
transition rates.

@ A parameter-free calculation of the NME for the

. neutrinoless double -decay is in progress.
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Present Prospects in Nuclear Structure

12th International Spring Seminar in Nuclear Physics, May 15-19
2017, Sant'’Angelo d’Ischia

https://agenda.infn.it/event/spring2017 U?
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Test case: p-shell nuclei

@ Vjn = chiral N3LO potential by Entem & Machleidt
(smooth cutoff ~ 2.5 fm~1)

@ H. for two valence nucleons outside “He

@ Single-particle energies and residual two-body interaction
are derived from the theory. No empirical input

First, some convergence checks !

L.C., A. Covello, A. Gargano, N. ltaco, and T. T. S. Kuo, Ann.
Phys. 327 , 2125-2151 (2012)
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Convergence checks

The intermediate-state space Q

Q-space is truncated: intermediate states whose unperturbed
excitation energy is greater than a fixed value Ep,,x are
disregarded

|€0 - QHOQ| < Enax = Npaxfw

6Li yrast states

results stable for N.x > 20

2 4 6 8 10 12 14 16 18 20 22
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Convergence checks

Order-by-order convergence

eff eff
Compare results from HS, HST - HET and HEL,
241
6.0
20T
4.0
16T
2.0
121
3 0.0
=8
w
-2.0
o
—4.0
ol
-6.0
o
-8.0
= -8 + + + + - a)
{ &® 1st 2nd 3rd  Pade' 2nd  3rd  Pade JIFN
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Convergence checks

Dependence on fuw

Auxiliary potential U = harmonic oscillator potential

HF-insertions

.24
v 3+ (6) ©

6.0 * 0+ i J i
LR
h
N e

rrrrrrr X
®

E [MeV]

@ zero in a self-consistent basis

N @ neglected in most applications
e R @ disregard of HF-insertions
= introduces relevant dependence|
& | on hw p:as
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Benchmark calculation

Approximations are under control ... and what about the
accuracy of the results ?

Compare the results with the “exact” ones

ab initio no-core shell model (NCSM)
P. Navratil, E. Caurier, Phys. Rev. C 69, 014311 (2004)
P. Navratil et al., Phys. Rev. Lett. 99, 042501 (2007)
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Benchmark calculation

To compare our results with NCSM we need to start from a translationally invariant

Hamiltonian

Hint = ( )Z, 12m +ZI<] 1 (VJVN p,‘,;z") =

= {E 1(2m+U)] {ZK! ‘(VNN U’_z’jA plpj)}

8.0
21
soT : 3‘:
* 0+
40t LR
201
% 0o -l (a) not translationally invariant Hamiltonian
Wt N T - (b) purely intrinsic hamiltonian
204
401 T
—6.01
< )
. t + + INFN
(a) (b) NCSM (W=
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Benchmark calculation

He!f derived for 2 valence nucleon systems = 3-, 4-, .. n-body components are
neglected

0

8+

—164

244

321
§ @ ground-state energies for N = Z
S a0t nuclei
@ discrepancy grows with the number
481

of valence nucleons

56+

\ = Expt.
¥ N°LO realistic shell model
© N°LONCSM
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Benchmark calculation

10B relative spectrum
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) I — : @ minor role of many-body

. " correlations
o 1 ---- N 1
RSM NCSM Expt
" -]
‘. INFN

S (L e

Luigi Coraggio INFN, Napoli

Nuclear Theory in the Supercomputing Era - NTSE-2016



