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Framework

Large-scale shell-model calculations are, at present, a
consolidated tool to investigate nuclear properties.

The new physics coming from RIBs facilities provides a
challenging ground, since they are approaching the nuclear
driplines.

The computational complexity of dealing with large model
spaces and many interacting valence nucleons is the main
problematic to be tackled.
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Large-scale shell model
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Full pf shell model study of A.=48 nuclei
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Exact diagonalizations with a minimally modified realistic force lead to detailed agreement with
measured level schemes and electromagnetic transitions in Ca, Sc, Ti, V, Cr, and Mn.
Gamow-Teller strength functions are systematically calculated and reproduce the data to within the
standard quenching factor. Their fine structure indicates that fragmentation makes much strength
unobservable. As a by-product, the calculations suggest a microscopic description of the onset of
rotational motion. The spectroscopic quality of the results provides strong arguments in favor of
the general validity of monopole corrected realistic forces, which is discussed.

PACS number{s): 21.10.—k, 27.40.+s, 21.60.Cs, 23.40.—s

I. INTRODUCTION

Exact diagonalizations in a full major oscillator shell
are the privileged tools for spectroscopic studies up to
A 60. The total number of states —2" with d = 12,
24, and 40 in the p, sd, and pf shells, respectively—
increases so fast that three generations of computers and
computer codes have been necessary to move &om n = 4
to n = 8 in the pf shell, i.e., from four to eight valence
particles, which is our subject.
A peculiarity of the pf shell is that a minimally mod-

ified realistic interaction has been waiting for some 15
years to be tested in exact calculations with a sufficiently
large number of particles, and as we shall explain in due
course n = 8 happens to be the smallest for which suc-
cess was practically guaranteed. In the test, spectra and
electromagnetic transitions will be given due place but
the emphasis will go to processes governed by spin op-
erators: beta decays, (p, n) and (n, p) reactions. They
are interesting —perhaps fascinating is a better word-
on two counts. They demand a firm understanding of
not simply a few, but very many levels of given J and
they raise the problem of quenching of the Gamow- Teller
(GT) strength.
As by-products, the calculations provide clues on ro-

tational motion and some helpful indications about pos-
sible truncations of the spaces. The paper is arranged as
follows.
Section II contains the de6nition of the operators.

Some preliminary comments on the interaction are made.
In each of the following six sections, next to the name

of the nucleus to which it is devoted, the title contains a
comment directing attention to a point of interest. The
one for Ca is somewhat anomalous.
In Sec. IX, the evidence collected on GT strength is

analyzed. Our calculations reproduce the data once we
adopt a quenching factor of (0.77) . We shall refer to it
as "standard" because it seems to represent some consen-

sus among workers in the field [1]. The fine structure of
the strength function indicates that fragmentation could
make impossible the observation of many peaks. Several
experimental checks are suggested.
In Sec. X we examine the following question: Why, in

the sd shell, have phenomenologically fitted matrix ele-
ments been so far necessary to yield results of a quality
comparuble with the ones we obtain here with a minimally
modified dualistic interactionq The short answer is that
monopole corrected realistic forces are valid in general,
but the fact is easier to detect in the pf shell.
Section XI contains a brief note on binding energies.

In Sec. XII we conclude.
The rest of the Introduction is devoted to a point of

notation, a review of previous work, and a word on the
diagonalizations.
Notations. Throughout the paper f stands for fr~2

(except of course when we speak of the pf shell) and
r, generically, for any or all of the other subshells
(pq~2 psl2 fs~2). Spaces of the type

f noneo + fn 'Ao 1 TLO+1 + + fn Tlo t no+& (I)
represent possible truncations: no is different &om zero if
more than eight neutrons are present and when t = n—no
we have the full space (pf)" for A = 40+ n.
Bibliogrnphical note. The characteristic that makes the

pf shell unique in the periodic table is that at t = 0 we
already obtain a very reasonable model space, as demon-
strated in the f" case (i.e., na ——0) by Ginocchio and
French [2] and McCullen, Bayman, and Zamick [3] (MBZ
in what follows). The no g 0 nuclei are technically more
demanding but the t = 0 approximation is again excellent
(Horie and Ogawa [4]).
The 6rst systematic study of the truncation hierarchy

was undertaken by Pasquini and Zuker [5,6] who found
that t = 1 has bene6cial effects, and t = 2 may be dan-
gerous and even nonsensical, while t = 3 restored sense
in the only nontrivial case tractable at the time (MNi).
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Nuclear Shell Model by the Quantum Monte Carlo Diagonalization Method

Michio Honma,1 Takahiro Mizusaki,2 and Takaharu Otsuka2,3

1Center for Mathematical Sciences, University of Aizu, Tsuruga, Ikki-machi, Aizu-Wakamatsu, Fukushima 965, Japan
2Department of Physics, University of Tokyo, Hongo, Tokyo 113, Japan

3RIKEN, Hirosawa, Wako-shi, Saitama 351-01, Japan
(Received 29 April 1996)

The feasibility of shell-model calculations is radically extended by the quantum Monte Carlo
diagonalization method with various essential improvements. The major improvements are made in
the sampling for the generation of shell-model basis vectors, and in the restoration of symmetries such
as angular momentum and isospin. Consequently the level structure of low-lying states can be studied
with realistic interactions. After testing this method on 24Mg, we present first results for energy levels
and E2 properties of 64Ge, indicating its large and g-soft deformation. [S0031-9007(96)01252-5]

PACS numbers: 21.60.Ka, 21.60.Cs, 24.10.Cn, 27.50.+e

The nuclear shell model has been successful in the
description of various aspects of nuclear structure, partly
because it is based on a minimum number of natural
assumptions. Although the direct diagonalization of the
Hamiltonian matrix in the full valence-nucleon Hilbert
space is desired, the dimension of such a space is too
large in many cases, preventing us from performing the
full calculations. The direct diagonalization has been
carried out up to 48Cr [1]. Recently, in order to relax this
restriction drastically, stochastic approaches, for instance,
the shell-model Monte Carlo (SMMC) method [2], have
been investigated. In fact, ground-state [3] and thermal
properties [4] have been well described by the SMMC
method.
We have presented the quantum Monte Carlo diagonali-

zation (QMCD) method [5] by utilizing the auxiliary field
Monte Carlo technique as in the SMMC method, but
in a quite different way. In general, low-lying states
of nuclei are described to a good extent in terms of
static and/or dynamic mean fields and their fluctuations.
The basic idea of the QMCD method is to diagonalize
the shell-model Hamiltonian, by using this property,
in a subspace spanned by a small number of selected
basis states obtained by stochastically generated one-body
fields. Thus, the ground state and several excited states
can be obtained. The QMCD method has been applied
to the interacting boson model [5,6]. In this Letter the
QMCD method is revised considerably in various aspects
so as to be capable of performing large-scale shell-model
calculations with realistic nuclear forces. As examples,
24Mg and 64Ge are taken. In particular, 64Ge is an
N ≠ Z proton-rich unstable nucleus manifesting a g-soft
structure, with a wide range of theoretical interpretations
(see Ref. [7]). Thus, the shell-model calculation can play
a crucial role for clarifying the level structure, but so
far such attempts have been impossible due to the large
dimension s,1 3 109d.
We first sketch the QMCD process very briefly, refer-

ring to relevant equations of Ref. [5]. More details on
certain basic points can be found in Ref. [5]. The shell-

model Hamiltonian consisting of single-particle energies
and a two-body interaction can be written in the quadratic
form of Nf one-body operators Oa :

H ≠
NfX

a≠1

µ
EaOa 1

1
2

VaO2
a

∂
. (1)

