Role of Supercomputers in Basic Science Simulations James P. Vary, Iowa State University NTSE-2016, Pacific National University Khabarovsk, Sept. 19-23, 2016

The Overarching Questions

- How did visible matter come into being and how does it evolve?
- How does subatomic matter organize itself and what phenomena emerge?
- Are the fundamental interactions that are basic to the structure of matter fully understood?
- How can the knowledge and technological progress provided by nuclear physics best be used to benefit society?
 - NRC Decadal Study

The Time Scale

- Protons and neutrons formed 10⁻⁶ to 1 second after Big Bang (13.7 billion years ago)
- H, D, He, Li, Be, B formed 3-20 minutes after Big Bang
- Other elements born over the next 13.7 billion years

Nuclear Theory in the Supercomputing Era – 2016 (NTSE-2016)

anhe

K-Supercomputer

omonosov

Van

International Conference

World's Top 500 Supercomputers Projected Performance Development

HPC Research Representation at NTSE2016

NTSE2016 Participant	Top500	Ranking*
Junchen Pei, Peking University	Tianhe II	#2
James Vary, Iowa State University	Titan	#3
Noritaka Shimizu, Tokyo University	K-Super	#5
James Vary, Iowa State University	Mira	#6
Roman Skibinsky, Cracow University	Mira	#6
Vasily Kulikov, Moscow State University	Lomonosov II	#41
Andrey Shirokov, Moscow State University	Lomonosov II	#41
Andrey Shirokov, Moscow State University	Edison	#49
Youngman Kim, RISP	Edison	#49
Joel Lynn, Darmstadt University	Edison	#49
Xingbo Zhao, Institute of Modern Physics	Edison	#49
Charlotte Elster	Ruby & Owens	?
Youngman Kim, RISP	Tachyon II	?

NTSE2016 Participants applying for s	supercomputing	
Carlo Barbieri	Mira	#6
Luigi Coraggio	Fermi	#45

*June 2016 Top 500

US-DOE (ASCR) Computing Upgrades At a Glance								
System attributes	NERSC Now	OLCF Now	ALCF Now	NERSC Upgrade OLCF Upgrade ALCF Upgrades		lpgrades		
Name Planned Installation	Edison	TITAN	MIRA	Cori 2016	Summit 2017-2018	Theta 2016	Aurora 2018-2019	
System peak (PF)	3	– 30 P	F	5 – 200 PF				
Peak Power (MW)	2	– 5 M\	N		2–14 MW			
Total system memory	0.3	3 – 0.8	PB	1 – 7 PB				
Node performance (TF)	0.460	1.452	0.204	> 3	> 40	> 3	> 17 times Mira	
Node processors	Intel Ivy Bridge	AMD Opteron Nvidia Kepler	64-bit PowerPC A2	Intel Knights Landing many core CPUs Intel Haswell CPU in data partition	Multiple IBM Power9 CPUs & multiple Nvidia Voltas GPUS	Intel Knights Landing Xeon Phi many core CPUs	Knights Hill Xeon Phi many core CPUs	
System size (nodes)	5,600 nodes	18,688 nodes	49,152	9,300 nodes 1,900 nodes in data partition	~4,600 nodes	>3,200 nodes	>50,000 nodes	
System Interconnect	Aries	Gemini	5D Torus	Aries	Dual Rail EDR- IB	Aries	2 nd Generation Intel Omni-Path Architecture	
File System	7.6 PB 168 GB/ s, Lustre [®]	32 PB 1 TB/s, Lustre [®]	26 PB 300 GB/s GPFS™	28 PB 744 GB/s Lustre [®]	120 PB 1 TB/s GPFS™	10PB, 210 GB/s Lustre initial	150 PB 1 TB/s Lustre [®]	

Cray XK6 compute node XK6 Compute Node Characteristics NVIDIA AMD Opteron 6200 "Interlagos" 16 core processor @ 2.2GHz PCIe Gen2 **NVIDIA** Tesla M2090 "Fermi" @ 665 GF with 6GB GDDR5 memory AMD HT3 Host Memory HT3 AMD 32GB 1600 MHz DDR3 Gemini High Speed Interconnect Upgradeable to NVIDIA's next generation "Kepler" processor in 2012 . 0 Four compute nodes per XK6 blade. 24 blades per rack 0 0 0 0 .

