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The eigenvalue problem:

The basic question: How to extract scattering information from pseudostates.

L2 discretization



Weyl’s eigendifferential formalism

Continuum wave functions don’t have finite norms.
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When studying spectral theory for singular differential operators (in 1910), H. Weyl 
used the eigendifferential concept.
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eigendifferential of the scattering wave function

An integration over some energy interval is just enough to make the w.f. to be 
normalizable:
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A complete system of wave functions for some Hamiltonian consists of bound states 
and eigendifferentials:
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The eigendifferential concept was used by pioneers of quantum physics 
H.Weyl, E. Wigner, H. Bethe and others to treat non-normalizable states (which do 
not belong to a Hilbert space) in a framework of the standard theory of Hermitian 
operators in a Hilbert space. 

The details can be found in the textbook:
W. Greiner, Quantum Mechanics: An Introduction, Fourth. ed., Springer 2001.    



Pseudostates and eigendifferentials
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Pseudostates have the same properties 
as eigendifferentials

' , ' ' , ',   n n n n n n n n nH     e  

Thus, one can treat pseudostates as 
approximations for eigendifferentials and 
construct  the corresponding discretization 
bins. 

Comparison of pseudostates and 
eigendifferentials

This statement has been used  in the CDCC approach implicitly.
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Stationary wave-packet formalism



Stationary wave packets and their properties 

Discretization of the continuum for some Hamiltonian h

SWPs form an orthonormal set (jointly with possible bound states) :

i j ijz z 

O.A. Rubtsova, V.I. Kukulin, V.N. Pomerantsev, Ann. Phys. 2015

 1, ,   2i i i iq q q E- 
discretized 

momentum

0 0iz z 

bound state wf
The projector for SWP space of the Hamiltonian:
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Stationary wave packets are constructed as 

integrals of wave functions of h: ' ( ')q q q q   -
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Spectral expansion of an operator R(h) has a diagonal representation:
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Thus, one can get a diagonal finite-dimensional approximation for the resolvent of
the Hamiltonian:

For continuous part of spectrum:
21
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The eigenvalues: 
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Additional averaging on external energy:
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Stationary wave packets for different Hamiltonians

The free resolvent:  
1
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The total resolvent:  
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This property is also valid for Hamiltonians with long range interactions
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Behavior of  free stationary wave packets

qi-1 qi

di

q

xi(q)

– is a step-like function

In configuration space In momentum space

 1( ) ( ) ( )
( ) i i i

i

i

f q q q q q
x q

B

q q-- - -


( ) 1,    ( )i if q x q

 
0

sin / 2
( ) ( )

/ 2
i

i i q

i

d r
x r d r

d r


(fm-1)

Deuteron wave function in the 
step-like WP basis
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Example: the Lippmann-Schwinger equation for T-matrix:
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After a WP projection, one gets fully matrix equation:

0( ) ( ) ( )t E v vg E t E 

In momentum space:

0 ,  k k k
kE= + Dt v vg t
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Off-shell t-matrix element: 

The resulted T-matrix satisfies the unitarity condition. 
This an exact T-matrix for the projected interaction operator Vv = p p
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Partial phase shifts

of - scattering
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Solving via spectral methods



The spectral shift function formalism

I.M. Lifshits, Zh.  Eks.  Teor.  Fiz. (JETP) 17, 1017 (1947), ibid 1076 (1947) 

The family of free operators               with quasi-continuous spectrum
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The spectrum of the total Hamiltonian

 0 0 ( )( ) ( ) ( ),   1,...j j j jE E E D O j      

the spectral shift function

The problem to solve:

How the spectrum of the initial Hamiltonian h0 is changed by the inclusion of the

perturbation (not small) v



The trace formula (I.M. Lifshits, 1952.) for unperturbed and perturbed Hamiltonians

 0Tr ( ) ( ) '( ) ( )f h f h f d   


-

-  
Birman-Krein formula (1962). Relation to the scattering operator.

det ( ) exp( 2 ( ))S i    -

In one-channel case this means ( ) ( )E E  -

The spectral shift function is defined for pair of operators h0 and h=h0+v

M.Sh. Birman, A.B. Pushnitsky, Spectral shift 
function, amazing and multifaceted,                                               
Integr. Equ. Oper. Theory 30, 191 (1998).