We consider the imaginary time evolution opera-
tor e2bH with Nt slices: e2bH ≠

QNt
n≠1 e2DbH ,

where Db ≠ byNt . By applying the Hubbard-
Stratonovich transformation at each time slice [8,9],
e2bH can be expressed as the integral of an operator,QNt

n≠1 e2Dbhs $snd, over Nf 3 Nt auxiliary fields san
[see Eq. (4) of Ref. [5]] with the Gaussian weight factor
Gssd ≠ exps2

P
a,n Dby2jVajs2

and. The one-body
Hamiltonian hs $snd is defined by

hs $snd ≠
X

a

sEa 1 saVasandOa , (2)

where sa ≠ 61 s≠ 6id if Va , 0 s.0d. In the QMCD
method, by generating a new set of values for s ≠ hsanj
stochastically according to Gssd, a new many-body state
is created as

jFssdl ~
NtY

n≠1

e2Dbhs $sndjCs0dl , (3)

where jCs0dl is an appropriate initial state. The Hamil-
tonian is diagonalized in the Hilbert subspace spanned by
this state and the basis states previously obtained. If this
new state improves the result of the diagonalization suf-
ficiently well, this state is added to the basis states. The
number of such basis states is referred to as the QMCD
basis dimension, and is increased until reasonable conver-
gence is achieved.
It is convenient to adopt basis states in the form of

Slater determinants:
QN

a≠1 ay
aj2l, where N denotes the

number of valence nucleons, j2l is an inert spherical
core, and ay

a represents the nucleon creation operator
in a canonical single-particle state a, which is a linear
combination of the spherical bases. Note that, if jCs0dl
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Large-scale shell model:
shell model calculations
performed within a
model space made up
by a number of orbitals
larger than usual.

An extended model
space enables to study
exotic (for shell model)
properties: collective
motion, deformation,
clustering, etc.
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Collective behavior

Quadrupole Collectivity in Neutron-Rich Fe and Cr Isotopes
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Intermediate-energy Coulomb excitation measurements are performed on the N ! 40 neutron-rich

nuclei 66;68Fe and 64Cr. The reduced transition matrix elements providing a direct measure of the

quadrupole collectivity BðE2; 2þ1 ! 0þ1 Þ are determined for the first time in 68Fe42 and
64Cr40 and confirm

a previous recoil distance method lifetime measurement in 66Fe40. The results are compared to state-of-

the-art large-scale shell-model calculations within the full fpgd neutron orbital model space using the

Lenzi-Nowacki-Poves-Sieja effective interaction and confirm the results of the calculations that show

these nuclei are well deformed.

DOI: 10.1103/PhysRevLett.110.242701 PACS numbers: 25.70.De, 27.50.+e

For many decades the nuclear shell structure originally
proposed by Mayer [1] and Jensen and coworkers [2],
where energy gaps are predicted at specific nucleon num-
bers, was a paradigm of nuclear physics, as it was consis-
tent with the experimental findings at or near the valley of
beta stability. However, with the possibility of producing
more exotic nuclei, the traditional magic numbers have
been observed to be weakened or to disappear while new
subshell gaps have emerged. In particular, the role of the
proton-neutron tensor interaction has been recognized as
driving changes in the shell structure [3]. Alterations to the
effective single-particle orbital gaps can lead to enhanced
particle-hole excitations, which are supported by deforma-
tion and pairing effects, and may give rise to new regions of
well-developed nuclear deformation.

A region of recent interest is that of the neutron-rich
isotopes near N ¼ 40, below the 28Ni isotopes. In many
ways structurally similar to the ‘‘island of inversion’’
nuclei near N ¼ 20 [4], the Fe and Cr isotopes in this
region have been experimentally observed to exhibit
increasingly collective behavior, rather than the near-magic
behavior naively expected assuming a robust N ¼ 40
subshell gap. In a schematic way, the development of
collectivity moving from 28Ni to 26Fe and 24Cr is under-
stood as a result of a narrowing of the N ¼ 40 subshell
closure and the enhancement of quadrupole collectivity
through promotion of neutron pairs across the subshell
gap. With the removal of protons from the 1f7=2 orbital,

the attractive tensor and central parts of the p-n interaction
between 1f7=2 proton holes and neutrons in the 1g9=2
and 2d5=2 orbits pull these neutron single-particle levels
down in energy. At the same time, the repulsive tensor
ð!1f7=2Þ&1 & "1f5=2 interaction dominates over the central
attractive p-n interaction and drives the neutron 1f5=2 orbi-
tal up, effectively quenching the N ¼ 40 gap. Looking at it
another way, adding 12 neutrons to 48Ca produces a gapless
60Ca; as protons are added in the 1f7=2 orbit, the repulsive
interaction between the 1f7=2 protons and the 1g9=2 and
2d5=2 neutrons and the strongly attractive !1f7=2-"1f5=2
interaction opens the N ¼ 40 gap up to its value in 68Ni.
The disappearance of the N ¼ 40 gap towards 60Ca sup-
ports the structural energy gain achieved by neutrons
occupying the low-! substates of the 1g9=2 orbital, where
! is the projection of the total angular momentum onto
the symmetry axis [5], which drives the system towards
deformed, collective structures. In other words, the quadru-
pole collectivity of the systems in the region is enhanced as a
result of the nearby presence of the "j ¼ 2 partner orbitals
1"g9=2 and 2"d5=2, members of a quasi-SUð3Þ sequence,
which is known to generate quadrupole collectivity [6].
The picture of structural evolution described above is

borne out by calculations using state-of-the-art large-scale
shell-model calculations [7]. While the details of the pre-
dictions for the degree of collectivity vary between theoreti-
cal approaches, all available predictions place the midshell
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Onset of collectivity
at N = 40

Model space

4 proton orbitals:
0f7/2, 1p3/2, 1p1/2, 0f5/2

5 neutron orbitals:
1p3/2, 1p1/2, 0f5/2, 0g9/2, 1d5/2

NATHAN shell-model code

include isovector and isoscalar components [29], the mag-
nitudes of the calculated BðE2Þ values are systematically
reduced and the agreement of the calculated values with the
experimental results, including the present result at 64Cr, are
improved. Alternatively, recent investigations have shown
that the use of the effective charges deduced by Dufour and
Zuker [30], i.e., e! ¼ 1:31e and e" ¼ 0:46e, without the
need of including an isovector component, give an excellent
description of the transition probabilities in different mass
regions [31] and are compatible with the ones obtained in a
recent fit of E2 properties of the sd shell with the USDA
interaction [32]. We therefore adopt these effective charges
and report the shell-model predictions shown by the solid
red line in the bottom panels of Fig. 2.

It is worth emphasizing the importance of including the
neutron 2d5=2 orbit in the valence space of the shell-model
calculations, as is done in the calculations presented using
the LNPS effective interaction. The inclusion of this orbi-
tal, a member of the quasi-SU3 sequence also containing
the 1g9=2 orbit, is critical to building the quadrupole col-
lectivity in the neutron-rich Fe and Cr isotopes [7], which
calculations excluding this state fail to reproduce [33].