Intel Xeon Phi Knights Landing (just released)

Slide from Avinash Sodani (Intel), presented at ISC 2016 IXPUG workshop

Knights Landing Overview

Chip: 36 Tiles interconnected by 2D Mesh
Tile: 2 Cores + 2 VPU/core + 1 MB L2
Memory: MCDRAM: 16 GB on-package; High BW
DDR4: 6 channels @ 2400 up to 384GB
IO: 36 lanes PCIe Gen3. 4 lanes of DMI for chipset
Node: 1-Socket only
Fabric: Omni-Path on-package (not shown)
Vector¹: up to 2 TF/s Linpack/DGEMM; 4.6 TF/s SGEMM
Streams Triad¹: MCDRAM up to 490 GB/s; DDR4 90 GB/s
Scalar²: Up to ~3x over current Intel[®] Xeon Phi[™]
co-processor 7120 ("Knights Corner")

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to asist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit http://www.intel.com/performance.Configurations:

 Intel Xeon Phi processor 7250 (16GB, 1.4 GHz, 68-cores) running LINPACK (score 2000 GFLOPS), DGEMM (score 2070 GFLOPS), SGEMM (4605 GFLOPS), STREAM (DDR4 = 90 GB/s) and MCDRAM = 490 GB/s), 96 GB DDR4-2133 memory, BIOS R00.RC085, Cluster Mode = Quad, MCDRAM Flat or Cache, RHEL* 7.0, MPSP 1.2.2, Intel MKL 11.3.2, Intel MPI 5.1.2, DGEMM 20K x 20K, LINPACK 100K x 100K size
 Intel estimates based on <specint-like workloads> comparing configuration 1 to Intel Xeon Phi co-processor 7120A hosted on 2x Intel Xeon processor E5-2697 v3. Node Capability Includes Memory Hierarchy

Model of application memory use has changed What is the *hottest* memory? Coldest?

Let's take a look at what is running on Edison now

NOW COMPUTING ON EDISON AT NERSC (http://www.nersc.gov/)

A small sample of massively parallel scientific computing jobs running right now at NERSC.

PROJECT	MACHINE	CPU Cores	CPU CORE Hours Used
Chombo-Crunch: Advanced Simulation of Subsurface Flow and Reactive Transport Processes Associated with Carbon Sequestration PI: David Trebotich, Lawrence Berkeley National Laboratory	Edison	57,024	109,007.1
Controlling the Self-assembly of Alzheimer's-related Peptides: Efficient Sampling of Influencing Factors PI: Phillip L. Geissler, University of California Berkeley	Edison	5,184	113,657.4
Simulation of laser-plasma particle accelerators PI: Jean-Luc Vay, Lawrence Berkeley National Laboratory	Edison	4,800	104,415.7

NERSC Help Line: 1-800-666-3772

DID YOU KNOW?

Saul Perlmutter—a professor of physics at UC Berkeley and a faculty senior scientist at Berkeley Lab—was awarded the 2011 Nobel Prize in Physics for his 1998 discovery that the universe is expanding at an accelerating rate. He confirmed his observations by running thousands of simulations at NERSC, and his research team is believed to have been the first to use supercomputers to analyze and validate observational data in cosmology.

Realities for Basic Science Supercomputers

Supercomputers for Basic Science Require Advance Planning

What are the basic science "drivers"?
How will simulations work on evolving architectures?
Personnel development (Basic and Applied Science)?

Scientific/Societal/Political Efforts Intertwined in the Planning

- Scientific Community Consensus
- Funding Agency Support
- Government Support
- Popular Support

Requirements Gathering

LCFs and NERSC support a diverse user community

- Science benefits and impact of future systems are examined on an ongoing basis
- ASCR Computing Facility staff have been actively engaged in community assessments of future computational needs and solutions
- Computational science roadmaps are developed in collaboration with leading domain scientists
- Detailed performance analyses are conducted for applications to understand future architectural bottlenecks
- Analysis of INCITE, ALCC, ERCAP, Early
 Science and CAAR projects history and trends

Science Category	Represented Research Areas		
Biology	Bioinformatics Biophysics Life Sciences Medical Science Neuroscience Proteomics Systems Biology		
Chemistry	Chemistry Physical Chemistry		
Computer Science	Computer Science		
Earth Science	Climate Geosciences		
Engineering	Aerodynamics Bioenergy Combustion Turbulence		
Fusion	Fusion Energy Plasma Physics		
Materials	Materials Science Nanoelectronics Nanomechanics Nanophotonics Nanoscience		
Nuclear Energy	Nuclear Fission Nuclear Fuel Cycle		
Physics	Accelerator Physics Astrophysics Atomic/Molecular Physics Condensed Matter Physics High Energy Physics Lattice Gauge Theory Nuclear Physics Solar/Space Physics		

Why Exascale?

