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Motivation - Be Bold! Ask Big Questions
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Motivation

Low-energy nuclear 
theory sits in a 

privileged position, 
connecting many 
research areas.



Motivation - Nuclear Structure

• What are the 
limits of nuclear 
existence? 

• How far can we push 
ab initio calculations? 

• How can we build a coherent 
framework for describing, 
nuclei, nuclear matter, and 
nuclear reactions?



Motivation - Nuclear Astrophysics

• How did the 
elements come 
into existence? 

• What is the structure 
of neutron stars and 
how do their 
properties depend on 
the nuclear 
Hamiltonian? 

• What role does pairing play in 
properties of neutron stars?



Motivation - Fundamental Symmetries

• What explains 
the dominance 
of matter over 
antimatter in the 
universe? 

• What is the nature of 
neutrinos and how do 
they interact with 
nuclei? 

• Electric dipole moments of 
light nuclei?



Motivation - Framework

Quantum 
chromodynamics (QCD) 
is ultimately responsible 
for strong interactions.



Motivation - Framework

Quantum 
chromodynamics (QCD) 
is ultimately responsible 
for strong interactions. 

Nucleons are the 
relevant degrees of 

freedom for low-energy 
nuclear physics.

O



Motivation - A Hard Problem!

Nuclei are strongly interacting many-body systems. 

1. How do we solve the many-body Schrödinger 
equation? 

  

2. What is the Hamiltonian?

∣ ⟩ = ∣ ⟩

→→

( ) −



Motivation - A Hard Problem!

Nuclei are strongly interacting many-body systems. 

1. How do we solve the many-body Schrödinger 
equation? QMC methods! 

  

2. What is the Hamiltonian?       Chiral EFT!
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Motivation

Low-energy nuclear 
theory sits in a 

privileged position, 
connecting many 
research areas. 

QMC + χEFT is a 
compelling piece of the 

puzzle.



Outline

• Quantum Monte Carlo Methods 

• Chiral EFT 

• Three-Nucleon Interactions 

• Fits and Results 

• An Application



Quantum Monte Carlo (QMC) Methods
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QMC METHODS

QMC methods in two lines: 

QMC methods in more than two lines: 

J. Carlson et al, RMP 87, 1067 (2015).
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QMC Methods - Variational Monte Carlo (VMC) Method

1. Guess a trial wave function     and generate a 
random position:  

2. Use the Metropolis algorithm to generate new 
positions     based on the probability                     
(Yields a set of “walkers” distributed according to 
they). 

3. Invoke the variational principle: 
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QMC Methods - Diffusion Monte Carlo Method

• The wave function is imperfect:  

• Propagate in imaginary time to project out the 
ground state ∣ ⟩ .
� ( )� = −( − ) � �

= −( − ) [ � � +�
≠
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QMC Methods - Diffusion Monte Carlo Method

• The wave function is imperfect:  

• Propagate in imaginary time to project out the 
ground state ∣ ⟩ .
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QMC Methods - An Example

Trial wave function; e.g.

( ) =√ ( − ).
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QMC Methods - Compare/Contrast GFMC & AFDMC

•          3A coordinates & 
4A complex amplitudes 
fillertext. 

• Some difficulty with 3N 
interactions in 
propagator. (Work 
ongoing). 

• Sign-problem treatment 
in active development.

Green’s function Monte 
Carlo (GFMC) 

•           3A coordinates &   
fill     complex amplitudes. 
Filler text. 

• General treatment of 
(local) 2N and 3N forces. 
Filler text. Filler text. Filler 
text. 

• Robust sign-problem 
treatment.

( )∣ ⟩ ∼
Auxiliary-field diffusion 

Monte Carlo (AFDMC) 

∣ ⟩ ∼
(∣ ↑⟩ , ∣ ↓⟩ , ∣ ↑⟩ , ∣ ↓⟩).



QMC Methods - Some Computing Details



Of course, the Hamiltonian is much more 
complicated in nuclear physics.

The Hamiltonian

=�
=

+�
<
+ �
< <

+�

Where should it come from?



Chiral Effective Field Theory (EFT)
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Chiral EFT

Chiral EFT in two lines: 

More Details: 

E. Epelbaum et al, RMP 81, 1773 (2009); 

R. Machleidt et al, Phys. Rep. 503, (2011). 

L = − ( ) + ¯ − ¯M →

L = L +L +L +�



O ( )

O ( )

O ( )

O ( )

+ · · ·

+ · · · + · · ·

• Chiral EFT: Expand in 
powers of             
This and this allow 
for space. 

• Long-range physics: 
π exchanges. 

• Short-range physics: 
Contacts x LECs. 

• Many-body forces & 
currents enter 
systematically.

/ .∼ ∼∼

Chiral EFT

×



Local construction possible1 up to NLO.  

Definitions. 

Regulator: 

Contacts: 

Chiral EFT

.

1A. Gezerlis et al, PRL 111 032501 (2013); JEL et al, PRL 113 192501 (2014); A. Gezerlis et al, PRC 90 054323 (2014)
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Local construction possible1 up to NLO.  

Definitions. 

Regulator: 

Contacts: 

Chiral EFT

.

1A. Gezerlis et al, PRL 111 032501 (2013); JEL et al, PRL 113 192501 (2014); A. Gezerlis et al, PRC 90 054323 (2014)
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Local construction possible1 up to NLO.  