It is also interesting to note that while no conclusions
can be drawn looking at all the available data, the present
results suggest larger collectivity in 68Fe42 with respect

to 66Fe40. The trend in the theoretical predictions is the
same but smoother. In order to conclude that a nucleus
has permanent deformation, it is necessary that both the
BðE2Þ’s of the yrast band and the spectroscopic quadrupole
moments can be obtained to a very good approximation
from a single intrinsic deformed state. This is indeed the
case in the calculations; for instance, in 64Cr this require-
ment is satisfied at the 3% level. The theoretical results can
be interpreted in terms of the proton and neutron E2
transition amplitudes A! and A". The BðE2Þ values and
the intrinsic quadrupole moments are obtained from these
transition amplitudes by the expressions [7,8]

BðE2: 2þ1 ! 0þ1 Þ ¼ ðe!A! þ e"A"Þ2; (1)

Q0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16!BðE2 #Þ

p
¼

ffiffiffiffiffiffiffiffiffi
16!

p
ðe!A! þ e"A"Þ: (2)

As can be seen in Fig. 3, the proton contribution to the
BðE2Þ values both in Cr and Fe isotopes is essentially
constant, while the neutron contribution increases through
N ¼ 38 in the Cr isotopic chain. In the case of the Fe
isotopes, the neutron contribution increases through
N ¼ 40, reproducing rather well the increase inBðE2Þ value
observed moving from 66Fe to 68Fe. Another point of note is
that the measured BðE2Þ value of 68Fe is slightly larger than
that of 64Cr, also in agreement with theory, although the
error bars do not allow for a definite conclusion.
However, the issue of collectivity depends very much on

the criteria chosen to gauge it. A measure of the ‘‘nuclear’’
collectivity is given by the intrinsic mass quadrupole
moment

Q0ðmassÞ ¼
ffiffiffiffiffiffiffiffiffi
16!

p
qmðA! þ A"Þ; (3)

to which neutrons and protons contribute with the same
weight. With the effective mass qm ¼ 1:77 (the sum of
the proton and neutron effective charges) and normalizing
the calculated Q0’s to A ¼ 64 to remove the A5=3 depen-
dence of Q, within the framework of the shell-model calcu-
lations we obtain intrinsic mass quadrupole moments of
273, 318, 313, and 300 fm2 for 60–66Cr, and 214, 243,
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FIG. 2 (color online). Systematics of Eð2þ1 Þ (upper panels) and
quadrupole collectivity (lower panels) along the Fe (left panels)
and Cr (right panels) isotopic chains. Shell-model calculations
using the state-of-the-art LNPS [7] effective interaction are
shown by the solid red lines, using the effective charges of
Dufour and Zuker [30] and the nucleon valence spaces as
described in the text for N ¼ 34 through N ¼ 42. For the
calculations at N ¼ 32, the neutron valence space excluded
the 1g9=2 and 2d5=2 orbitals, but included the entire pf shell
required for description of the lighter isotopes. Available experi-
mental data are shown in hollow black symbols, including results
deduced, with an optical model dependence, from (p,p’) mea-
surements [16]. The present results are shown as filled blue
circles.
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Novel collective feaures
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The shapes of neutron-rich exotic Ni isotopes are studied. Large-scale shell model calculations are performed
by the advanced Monte Carlo shell model (MCSM) for the pf -g9/2-d5/2 model space. Experimental energy levels
are reproduced well by a single fixed Hamiltonian. Intrinsic shapes are analyzed for MCSM eigenstates. Intriguing
interplays among spherical, oblate, prolate, and γ -unstable shapes are seen, including shape fluctuations, E(5)-like
situations, the magicity of doubly magic 56,68,78Ni, and the coexistence of spherical and strongly deformed shapes.
Regarding the last point, strong deformation and change of shell structure can take place simultaneously, being
driven by the combination of the tensor force and changes of major configurations within the same nucleus.

DOI: 10.1103/PhysRevC.89.031301 PACS number(s): 21.10.−k, 21.60.Cs, 21.60.Fw, 27.50.+e

Atomic nuclei exhibit simple and robust regularities in their
structure comprised of Z protons and N neutrons. A very
early example is the (spherical) magic numbers conceived by
Mayer and Jensen [1]. These magic numbers dominate low-
energy dynamics of stable nuclei and their neighbors on the
Segré chart. Another basic feature is nuclear shape, which
has been one of the central issues of nuclear physics since
the work of Rainwater [2] and Bohr and Mottelson [3]. The
shape varies as Z or N changes in such a way that it tends
to be spherical near magic numbers, while it becomes more
deformed towards the middle of the shell. Recent theoretical
and experimental studies on exotic nuclei with unbalanced Z
and N cast challenges to these pictures. Even magic numbers
are not an exception: the changes of the shell structure due
to nuclear forces, referred to as shell evolution [4], have been
seen, including disappearance of traditional magic numbers
and appearance of new ones. A recent example is the discovery
of the N = 34 magic number [5], after its prediction a decade
ago [6], while many other cases have been discussed [4,7–9].

It is, thus, of much interest to explore shapes of exotic
nuclei and to look for relations to the shell evolution. In this
Rapid Communication, we report results of state-of-the-art
large-scale shell-model calculations for a wide range of Ni
isotopes, focusing on these points. While the ground state
turns out to be basically spherical, a strongly prolate deformed
band appears at low excitation energy in some nuclei, similar
to shape coexistence, known in other nuclei over decades,
e.g., [10–12]. We shall present that the shell structure, for
instance, the spin-orbit splitting, can be varied significantly
between such spherical and deformed states by a combined
effect of different major configurations and the nuclear forces,
particularly the proton-neutron tensor force. This phenomenon
occurs within the same nucleus, and thereby is not described
as shell evolution in the conventional sense. However, to
discuss the basic underlying physics in a unified way, this
phenomenon will be called Type II shell evolution, while the
shell evolution by the change of N or Z will be referred to
as Type I. We shall discuss other interesting features, e.g.,

varying appearance of magicity in 56,68,78Ni, shape fluctuations
including γ instability, and the E(5)-like case [13].

We discuss, in this Rapid Communication, the structure
of Ni isotopes of even N = 28–50, utilizing results of the
advanced Monte Carlo shell model (MCSM) calculation
[14–16] run on the K computer for ∼2×1010 core seconds
in total. The model space consists of the full pf shell, 0g9/2
and 1d5/2 orbits for both protons and neutrons. There is no
truncation within this space, as an advantage of MCSM.
The Hamiltonian is based on the A3DA Hamiltonian with
minor revisions [14,17]. The spurious center-of-mass motion
is removed by the Lawson method [18].

Figure 1 shows yrast and yrare levels by the present
calculation compared to experiment [19–21]. Systematic
behaviors are visible in experimental yrast levels as well as
J π = 0+

2 and 2+
2 yrare levels, with a remarkable agreement

to the theoretical trends. Such good agreement has been
obtained with a single fixed Hamiltonian, and suggests that
the structure of Ni isotopes can be studied with it. The
B(E2; 0+

1 → 2+
1 ) values with neutron and proton effective

charges, 0.5 and 1.5, respectively, are shown in Fig. 1 compared
to experiment [22] with certain discrepancies for heavier
isotopes, where uncertainties are larger and (p,p′) data are
converted (N = 46) [23,24]. A more systematic comparison
with precise data is desired. Relevant shell-model calculations
have been reported [25,26]. In particular, those of [26] are a
remarkable achievement of the large-scale conventional shell-
model approach, with good agreement to experiment. Many
experimental data are yet to be obtained. For instance, the 0+

2
level of 68Ni has only recently been corrected [20,21]. The
primary objective of this Rapid Communication is to predict
novel systematic change of band structures in 68−78Ni isotopes
and to present the under-lying robust mechanisms for them.

We show in Fig. 2 a more detailed level scheme for 68Ni,
including negative-parity states. This nucleus has attracted
much attention [20,21,25–34] from both theoretical and
experimental sides. The positive-parity levels are classified
according to their shape categories: spherical, oblate, and
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FIG. 3. (Color online) Potential energy surfaces (PESs) of Ni isotopes, coordinated by the usual Q0 and Q2 (or γ ). The energy relative to
the minimum is shown by contour plots. Circles on the PES represent shapes of MCSM basis vectors (see the text).

that the 0+
3 and 2+

2 states of 68Ni were reported to be strongly
deformed with β2 ∼ 0.4 in shell-model calculations in [32].