D. R. Yafaev, Mathematical scattering theory. 
General theory, Amer. Math. Soc., 
Providence, RI, 1992.

SSF as function on the energy



Moving back to the quasi continuous spectrum,  one has the following formal 
expression for the SSF:
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Using further the Birman-Krein formula

det ( ) exp( 2 ( ))  ( ) ( ) S E i E E E    -   -

we get the expression for the partial phase shifts in discrete points 
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SSF and the spectral density
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For the continuous spectrum, one should define the  Continuum level density (CLD):

It can be shown that CLD is directly related to the phase shift :
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Thus, SSF can be treated as integrated density of states:
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Spectral density for the discrete spectrum 
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Example: scattering inside a spherical box 

Boundary condition for the free Hamiltonian:
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Boundary condition for total Hamiltonian:
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Thus, the phase shift satisfies the following relation:  
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Here the discrete SSF has a relation to the Lüscher approach. 



So, one can introduce the new approach to solve scattering problem by the 
continuum discretization on the base of this Birman-Krein formula and Lifshits
discrte definition for the spectral shift function.  

Let’s choose some finite L2 basis and make subsequent diagonalization procedures
for the free and the total Hamiltonians
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From the discrete definition of the SSF, one gets 
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Thus, partial phase shifts could be found from the explicit formula: 

Spectral shift function in the discrete representation
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det 0 ,nn j jnn
H E E D-  



- scattering

‘exact’

DSS

C C Sh h h v  

s-wave partial phase shifts



Case of complex potential

 0
Im

Im j

j

j

E
E

D
  -

0

0( )    j j

j

j

E E
E

D
 

-
 - 



s s

q q

Differential cross sections for neutron-nucleus scattering
with non-local optical potential of Perey and Buck



Multi-channel scattering problem



Multi-channel Hamiltonian:

0 ,   , 1, ,h h v K
       

SSF theory does not allow to determine the separate phase shifts but the
sum of eigenphases only:  

1
exp( 2 ( )) det ( )  ( ) ( )i E S E E E



   


-    - 

Also, in the multi-channel case, the problem with L2 basis representation 
arises because the initial multichannel spectrum is degenerated, i.e. there 
are several solution at the one energy those correspond to different 
boundary conditions.

To treat correctly multi-channel pseudostates, one has to use the basis in 
which the dicretized free Hamitonian multichannel spectrum is degenerate.
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The important point here is 
that the alternation of the 
splitted levels doesn’t change.

By this way, one can separate 
different branches in the total 
Hamiltonian spectrum.    

For a two-channel problem, one can separate two branches: ‘even’ and 
‘odd’. 

h0h h0 h0

1 2

In a case of h0 operator with

degenerated eigenvalues, inclusion of
interaction causes splitting of these
multiple levels.  



Energy shifts for ‘even’ and ‘odd’ levels of two-channel problem



Generalization of the discrete SSF to the multi-channel case

d – spectral multiplicity degree

Thus, instead of the single SSF in the one-
channel case, one has several spectral shift 
functions for each branch of the spectrum in the 
multi-channel case:

( ) 0

( ) , 1,...,
j j

j

j

E E
d

D


 

-
  

In the multi-channel case, when one has discretized
multiple free spectrum, it is rather simple to define
spectral  shifts for any branch of the discretize
total Hamiltonian spectrum:

PRC 81, 064003 (2010); Phys. At. Nucl. 77, 486 (2014)



Determination of the multi-channel S-matrix

The S-matix has a diagonal form in the eigenchannel representation.
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Generalization of the Birman-Krein formula:
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Thus, from the one-fold diagonalization of the total Hamiltonian matrix in the 
multi-channel wave-packet basis, one can evaluate partial phase shifts in the
eigenchannel representation for a wide energy interval simultaneously. 
This information is quite enough to find total cross section for example.



Construction of a multi-channel multiple spectrum

The free wave-packet basis is very convenient here, because one can construct 
the discretization bins ‘by hands’.
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Matrix of the rotation form the eigenchannel representation to 
the initial (‘experimental’) channels.

At each energy, the initial S-matrix is related to the ER one by the rotation
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d

S E U E S E U E S i  
  






  
Matrix elements of the rotation matrix can be found just from the expansion 
coefficients for the pseudostates over free wave packets
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The total S-matrix can be found from the relation:
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For example, in two-channel case, one can use the Blatt-Biedenharn 
parametrization for the S-matrix
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The expansion of the pseudostate obtained via diagonalization in the 
two-channel WP basis
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Then, the mixing angle can be defined from
relations

2 22 0 (11) 2 0 (21)
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NN scattering via Moscow potential

N=50+50

N=100+100

● LSE solution

3
1S

3
1D

The channel phase shifts and mixing angle in the Stapp parametrization

By one-fold diagonalization procedure, one gets multichannel S-matrix values at wide
energy region. 