National Academy of Sciences study **NP2010**:

Nuclear Physics Exploring the Heart of Matter

Slide from Ted Barnes, DOE

Terascale and Petascale simulation has facilitated steady scientific progress

Simulation is central to developing an understanding of planetary circulation response to radiative forcing changes

22,000 year simulation explains lag of CO_2 behind Antarctic temperature records over glacial cycles (Shakun et al., Nature)

Petascale capabilities critical to enabling treatment of eddy processes required to characterize regional climate

Petascale computing provides the capability to include motion scales in atmosphere and ocean required to address regional climate science questions in more complex frameworks. Snapshots from climate simulations illustrating simulation fidelity now within reach for climate applications

Slide from Barbara Helland, DOE Exascale Requirements Gathering -- NP 6/15/2016

Exascale Will Advance Climate Science and Support Adaptation and Mitigation Studies

Science frontier:

- More accurate representations of cloud processes: fully resolve "eddy" motion scales, including cloud systems
- Better understanding and representation of Carbon-cycle feedbacks
- Better understanding and representation of aerosol and atmospheric chemistry feedbacks
- Quantification of predictive skill as a function of motion and time scale

Predictive Science Outcomes:

- Climate variability on regional scales
 - Water cycle, water availability, food security
 - Frequency and intensity of extreme events
- Rate of Sea Level Rise
- Potential for abrupt change
- Interactions of societal responses with the natural system

From 2015 BES Requirement Review Draft Report

BES Path to Exascale in Photosynthesis and Light Harvesting

- **Today:** Perform *ab initio* modeling of electronic phenomena of systems with hundreds of atoms.
- 2020: (petascale) Perform *ab initio* modeling of electron transport and electronphonon coupling of complex organic polymer systems of the order of tens of thousands of atoms. These simulations model individual components, ignoring interfaces between components that affect the performance of the devices
- 2025: (exascale) Develop a model that accurately describes the electronic charge transport in the polymers and across electrical contacts, as well as the thermal transport across the warm and cold fluids through the ceramic layers and the organic polymers at appropriate levels of detail.

DOE "Big Data" Challenges Volume, velocity, variety, and veracity

Biology

- Volume: Petabytes now; computation-limited
- Variety: multi-modal analysis on bioimages

Cosmology & Astronomy:

- Volume: 1000x increase every 15 years
- Variety: combine data sources for accuracy

- Volume: 3-5x in 5 years
- Velocity: real-time filtering adapts to intended observation

Networks and Sensors:

- Variety: sensors for energy and network analysis
- Veracity: noisy data from carbon sensors, etc.

Light Sources

- Velocity: CCDs outpacing Moore's Law
- Veracity: noisy data for 3-D reconstruction

Climate

- Volume: Hundreds of exabytes by 2020
- Veracity: Reanalysis of 100-year-old sparse data

Cold QCD

Slide from Martin Savage and Joe Carlson

The Hadronic Spectrum and Exotics

The Structure of the Proton

[DOE Topical Collaboration: TMD]

Hot QCD

Slide from Martin Savage and Joe Carlson

Properties of the QGP and Critical Point [DOE Topical Collaboration: BES]

Equilibration

Spectral Functions and Hadron Properties

Modeling heavy-ion collisions

Juclear Structure/Reactions

Slide from Martin Savage and Joe Carlson

FRIB

Nuclei from First Principles Light Nucleus Reactions

Dense Nuclear Matter

Electroweak Interactions

[DOE Topical Collaboration: Double Beta Decay and FS]

Density Functional Theory

Nuclear Astrophysics

Slide from Martin Savage and Joe Carlson

FRIE

Core-Collapse Supernovae Thermonuclear Transients

Neutrino Flavor Physics

Neutron Star Mergers

Explosive Nucleosynthesis

Experiment

Slide from Martin Savage and Joe Carlson

FRIB: Greta, Design Ops, DAQ

RHIC: STAR, SPhenix

Double Beta Decay JLab: electron cooling, beam-beam Other facilities: ATLAS, FNPB (SNS), HIGS, University Facilities, ...

Beyond Nuclear Physics

Slide from Martin Savage and Joe Carlson

Advanced LIGO neutron star mass/radius

Neutrino Physics *v*-nucleus, CP, hierarchy

Neutrino masses and cosmic microwave background

HINP QCD phase diagram (calc. at $m_B = 0$) with physical light quark masses

arXiv:1402.5175v1 (2014) MAJOR CPU time reqts.