Figures 4(a) and 4(b) show occupation numbers of proton
and neutron orbits, respectively, for the 0+

1,2,3 states of 68Ni.
One sees drastic changes between the 0+

1 and 0+
3 states for

proton f7/2 and neutron g9/2, while some other orbits show also
sizable changes. Such changes are due to particle-hole excita-
tions: mainly proton excitations from f7/2 to f5/2 and p3/2,1/2,
and neutron excitations from f5/2 and p1/2 to g9/2. Once
such excitations occur, the state can be deformed towards an
ellipsoidal shape and large deformation energy is gained pre-
dominantly from the proton-neutron quadrupole interaction.
The configuration structure of the 0+

3 state seems to be beyond
the applicability of truncated shell-model calculations [35,36].

We next discuss effective single-particle energy (ESPE),
obtained from the monopole component Hm of the Hamilto-
nian (see, for instance, [4] for more details). Hm is written
in terms of the number operator nj of each orbit j (proton
or neutron is omitted). The ESPE is calculated usually for
configurations that are being filled, but we evaluate it for mixed
configurations by a functional derivative ϵj= ⟨ ∂Hm

∂nj
⟩ with the

expectation values of nj ’s for eigenstates being considered1.
These ϵj ’s are still spherical ESPEs, but are obtained with

1The contribution of identical particles in the same orbit becomes
slightly different from the one by the filling scheme, but this difference
is negligible in the present case.

⟨nj ⟩ of deformed states. From the viewpoint of the Nilsson
model, ϵj ’s correspond to Nilsson levels at the spherical limit,
but the difference from the Nilsson model is that the ϵj ’s vary
as the deformation changes, due to the orbit dependence of
the monopole component of nuclear forces. For protons, the
ESPE of f7/2 is increased by ∼2 MeV in going from 0+

1 to 0+
3

states, while ESPE of f5/2 comes down by ∼1 MeV. Let us
look into how these changes occur, based on the mechanism
presented in [4,8]: Because g9/2 and f7/2 are of j>(= l + 1/2)
type and f5/2 is of j<(= l − 1/2) type, the g9/2-f7/2 (g9/2-
f5/2) monopole interaction from the tensor force is repulsive
(attractive). More neutrons in g9/2 in the 0+

3 state result in the
raising of the proton f7/2 and the lowering of the proton f5/2.
Similarly, neutron holes in f5/2 lead to the weakening of the
attractive (repulsive) effect on the proton f7/2 (f5/2). All these
effects reduce coherently the proton f7/2-f5/2 gap (i.e., the
difference of the ESPEs of these orbits), making it ∼3 MeV
narrower in the 0+

3 state, including other minor effects.
If a relevant shell gap becomes smaller, more particle-

hole excitations occur over this gap, leading to stronger
deformation with more energy gain as mentioned above. A
stronger deformation enhances particular configurations, for
instance, more neutrons in g9/2, which reduce the proton
f7/2-f5/2 gap further. Thus, the change of the shell gap and
strong deformation are interconnected in a self-consistent way.
Figure 4(c) demonstrates this mechanism with an example
of the proton f7/2-f5/2 gap obtained for the CHF wave
function along the γ = 0◦ and 60◦ lines in Fig. 3, as a
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The N = 20 and N = 28 “islands of inversion” are described by large scale shell model calculations with
an extension of the interaction SDPF-U that makes it possible to mix configurations with different N!ω or
equivalently with different numbers of particles promoted from the sd shell to the pf shell. It allows to connect
the classical sd-shell calculations below N = 18 with the sd (protons)-pf (neutrons) calculations beyond
N = 24–26, for all the isotopes from oxygen to sulfur, using the same interaction. For some isotopes this range
contains all the nuclei between the proton and the neutron drip lines and includes the N = 20 and N = 28 islands
of inversion. We pay particular attention to the properties of the states at fixed N!ω which turn out to be the real
protagonists of the physics at N = 20. The existence of islands of inversion or deformation are explained as the
result of the competition between the spherical mean field which favors the 0!ω configurations and the nuclear
correlations which favor the deformed N!ω configurations. The magnesium chain is exceptional because in it
the N = 20 and N = 28 islands of inversion merge, enclosing all the isotopes between N = 19 and N = 30.
Indeed, this would be also the case for the neon and sodium chains if their drip lines would reach N = 28.

DOI: 10.1103/PhysRevC.90.014302 PACS number(s): 21.60.Cs, 23.40.−s, 27.40.+z

I. INTRODUCTION

At the neutron rich edge, the structure of the spherical mean
field may be at variance with the usual one at the stability line.
The reason is that, at the stability line, the T = 0 channel of
the nucleon-nucleon interaction has a stronger weight relative
to the T = 1 channel than it has when the neutron excess is
very large. If the spherical mean field gaps get reduced, open
shell configurations, usually two neutron excitations across the
neutron closure, take advantage of the availability of open shell
protons to build highly correlated states that can be more bound
than the closed shell configuration. Then the shell closure is
said to have vanished. Although it has long been known that
the ground state parity of 11Be was at odds with the naive
shell model picture [1], this fact was overlooked until much
later, in connection with the discovery of halo nuclei with
N = 8. Studies of charge radii, atomic masses, and nuclear
spectra in the Mg and Na isotopic chains did show that a
region of deformation exists around N = 20 below 34Si. Key
experimental references are gathered in Refs. [2–5]. Since
then, a lot a experimental and theoretical work has ensued.
Early mean field calculations suggested that deformation was
responsible for the excess of binding of 31Na [6], but at this
stage to get a deformed minimum required the inclusion of
ad hoc rotational corrections. In the framework of the shell
model, the deformation in the region was soon associated with
the dominance of two-particle–two-hole (2p-2h) excitations
across the N = 20 shell gap between the normally occupied
neutron d3/2 orbit and the valence f7/2 and p3/2 orbits [7].
These configurations were dubbed intruders since they do not
obey the normal filling of the standard spherical mean field.
More recent shell model works include the Monte Carlo Shell
Model (MCSM) calculations of the Tokyo group [8] and other
large scale calculations in the sd-pf valence space [9]. Beyond
mean field calculations have also been used in the description
of the region with diverse degrees of success [10].

The interaction SDPF-U [11] that we proposed some time
ago was aimed to describe the very neutron rich nuclei around
N = 28 in a 0!ω space, with valence protons in the sd shell
and valence neutrons in the pf shell. Therefore, it is applicable
only to nuclei with 8 ! Z ! 20 and 20 ! N ! 40 and does
not describe intruder states. The main asset of SDPF-U was
the description of the vanishing of the N = 28 shell closure
below 48Ca, most notably in 42Si [12] (a result which is
now fully verified [13], but which produced initially some
heated debates [14]). 42Si was predicted to be oblate deformed
and 40Mg prolate deformed, exhibiting perhaps a neutron
halo. Since its publication, it has been frequently used and
shown to give an excellent description of this region of very
neutron rich nuclei [15]. Very recently, these calculations
were repeated in the same valence space with a somewhat
different effective interaction, getting (as could be expected)
very similar results [16]. As the sd part of SDPF-U is just
the USD interaction [17] and its pf part a minor variant of
KB3 previous to KB3G, it is appealing to complete SDPF-U
with the sd-pf off-diagonal matrix elements and to retune
the sd-pf cross shell monopoles in such a way that the
SDPF-U results at 0!ω are mostly preserved and the sd-pf
gaps are in accord with the experiment. This process results
in the SDPF-U-MIX interaction. More details are given in the
Appendix. The calculations are carried out using the codes
ANTOINE and NATHAN [18] and reach basis dimensions of
O(1010). In a (very) loose sense one can pretend that this
interaction covers the sector of the Segré chart 8 ! Z,N ! 40.
In this article we concentrate on the physics of the N = 20
“island of inversion” and its merging in some cases with the
neighboring N = 28 one.