Definitions. 

Regulator: 

Contacts: 

Chiral EFT

.

1A. Gezerlis et al, PRL 111 032501 (2013); JEL et al, PRL 113 192501 (2014); A. Gezerlis et al, PRC 90 054323 (2014)

= − ′ = + ′

( , ′) = −( / ) −( ′/ )

∝
→ ( ) = − −( / ) ∶ = . . . .

→ ∝ ? 

? 



Chiral EFT
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Chiral EFT

O ( )
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Chiral EFT
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Chiral EFT
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Three-Nucleon Interaction



Three-Nucleon Interaction

F{ }→∼ ′

F{ }→∼



Three-Nucleon Interaction

F{ }→ +
∝ �
< <
�( ⋅ )×

� ( ) + ( ) − ( ⋅ ) �
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Three-Nucleon Interaction
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Three-Nucleon Interaction

F{ }→
∝ ∑< < ∑
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Three-Nucleon Interaction

F{ }→
∝ ∑< < ∑ ⋅
∝ ∑< < ∑
P ∝ ∑< < ∑P
P = ( −∑< ⋅ )( −∑<ℓ ⋅ ℓ)



Fits
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Choosing Observables

What to fit cD and cE to?

• Uncorrelated observables. 

• Probe properties of light nuclei: 

• Probe            physics:        scattering phase shifts.  

.

= /



n-α Scattering - Details

For low-energy scattering and one open channel of 
total angular momentum J, 

Impose2 

∝ { } [ ( ) − ( )],

ˆ ⋅ ∇ = = .

⇒ = ( )− ′( )( )− ′( )

2K. M. Nollet et al, PRL 99 022502 (2007)



n-α Scattering - Details

Reject samples with rc>R,, but 

maps to 

That is, the wave function at the (n+1)th point gets a 
contribution from the previous point Rand an 

“ image” point R.. 

>
+ ( ′) =�� �< ( ′, ; ) ( )

+�� �> ( ′, ; ) ( )

+ ( ′) =�� �< ( ′, ; )

× � ( ) + ( ′, ; )
( ′, ; ) � � ( )�



• Results showed need 
for greater spin-orbit 
splitting than was 
provided for by the 
Urbana IX (UIX) 3N 
interaction. 

• Interpretation was 
T=3/2 component in 
Illinois 3N interaction 
was necessary. (?)

n-α Scattering - Details



Fits
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Results

A simultaneous description of properties of light 
nuclei,       scattering and neutron matter is possible. 

Uncertainty analysis as in                                           
E. Epelbaum et al, EPJ A51, 53 (2015).
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A Recent Application
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• Lattice QCD is the only ab initio method available 
to solve QCD directly at low energies. 

• Computational costs mean in our lifetimes, Lattice 
QCD will not likely simulate, e.g.,  

• Need some connection between Lattice QCD and 
ab initio low-energy nuclear theory;                     
e.g. obtaining LECs in chiral EFT from Lattice 
simulations.

Motivation - Nuclei In Finite Volume

.



• Lattice QCD is the only ab initio method available 
to solve QCD directly at low energies. 

• Computational costs mean in our lifetimes, Lattice 
QCD will not likely simulate, e.g.,  

• Need some connection between Lattice QCD and 
ab initio low-energy nuclear theory;                                                                                     
e.g. obtaining LECs in chiral EFT from Lattice 
simulations. Now add filler text! Yeah. I like this. 
Use Lattice ideas to extract resonant properties 
from finite volume calculations.

Motivation - Nuclei In Finite Volume
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→ .

Motivation - Lüscher Formula

• Take a simple scattering problem                          
Near threshold radiative capture in the      channel. 

• Might expect                          with, e.g.                                                                                
these words. 

• Not so!

= − . .
≫ ∣ ∣ ∣ ∣

→ ( ) = �� � � ,

( ) ≡
→∞

�
�� � � −

−
�
�

.



More On The Lüscher Formula

For low-energy S-wave scattering, can use the 
effective-range expansion:

− ( ) +
( ) = �� � � .

Consider first two neutrons only and a contact 
interaction (smeared out)

( ) = �−� � � .

Introduce                .= /



Results - Contact

First AFDMC calculations of excited states.

P. Klos et al, arXiv:1604.01387 [nucl-th]



2n In Finite Volume With Chiral Interactions

Now consider chiral EFT interactions. 

Standard Lüscher formula assumes    EFT.  /
≲ /



Results - Chiral EFT

P. Klos et al, arXiv:1604.01387 [nucl-th]



Summary

• QMC + Chiral EFT is possible and yields new insights. 

• More studies of regulator choices and effects are 
necessary. 

• Chiral two- and three-nucleon interactions at          
have sufficient freedom to give a good description 
of light nuclei,        scattering, and neutron matter. 

• Calculations of nuclei in finite volume will 
eventually allow for comparison to Lattice QCD 
calculations.  



Outlook

• Larger A (how does the spin-orbit splitting in light 
nuclear levels look?) & studies of electroweak 
properties of nuclei (currents are in development 
at TU Darmstadt with P. Klos). 

• Further investigations of nuclei/neutrons in finite 
volume. 

• Extend n-α calculations to other scattering cases. 

• Extend our recent work on the EMC effect and EFT. 
(See arXiv:1607.03065 [hep-ph]). 

• …
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Thank you for your attention!