No phase transition at physical m_a . (m=0)

FIG. 1. The dependence of the disconnected chiral susceptibility on temperature for $m_{\pi} = 135$ and 200 MeV. The $m_{\pi} = 135$ MeV data shows a near $2\times$ increase over that for $m_{\pi} = 200$ MeV. HISQ results for $m_{\pi} = 161$ MeV [7, 11] are also plotted.

FIGURE 2.25 The phase diagram of QCD is shown as a function of baryon chemical potential (a measure of the matter to antimatter excess) and temperature. A prominent feature in this landscape is the location of the critical point, which indicates the end of the first-order phase transition line in this plane. SOURCE: DOE/NSF, Nuclear Science Advisory Committee, 2007, *The Frontiers of Nuclear Science: A Long Range Plan.*

Slide from Ted Barnes, DOE

Now working on extending this to finite chemical potential; m power

series.

25

Two possible sites of r-process nucleosynthesis.

CCSN

Neutron star merger

Neutron star merger and the "chirp."

Crab Nebula supernova remnant (1054 AD). Simulation of high density n physics?

LENP Three peaks; do we need both CCSNe *and* neutron star mergers?

LENP Allowed neutron star maximum masses for various EOSs.

Fundamental questions of nuclear physics => discovery potential

- > What controls nuclear saturation?
- How shell and collective models emerge from the underlying theory?
- > What are the properties of nuclei with extreme neutron/proton ratios?
- Can we predict useful cross sections that cannot be measured?
- > Can nuclei provide precision tests of the fundamental laws of nature?
- Can we solve QCD to describe hadronic structures and interactions?

National Science Foundation

+ K-super.
+ Blue Waters
+ Lomonosov II
+ Tachyon-II

LENP

Nuclei, Nuclear Matter, Nuclear Astrophysics

- FRIB physics is at the core of nuclear science: "To understand, predict, and use"
- FRIB provides access to a vast unexplored terrain in the chart of nuclides

ca. 7000 nuclei exist (NUCLEI SciDAC-3 project)

NRC Decadal Study Overarching Questions

- How did visible matter come into being and how does it evolve?
- How does subatomic matter organize itself and what phenomena emerge?
- Are the fundamental interactions that are basic to the structure of matter fully understood?
- How can the knowledge and technological progress provided by nuclear physics best be used to benefit society?

The Time Scale

- Protons and neutrons formed 10⁻⁶ to 1 second after Big Bang (13.7 billion years ago)
- H, D, He, Li, Be, B formed 3-20 minutes after Big Bang

30

 Other elements born over the next 13.7 billion years

MANY LENP applications: NUCLEI SciDAC has over 200 pubs. in 3+ years. ... hard to choose! Slide from Ted Barnes, DOE

http://extremecomputing.labworks.org/nuclearphysics/report.stm

http://extremecomputing.labworks.org/nuclearphysics/report.stm

http://extremecomputing.labworks.org/nuclearphysics/report.stm

One-body density of 9Be ground state $(\frac{3}{2}^{-}, \frac{1}{2})$

First observation of ¹⁴F

V.Z. Goldberg^{a,*}, B.T. Roeder^a, G.V. Rogachev^b, G.G. Chubarian^a, E.D. Johnson^b, C. Fu^c, A.A. Alharbi^{a,1}, M.L. Avila^b, A. Banu^a, M. McCleskey^a, J.P. Mitchell^b, E. Simmons^a, G. Tabacaru^a, L. Trache^a, R.E. Tribble^a

^a Cyclotron Institute, Texas A&M University, College Station, TX 77843-3366, USA
 ^b Department of Physics, Florida State University, Tallahassee, FL 32306-4350, USA
 ^c Indiana University, Bloomington, IN 47408, USA

TAMU Cyclotron Institute

Fig. 1. (Color online.) The setup for the ¹⁴F experiment. The "gray box" is the scattering chamber. See explanation in the text.

Fig. 6. ¹⁴F level scheme from this work compared with shell-model calculations, *ab-initio* calculations [3] and the ¹⁴B level scheme [16]. The shell model calculations were performed with the WBP [21] and MK [22] residual interactions using the code COSMO [23].