II. THE PHYSICS AT FIXED N!ω

What is the driving force behind the abrupt changes leading
to the appearance of these islands of inversion? What makes
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Quenching of the neutron N = 82 shell gap near 120Sr with monopole-driving core excitations
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Properties of the experimentally inaccessible N = 82 isotones below 132Sn have been a major open question
for nuclear structure and nuclear astrophysics. Evolution of the neutron N = 82 shell gap along this isotonic
chain with even proton numbers 36–48 is investigated by large-scale shell model calculations, which allow core
excitations across both the N = 82 neutron and Z = 50 proton shell gaps. It is found that when moving away
from 132Sn, the N = 82 shell gap, measured by the excited 2+ states with the neutron core-excited configurations,
decreases gradually due to the monopole interaction acting dynamically between the πg9/2 and νh11/2 orbits. At
120Sr, the neutron core-excited configuration is sufficiently low and becomes the dominant component in the first
excited 2+ state, which results in a quenching of the Z = 40 subshell. Measurement of E2 transition probabilities
in 120Sr is proposed to confirm this novel shell-quenching mechanism.

DOI: 10.1103/PhysRevC.91.021303 PACS number(s): 21.60.Cs, 21.30.Fe, 23.20.Lv, 27.60.+j

Pairing and the associated energy gap in single-particle
spectra are important concepts in modern physics. Göppert-
Mayer realized in 1950 that for short-ranged, attractive two-
nucleon forces, the coupling of two nucleons in a j shell to a
spin-0 pair is energetically favored in the ground state over all
other couplings [1]. However, it became clear only after the
establishment of the BCS theory of superconductivity [2] that
the essence in question is the Cooper-pair condensation with
the occurrence of an energy gap in single-particle spectra. The
nucleons in the ground state prefer to stay in pairs because it
would cost energy for them to separate and be excited across
the energy gap [3,4]. It has been accepted since then that
the nuclear pairing plays such an important role that many
observations in individual nuclei, and even in neutron stars,
would not be explained without pairing. The excitation energy
of the low-lying 2+ states in even-even (even number Z for
proton and N for neutron) nuclei in the neighborhood of
closed shells becomes an important measure of nuclear shell
gaps [5].

The pair correlation depends on the organization of the
particles that feel the correlation, in particular, those near the
Fermi surface. As the particle number changes, which may
physically correspond to particle or hole dopings in systems of
high-temperature superconductivity [6] or to a shell evolution
toward the proton or the neutron dripline in nuclear systems,
the influence of pairing correlations on the global properties
of respective systems can vary dramatically [7,8]. In nuclei,
the question of whether the traditionally known shell gaps are
quenched in exotic mass regions has been a topic of discussion.
Shell quenching refers to a significant reduction in gap energies
that are normally expected in regular nuclei lying in the valley
of stability of the nuclear chart.

The astrophysical rapid-neutron-capture process (r pro-
cess) [9,10] of nucleosynthesis proceeds along the N = 82
isotones through a sequence of β− decays and neutron captures

*Corresponding author: sunyang@sjtu.edu.cn

toward the doubly closed-shell nucleus 132Sn. The close
relation between the N = 82 shell closure and the observed
A = 130 peak of the solar r-process abundance distribution
makes the nuclear structure of the 132Sn region very relevant
to nuclear astrophysics. The question of rigidity or erosion of
a shell closure has far-reaching implications for the r-process
nucleosynthesis in core-collapse supernova [11]. A strong shell
gap slows down the r process and creates more neutrons by
photodisintegration, causing more fission. For the N = 82
isotones below 132Sn, structure information on the neutron
N = 82 shell is very much desired. It was suggested [12] that
results of shell-model calculations can be used to rule out some
mass models, which provide unknown masses for the r-process
calculation.

Experimental studies [13–20] have provided strong evi-
dence from different aspects, showing that, although being
much away from the β stability valley, the traditional N = 82
shell closure at 132Sn is still robust. However, an immediate
question is whether the N = 82 shell gap persists when moving
away from 132Sn along the Z < 50 isotonic line, and in
particular, how it evolves into Z ≈ 40 where a subshell closure
is normally expected.

In the 132Sn region, the nuclides with Z < 50, N ! 82
are most neutron rich, and experimental studies for them
are extremely challenging. In a recent paper [12], Taprogge
et al. reported an observation of the low-lying 3/2− state
in 131In, which can be regarded as the 1p3/2 proton-hole
state in 132Sn. With this π1p3/2 level and the already known
level of π1p1/2, the 1p1/2-1p3/2 energy splitting could be
obtained. A comparison with that of the N = 50 isotones
indicated that the energy splitting for the N = 82 isotones
is considerably reduced. By applying this information of the
single-hole states, Taprogge et al. [12] performed shell-model
calculations for the first excited 2+ states and proton gaps
of the neutron-rich N = 82 isotones. They concluded that
the magicity at the Z = 38,40 subshell closures disappears
because of the reduced energy splitting between the proton
1p1/2 and 1p3/2 orbits.
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FIG. 3. (Color online) Excited 2+ energy levels for 120Sr as
functions of energy splitting between the proton p1/2 and p3/2

orbits: (a) without neutron core excitation and (b) with neutron core
excitation. The solid circles and solid squares denote the excited 2+

states with NCE and PC configurations, respectively.

the other isotones: The lower one, which has the neutron
core-excitation configuration π (f 6

5/2p
4
3/2)ν(h−1

11/2f7/2), is the
first 2+ state. The other one from the proton configuration
π (f 6

5/2p
−1
3/2p1/2), calculated at 2.44 MeV, becomes the second

2+ state.
Thus, we obtain an absence of shell closure along the chain

of N = 82 isotones, which is measured by the low first 2+ state.
However, our proposed shell-quenching mechanism is at odds
with Ref. [12]. To see the difference, we show in Fig. 3 the 2+

energies in 120Sr as functions of the energy splitting between
the two single-proton 1p levels, p1/2 and p3/2. Without NCE,
as shown in Fig. 3(a), the 2+

1 energy clearly goes down with
the splitting, because the first excited states are dominated by
the proton configuration (PC) in the pf shell. This was the
main conclusion in Ref. [12]: For the N = 82 isotones, the
magicity at the Z = 38,40 subshell closures disappears due
to the reduced energy splitting between the two single-proton
1p orbits. Now with NCE in our calculation, the 2+

2 states
are lowered from 4.0 MeV [see Fig. 1(b)] to 2.0 MeV by the
neutron-core excitations due to the M2 monopole correction,
as shown in Fig. 3(b). As seen in Fig. 3(b), these states are
independent of the splitting of the proton 1p orbits. This
is expected because the main configuration of the 2+

2 states
is the neutron core-excited one. In the present calculation,
the 1p energy splitting of 0.988 MeV is chosen according
to the recent experimental data [12], and we obtain that the
neutron core-excited 2+ state lies below the 2+ (PC) state.
Figure 3(b) further suggests that the proton configurations can
only become dominant for the first 2+ state in 120Sr if the
splitting of the proton 1p orbits were less than 0.5 MeV.

We suggest to measure E2 transition probability as a
testable quantity for the inverted structure of the 2+ states
in 120Sr. In Fig. 4, the predicted B(E2) values from the

FIG. 4. (Color online) Predicted E2 transition probabilities from
the 2+ states to the ground state. The solid squares and solid circles
indicate B(E2,2+

1 → 0+
1 ) and B(E2,2+

2 → 0+
1 ), respectively. Note

that at 120Sr, there occurs an inversion of the two B(E2) values.

two 2+ states to the ground state are shown. It is seen
that the B(E2,2+

1 → 0+
1 ) values are generally larger than

B(E2,2+
2 → 0+

1 ), except for 120Sr. A larger B(E2) implies
that the corresponding 2+ state has a similar structure as the
0+ ground state. The predicted transition from the first excited
2+ state to the ground state in 120Sr is rather small, which can
be regarded as an indication of a completely different structure
as compared to the ground state.

To summarize, nuclear structure information on the N = 82
shell evolution is of crucial importance for r-process nucle-
osynthesis in the neutron-rich 132Sn region, but the current
poor understanding prevents a reliable extraction of site-
specific signatures from observational data. By using the
EPQQM model, we have performed large-scale shell-model
calculations for the 2+ energy levels of the N = 82 isotones
with Z = 36–48. Different from the previous shell-model
calculation, we have allowed neutron core excitations across
the N = 82 shell gap. It has been shown that the monopole
correction acting between the proton πg9/2 and neutron νh11/2
orbits facilitates the core excitations. With decreasing proton
number from 130Cd down to 118Kr, the isotone-dependent,
monopole-driving effect gradually lowers the neutron core-
excited 2+ state. At 120Sr, the core-excitation configuration
becomes sufficiently low to compete with the usual proton
configuration, causing the two 2+ states to reverse in energy.
Using the first 2+ state as a measure of shell closure, we have
thus concluded that the quenching of the neutron N = 82
shell is due to the monopole-driving core excitations. As
far as core excitations are set in, the configurations with
cross-shell excitations are favored near the proton Z = 40
subshell, and detailed single-particle energies become less
important. Experiment measuring B(E2)’s in 120Sr has been
proposed to confirm this novel shell-quenching mechanism.
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Program of China (No. 2013CB834401).
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In calculations [1] both proton model space is spanned by the four orbitals
0f7/2, 1p3/2, 1p1/2, 0f5/2 and the five neutron ones
1p3/2, 1p1/2, 0f5/2, 0g9/2, 1d5/2 outside 48Ca core, and the shell model basis is
truncated so to retain up to 14p− 14h excitations across the Z = 28 and N = 40
gaps.

In calculations [2] both proton and neutron model spaces are spanned by the six
orbitals 0f7/2, 1p3/2, 1p1/2, 0f5/2, 0g9/2, 1d5/2 outside 40Ca core. In the
m-scheme the dimension of the basis is ' 1024, reduced to 50 by the
importance sampling of the shell-model basis performed within the Monte Carlo
Shell Model (MCSM) approach.

In calculations [3] only neutron N = 20 cross-shell excitations are taken into
account. Shell model basis has a dimension up to 1010

In calculations [4] only one valence-neutron is allowed to occupy the 1f7/2, 2p3/2.
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Calculations with a large number of valence nucleons need to employ
reduction/truncation schemes.

Those schemes need to be under control, convergence properties
and theoretical error estimates are an important tool to understand
the reliability of the shell-model calculations.
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The realistic shell model

The derivation of the shell-model hamiltonian using the
many-body theory may provide a reliable approach

The model space may be “shaped” according to the
computational needs of the diagonalization of the shell-model
hamiltonian

In such a case, the effects of the neglected degrees of freedom
are taken into account by the effective hamiltonian Heff
theoretically
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An example: 19F

16O

p3/2
p1/2

s1/2

19F

protons neutrons

s1/2

d5/2
d3/2

s1/2

p3/2
p1/2

s1/2
d5/2
d3/2

model space

9 protons & 10 neutrons
interacting

spherically symmetric mean
field (e.g. harmonic oscillator)

1 valence proton & 2 valence
neutrons interacting in a
truncated model space

The degrees of freedom of the core nucleons and the excitations of
the valence ones above the model space are not considered explicitly.
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Effective shell-model hamiltonian

The shell-model hamiltonian has to take into account in an effective
way all the degrees of freedom not explicitly considered

Two alternative approaches

phenomenological

microscopic

VNN (+VNNN)⇒ many-body theory⇒ Heff

Definition
The eigenvalues of Heff belong to the set of eigenvalues of the full
nuclear hamiltonian
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Workflow for a realistic shell-model calculation

1 Choose a realistic NN potential (NNN)

2 Determine the model space better tailored to study the system
under investigation

3 Derive the effective shell-model hamiltonian by way of the
many-body theory

4 Calculate the physical observables (energies, e.m. transition
probabilities, ...)
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Realistic nucleon-nucleon potential: VNN

Several realistic potentials χ2/datum ' 1:
CD-Bonn, Argonne V18, Nijmegen, ...

Strong short-range
repulsion

How to handle the short-range repulsion ?

Brueckner G matrix

EFT inspired approaches

Vlow−k, SRG
chiral potentials
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The shell-model effective hamiltonian
A-nucleon system Schrödinger equation

H|Ψν〉 = Eν |Ψν〉

with

H = H0 + H1 =
A∑

i=1

(Ti + Ui ) +
∑
i<j

(V NN
ij − Ui )

Model space

|Φi〉 = [a†1a†2 ... a†n]i |c〉 ⇒ P =
d∑

i=1

|Φi〉〈Φi |

Model-space eigenvalue problem

HeffP|Ψα〉 = EαP|Ψα〉
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The shell-model effective hamiltonian


PHP PHQ

QHP QHQ


H = X−1HX

⇒
QHP = 0


PHP PHQ

0 QHQ


Heff = PHP

Suzuki & Lee⇒ X = eω with ω =

(
0 0

QωP 0

)

Heff
1 (ω) = PH1P + PH1Q

1
ε−QHQ

QH1P−

−PH1Q
1

ε−QHQ
ωHeff

1 (ω)
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The shell-model effective hamiltonian

Folded-diagram expansion

Q̂-box vertex function

Q̂(ε) = PH1P + PH1Q
1

ε−QHQ
QH1P

⇒ Recursive equation for Heff ⇒ iterative techniques
(Krenciglowa-Kuo, Lee-Suzuki, ...)

Heff = Q̂ − Q̂
′
∫

Q̂ + Q̂
′
∫

Q̂
∫

Q̂ − Q̂
′
∫

Q̂
∫

Q̂
∫

Q̂ · · · ,
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The perturbative approach to the shell-model Heff

Q̂(ε) = PH1P + PH1Q
1

ε−QHQ
QH1P

The Q̂-box can be calculated perturbatively

1
ε−QHQ

=
∞∑

n=0

(QH1Q)n

(ε−QH0Q)n+1

The diagrammatic expansion of the Q̂-box

1 2 3 4 5

6 7 8 9

a b b ba a a

c c c cd d d

a

aa b

b

c c

b

hp

h
p hpp

a ab b

c c cd d d

p

p
h h

c d

2
h
1

1 2
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Q̂-box perturbative expansion: 1-body diagrams

j j j

jj j

h

(a) (b)