Ground state magnetic moments with JISP16

Compare theory and experiment for 23 magnetic moments Maris, Vary, IJMPE22, 1330016 (2013)

given that we do not have any meson-exchange currents

¹²C - At the heart of matter

The first excited 0+ state of ¹²C, the "Hoyle state", is the key state of ¹²C formation in the triple-alpha fusion process that occurs in stars.

Due to its role in astrophysics and the fact that carbon is central to life, some refer to this as one of the "holy grails" of nuclear theory.

Many important unsolved problems of the Hoyle state:

Ab initio origins of the triple-alpha structure are unsolved Breathing mode puzzle - experiments disagree on sum rule fraction Laboratory experiments to measure the formation rate are very difficult - resulting uncertainties are too large for predicting the ¹²C formation rate through this state that dictates the size of the iron core in pre-supernova stars

<u>Conclusion:</u> Need *ab initio* solutions of the Hoyle state with no-core method that accurately predicts the ground state binding energy ==> parameter free predictions for the Hoyle state achievable with petascale within 1-2 years

"Anomalous Long Lifetime of Carbon-14"

Objectives

- Solve the puzzle of the long but useful lifetime of ¹⁴C
- Determine the microscopic origin of the suppressed β-decay rate

Impact

- Establishes a major role for strong 3-nucleon forces in nuclei
- Verifies accuracy of *ab initio* microscopic nuclear theory
- Provides foundation for guiding DOE-supported experiments

Are HPCs in your future?

American Energy and Manufacturing Competitiveness Partnership 2015 Report

High Performance Computing simulations improve product design and speed up development increasing comptitiveness and increasing sales

Many additional case studies available: <u>http://www.compete.org/publications/idea/28/high-performance-computing/</u>

Figure 2. Complex Layering of Material Used in a Goodyear Tire

Figure 3. Goodyear Tire & Rubber Company Annual Revenue, 1990-2013

Industrial Partnerships: Accelerating Competitiveness through Computational Sciences

Number of OLCF Industry Projects Operational Per Calendar Year

National Laboratory | COMPUTING FACILITY

1

Innovation through Industrial Partnerships

Ø BO	EING	P&G	<u>GM</u>	United Technolog	ies 问 BOSCH	Ford
Airc des	raft ign	Consumer product stability	Gasoline engine injector	Jet engine efficiency	Li-ion batteries	Underhood cooling
Unexpect discovery multiple s for steady equations separated helps exp numerica modeling sometime to capture maximum	ed of colutions (RANS with d flow blain why l es fails e n lift	Developed method to measure impact of additives, such as dyes and perfumes, on properties of lipid systems such as fabric enhancer and other formulated products	Optimizing multihole gasoline spray injector nozzle designs for better in-cylinder fuel-air mixture distributions, greater fuel efficiency and reduced physical prototypes	Accurate predictions of atomization of liquid fuel by aerodynamic forces enhance combustion stability, improve efficiency, and reduce emissions	New classes of solid inorganic Li-ion electrolytes could deliver high ionic and low electronic conductivity and good electrochemical stability	Developed a new, efficient and automatic analytical cooling package optimization process leading to one of a kind design optimization of cooling systems
	<u> </u>		Mand		104	

Acceleration of the second sec

Conclusions and Outlook - I

The tools of science are changing – rise of simulations

"Superfacilities for Science"

Conclusions and Outlook - II

Many challenges exist to use these tools effectively

Communication Hiding

Flow-chart for multithreaded SpMV computations during the eigensolve phase of MFDn. Expensive communications are overlapped with computations. Explicit communications are carried out over topologyoptimized groups [1,2].

H.M. Aktulga, C. Yang, E.G. Ng, P. Maris, J.P. Vary, "Improving the Scalability of a Symmetric Iterative Eigensolver for Multi-core Platforms", Concurrency Computat.: Pract. Exper., 25 (2013)
D. Oryspayev, H.M. Aktulga, M. Sosonkina, P. Maris and J.P. Vary, "Performance Analysis of Distributed Symmetric Sparse Matrix Vector Multiplication Algorithm for Multi-core Architectures,"
Concurrency Computat.: Pract. Exper., 27, 5019 (2015)

Conclusions and Outlook - III

Promise of a new era of science – Discoveries with Simulations

Saul Perlmutter—a professor of physics at UC Berkeley and a faculty senior scientist at Berkeley Lab—was awarded the 2011 Nobel Prize in Physics for his 1998 discovery that the universe is expanding at an accelerating rate. He confirmed his observations by running thousands of simulations at NERSC, and his research team is believed to have been the first to use supercomputers to analyze and validate observational data in cosmology.