h h p

j

p p p h1 2 1

h 2

j

j

p

j

j

h

j j

jj j
1 2 3*

4 5

hp
1

p
2

p
3

p
4

1 2 3* 4* 5 6* 7* 8*

9 10 11 12* 13 14*

15 16 17* 18 19* 20*

21* 22* 23* 24* 25* 26*

27* 28* 29* 30* 31* 32*

33* 34* 35* 36* 37 38

39* 40* 41 42 43*

j

j j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

jj

jj

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

p

h

p

h
p

p

h

h

p

p

h
p

p

p

h

p

h

p
h

p

h

p
h

h

h
p

h
p

h
p

h

p

p

h

h
p

ph

h

p

h

h

p

h

h

h

p

p

p
h

h
h

p h h

p

h

h

p

p
h

p

p h

p
hh

h
p

h

h

h
h

p

p

h

hp
h

p
h

h

p
h

p
h

h p

h
p

p
h

h

p
h

p

p

h

p

h

p

h

p

p

p

p

h

p

p

h

h

p h

h

p

h

p

h

p
h

h
p

p h

h

h

h

p
h

h
h

p

1

2

13
1

1

3

2

3
1

2

3

3

1

2

1
2

3

1
2

3

1

1

2

1

2

3

3

1

1

2
2

1

1

2
3

1

23

1
1

3

1

2

1

2

1

1

2

1

1

2 1

2

3

2

3 1

3

23

1

2

3

1 1

21
2

1

2

1

2
2

1

1

2

p
1

1

2

2

2

1

2 1

2 1

2

1

1

2

2

1

2

1

2

1

21

2

1

2
1

1

2

2

1

2

1

2

1

2

p
2

p
2

h 2

p
1

h 2

p
1

h 1

h 2

p
2

h 1

h 2

p
1

p
2

h 2

h 4
p

2

2h

p
2

p
2

p
1

p
2

p
2

p
2

p
1

p
2

h 1

p
1

h 1

Luigi Coraggio INFN, Napoli

Nuclear Theory in the Supercomputing Era - NTSE-2016



Q̂-box perturbative expansion: 2-body diagrams
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Q̂-box perturbative expansion: 2-body diagrams
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Benchmark calculation

A benchmark calculation has been performed for light p-shell
nuclei, comparing realistic shell-model calculations with those
of NCSM, starting from chiral two-body potential N3LO.

(a) (b) NCSM
–8.0

–6.0

–4.0

–2.0

0.0

2.0

4.0

6.0

8.0

E 
[M

eV
]

 21+
 31+
 01+
 11+

(a) not translationally invariant
Hamiltonian
(b) purely intrinsic hamiltonian

L.C., A. Covello, A. Gargano, N. Itaco, and T. T. S. Kuo, Ann. Phys. 327 ,
2125-2151 (2012)
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Our recipe for realistic shell model

Input VNN : Vlow−k derived from the high-precision NN CD-Bonn
potential with a cutoff: Λ = 2.6 fm−1.

Heff obtained calculating the Q-box up to the 3rd order in Vlow−k.

Effective electromagnetic operators are consistently derived by
way of the the MBPT
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Double-step approach

However, it may occur that Heff can be diagonalized for a certain class
of nuclei, but not for other with a larger number of valence nucleons

Recently, we have started to explore the possibility to perform a
double-step approach to the renormalization of the shell-model
hamiltonian

More precisely, after we have derived Heff in a certain model space P,
starting from this one we generate a new Hnew

eff acting in a truncated
subspace Pnew ⊂ P
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First example: the collectivity at N = 40

24 26 28

Z

0

60

120

180

240

300

360

B
(E

2 
; 2

+
 →

 0
+
) 

[e
2 
fm

4 ]

ENSDF
Rother 2011
Crawford 2013

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2 1 
+

 ex
ci

ta
tio

n 
en

er
gy

 [M
eV

]

Luigi Coraggio INFN, Napoli

Nuclear Theory in the Supercomputing Era - NTSE-2016



The collectivity at N = 40: the model space

Within the shell-model framework the key role for the
onset/disappearance of the N = 40 collectivity is played by the
interaction between the quadrupole partners ν0g9/2, ν1d5/2

In order to study this phenomenon we have chosen to perform a sort
of “differential diagnosis”, employing as the proton model space the
π0f7/2, π1p3/2 orbitals, and two different neutron model spaces:

Model space I: 1p3/2,1p1/2, 0f5/2, 0g9/2

Model space II: 1p3/2,1p1/2, 0f5/2, 0g9/2,1d5/2
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The double-step procedure

In order to make this comparison as much consistent as possible, we
have followed this procedure

1 We have derived first Heff - within the MBPT - in a very large
model space outside the 40Ca closed core, and spanned by six
proton and neutron pfgd orbitals.

2 Then, we derive from this “mother hamiltonian” two new effective
hamiltonians - again using MBPT - defined in the smaller model
spaces (I) and (II).

3 Single-particle energies are taken for experimental data.

L. C., A. Covello, A. Gargano, and N. Itaco, Phys. Rev. C 89, 024319 (2014)
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Collectivity at N = 40

Titanium isotopes
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Chromium isotopes
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Collectivity at N = 40

Iron isotopes
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Nickel isotopes
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Collectivity at N = 40
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A second example: quadrupole collectivity around
Z = 50

Our interest: to study the quadrupole collectivity due to Z = 50
cross-shell excitations in even-mass isotopic chains above 88Sr.

Model space of the “mother hamiltonian”:
Proton orbitals Neutron orbitals

1p1/2
0g9/2
1d5/2 1d5/2
0g7/2 0g7/2
1d3/2 1d3/2
2s1/2 2s1/2
0h11/2 0h11/2
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A modest proposal

A “Poor Man’s Approach” to lighten the computational complexity of
diagonalizing the “mother hamiltonian” H75 defined in a large
shell-model space:

First step: analyze the evolution of the effective single-particle
energies (ESPE) of the “mother hamiltonian”, and locate the
relevant degrees of freedom (single-particle orbitals).

Second step: perform a unitary transformation of the “mother
hamiltonian” into a reduced model space, so to obtain an
effective hamiltonian that is computationally.

Single-particle energies, effective two-body matrix elements, and
effective electromagnetic operators are all derived from theory

L. C., A. Covello, A. Gargano, N. Itaco, and T. T. S. Kuo, Phys. Rev. C 91,
041301 (2015)
L. C., A. Gargano, and N. Itaco, Phys. Rev. C 93, 064328 (2016)
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Single-particle properties with H75

orbital proton s.p.e.
1p1/2 0.0
0g9/2 1.5
0g7/2 5.7
1d5/2 6.4
1d3/2 8.8
2s1/2 8.7
0h11/2 10.2
orbital neutron s.p.e.
1d5/2 0.0
0g7/2 1.5
2s1/2 2.2
1d3/2 3.4
0h11/2 5.1

nalaja nb lb jb 〈a|ep|b〉
0g9/2 0g9/2 1.62
0g9/2 0g7/2 1.67
0g9/2 1d5/2 1.60
0g7/2 0g7/2 1.73
0g7/2 1d5/2 1.74
0g7/2 1d3/2 1.76
1d5/2 1d5/2 1.73
1d5/2 1d3/2 1.72
1d5/2 2s1/2 1.76
1d3/2 1d3/2 1.74
1d3/2 2s1/2 1.76

0h11/2 0h11/2 1.72

nalaja nb lb jb 〈a|en|b〉
0g7/2 0g7/2 0.94
0g7/2 1d5/2 0.96
0g7/2 1d3/2 0.95
1d5/2 1d5/2 0.94
1d5/2 1d3/2 0.97
1d5/2 2s1/2 0.79
1d3/2 1d3/2 0.96
1d3/2 2s1/2 0.79

0h11/2 0h11/2 0.87
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Proton ESPE
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Neutron ESPE
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Truncating the model space

The evolution of proton and neutron ESPE suggests a possible
reduction of both model spaces.

By way of a unitary transformation we can derive a H4n
eff defined

in a reduced proton model space spanned only by 4 orbitals
1p1/2,0g9/2,0g7/2,1d5/2 and a neutron one spanned by both the
5 original orbitals or by only 2 orbitals 0g7/2,1d5/2.

The physics of two valence-nucleon systems is exactly
preserved.
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The second step

Let us sketch out the derivation of H4n.

The eigenvalue problem for H75 is:

H75|ψk 〉 = Ek |ψk 〉 k = 1, ...,N

H75 is the sum of the unperturbed single-particle hamiltonian H0 and
the residual two-body potential V

H75 = H0 + V .

The model space is splitted up in two subspaces P4n and Q3,5−n.
Since H0 is diagonal:

H0 = PH0P + QH0Q .
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The second step

The P-space eigenvalue problem is:

H4n|φk 〉 =
(
PHoP + V 4n) |φk 〉 = Ek |φk 〉 k = 1, ...,d

where |φk 〉 = P|ψk 〉.
The eigenvalue problem for H75 can be easily solved for the two
valence-nucleon systems (90Zr,90Sr,90Y), and consequently providing
the Ek , ψk .
The solutions of the equation for the effective residual interaction V 4,n

are given by:

V 4n =
d∑

k=1

(Ek − E0)|φk 〉〈φ̃k | ,

where |φ̃k 〉 are biorthogonal states defined as |φ̃k 〉〈φk ′ | = δkk ′
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Results for Zr isotopes
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Results for Mo isotopes
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A closer look to 96Mo

H75 ≈ 108

H45
eff ≈ 107

H42
eff ≈ 105
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a) H45
eff and H42

eff with double-step procedure;
b) H̃45, H̃42

eff derived by way of the many-body perturbation theory;
c) the hamiltonian H75, but constraining the calculations to model spaces [45], [42].

Luigi Coraggio INFN, Napoli

Nuclear Theory in the Supercomputing Era - NTSE-2016



Results for Ru isotopes
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Results for Pd isotopes
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Results for Cd isotopes
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Results for Sn isotopes
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Last example: open-shell nuclei around 132Sn

Our goal: to study the structure of nuclei that are currently of
exeperimental interest to detect the neutrinoless double-beta decay.

Model space of the “mother hamiltonian”:
Proton orbitals Neutron orbitals

1d5/2 1d5/2
0g7/2 0g7/2
1d3/2 1d3/2
2s1/2 2s1/2
0h11/2 0h11/2
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Single-particle properties with H55

orbital proton s.p.e.
0g7/2 0.0
1d5/2 0.3
1d3/2 1.5
2s1/2 1.5
0h11/2 1.8
orbital neutron s.p.e.
0g7/2 0.0
1d5/2 0.6
1d3/2 1.5
2s1/2 1.2
0h11/2 2.7

nalaja nb lb jb 〈a|ep|b〉
0g7/2 0g7/2 1.42
0g7/2 1d5/2 1.40
0g7/2 1d3/2 1.40
1d5/2 1d5/2 1.21
1d5/2 1d3/2 1.28
1d5/2 2s1/2 1.23
1d3/2 1d3/2 1.26
1d3/2 2s1/2 1.29

0h11/2 0h11/2 1.31

nalaja nb lb jb 〈a|en|b〉
0g7/2 0g7/2 1.00
0g7/2 1d5/2 1.03
0g7/2 1d3/2 0.98
1d5/2 1d5/2 0.63
1d5/2 1d3/2 0.65
1d5/2 2s1/2 0.62
1d3/2 1d3/2 0.69
1d3/2 2s1/2 0.68

0h11/2 0h11/2 0.68
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Proton ESPE
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Results for heavy Te isotopes

72 74 76 78 80 82 84

N

0

1000

2000

3000

4000

5000

B(
E2

 ; 
0+  →

 2
+ ) [

e2 
m

4 ]

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2 1 + 
ex

ci
ta

tio
n 

en
er

gy
 [M

eV
] Expt.

H55

H25

a)

b)

74 76 78 80 82

N

–1.0

0.0

1.0

2.0

3.0

ES
PE

 [M
eV

]
0g7/2

1d5/2

2s1/2

0h11/2

1d3/2

Luigi Coraggio INFN, Napoli

Nuclear Theory in the Supercomputing Era - NTSE-2016



Results for heavy Xe isotopes
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The detection of the 0νββ-decay

First group: 76Ge, 130Te,
and 136Xe.

Second group: 82Se,
100Mo, and 116Cd.

Third group: 48Ca, 96Zr,
and 150Nd.
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CUORE@LNGS

TeO2 crystals used as low heat
capacity bolometers, arranged into
towers and cooled in a large cryostat
to approximately 10 m◦K with a
dilution refrigerator.

The detectors are isolated from
backgrounds by ultrapure
low-radioactivity shielding.

Temperature spikes from electrons
emitted in Te 0ββ are collected for
spectrum analysis.
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Nuclear structure calculations

The spread of nuclear structure calculations evidences
inconsistencies among results obtained with different
models
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Gamow-Teller strengths for 128Te
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Gamow-Teller strengths for 130Te
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Gamow-Teller strengths for 136Xe
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Conclusions and outlook

The introduction of a double-step procedure allows a
reduction the complexity of the computational problem, and
may be useful for other large scale shell-model
calculations.
Quadrupole collectivities in isotopic chains outside 48Ca
and 88Sr cores are well reproduced.
We are working to extend the procedure to consider also
the truncation of the degrees of freedom of filled
shell-model orbitals.
The calculation of effective two-body operators are in order
to improve the calculation of the electromagnetic-multipole
transition rates.
A parameter-free calculation of the NME for the
neutrinoless double β-decay is in progress.
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Present Prospects in Nuclear Structure
12th International Spring Seminar in Nuclear Physics, May 15-19

2017, Sant’Angelo d’Ischia

https://agenda.infn.it/event/spring2017
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Test case: p-shell nuclei

VNN ⇒ chiral N3LO potential by Entem & Machleidt
(smooth cutoff ' 2.5 fm−1)
Heff for two valence nucleons outside 4He
Single-particle energies and residual two-body interaction
are derived from the theory. No empirical input

First, some convergence checks !

L.C., A. Covello, A. Gargano, N. Itaco, and T. T. S. Kuo, Ann.
Phys. 327 , 2125-2151 (2012)
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Convergence checks
The intermediate-state space Q
Q-space is truncated: intermediate states whose unperturbed
excitation energy is greater than a fixed value Emax are
disregarded

|ε0 −QH0Q| ≤ Emax = Nmax~ω
6Li yrast states
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Convergence checks

Order-by-order convergence

Compare results from Heff
1st, Heff

2nd, Heff
3rd and Heff

Padè
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Convergence checks

Dependence on ~ω
Auxiliary potential U ⇒ harmonic oscillator potential
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Benchmark calculation

Approximations are under control ... and what about the
accuracy of the results ?

Compare the results with the “exact” ones

ab initio no-core shell model (NCSM)
P. Navrátil, E. Caurier, Phys. Rev. C 69, 014311 (2004)

P. Navrátil et al., Phys. Rev. Lett. 99, 042501 (2007)
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Benchmark calculation
To compare our results with NCSM we need to start from a translationally invariant
Hamiltonian

Hint =
(

1− 1
A

)∑A
i=1

p2
i

2m +
∑A

i<j=1

(
V NN

ij − pi·pj
mA

)
=

=

[∑A
i=1(

p2
i

2m + Ui )

]
+

[∑A
i<j=1(V

NN
ij − Ui −

p2
i

2mA −
pi·pj
mA )

]
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(a) not translationally invariant Hamiltonian
(b) purely intrinsic hamiltonian
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Benchmark calculation
Remark

Heff derived for 2 valence nucleon systems⇒ 3-, 4-, .. n-body components are
neglected
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Benchmark calculation

10B relative spectrum

0

1

2

3

4

5

6

7

E 
(M

eV
)

1+

3+

Expt

0+
2+

1+

10B

2+

NCSM

2+
3+

RSM

4+

2+

1+

3+

0+
1+

2+

3+
2+
2+

2+

4+

discrepancy ≤ 1 MeV
minor role of many-body
correlations
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