(points– B.H. Bransden and 
A.T.  Stelbovics, J. Phys. B: 
At. Mol. Phys. 17, 1877 
(1984)). 

se

sr

Elastic and reaction cross sections

V11=V22= –1.5exp(-r)/r
V12= – 0.25exp(-r), 
D2=0.75

Model e-H scattering



d=7

d=6 d=10

2
0

2
0

( ) ( ) exp( ),

15 MeV, 0.44 fm

nA pAV r V r V r

V



 -

  - - 

   

Total Hamiltonian discretized spectrum

Model d+A problem

Two-body subHamiltonian hnp is discretized in Gaussian 
basis of dimension и K=11.

One can see different series of pseudostates in different parts of the total multi-
channel spectrum.

e0 e1 e2 e3 e4 e5
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Off-shell T-matrix from the spectral expansion 
for the total resolvent
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Scattering wave packets and pseudostates

Scattering wave packets (SWP) correspond to the total two-body Hamiltonian 

are well approximated by  pseudostates of the Hamiltonian matrix in the free WP 
basis: 

j jk k
k

z C x

Exact scattering WPs for the Yamaguchi
potential (dashed curves) and their
approximations in the step-like WP basis
(solid curves)

Thus, the free WP basis could be used to find two-body scattering WPs and bound 
states as well. The expansion over free WP states is valid even for the long-range
Coulomb interaction!

1 0h h v 
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Mutlichannel stationary wave-packets

We can treat now multichannel 
pseudostates as approximations for
scattering wave-packets defined in
Eigenchannel representation: 

( ) ( ) ( )

1 1

NK

j ji i
i

z C x


  

  





T-matrix from a  Hamiltonian matrix diagonalization

Solution of the Lippmann-Schwinger eq.: 0( ) ( ) ( ),t E V Vg E t E 

can be represented in a form: ( ) ( )t E V V g E V 

total resolvent 

One can found a finite-dimensional approximation for g(E) in 
stationary wave-packet basis, employ  multichannel pseudostate approximation 
and find the explicit relation for off-shell T-matrix

Off-shell T-matrix at many energies is found from a single diagonalization of 
the total Hamiltonian matrix. 
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Partial phase shifts for the NN scattering

CD Bonn

Nijmegen II

Partial phase shifts (a,b) and 
mixing angles (c) for  the 
coupled channels
3S1-

3D1 (left) and 3F2-
3P2 (right)

in the Stapp parametrisation.
NTSE-16 40



The effective total Hamiltonian for the BGE 

An operator form of the Bethe-Goldstone equation:

0( , )  ( ) ( , ) ( , ),T K W V V Q K G K W T K W  where

 
1

0 0( , ) 0 ( ) ,G K W W i H K
-

  -

the free Hamiltonian for two-nucleons in medium

   0 ( )H K d e e  -    k k K k K k k

When the solution of the BGE can be formally written in a form:

The space of relative momentum is divided into two parts according to the action of 
the operator Q(K): its null subspace G and the ‘Pauli-allowed’ Q-subspace.   

1 1

2 2( )   ( )  QT W V V Q G W Q V 

where GQ is the resolvent of the effective Hamiltonian defined in Q-subspace:
1 1

1
2 2

0 +   ,    ( ) 0Q Q Q Q Q
H H Q V Q G W W i H

-
    - 

Now T-matrix at different W and k can be found by using the diagonalization 
technique.

H. Muether et al., PRC 2016
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To summarize:

There are three possibilities for solving two-body single- and multichannel
problems:

1. Matrix analogs for integral equations:

0 ,  k k k
kE= + Dt v vg t

2. On-shell observables for wide energy interval (simultaneously)
can be found from the discrete spectral shift function formalism:

0

( ) , 1,...,j j

j

j

E E
E j N

D
 

-
 -  

3. Off-shell dependencies for wide energy interval (nearly simultaneously)
can be found from the spectral expansion for the total resolvent



Few-Body Scattering Problem
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Thus, in three- and few-body cases the WP basis space corresponds to a lattice 
in the momentum space. Thus we call the free WP basis as the Lattice basis. 

p

q

In the WP scheme, one has the discrete matrix function Kk
ij instead of continuous

singular kernel of the integral equation K(E;p,q). All the energy and momentum
singularities are smoothed by the integration over the lattice cells.

0 0
0    p q ij i jH h h X x y    

i

j

q

p

The free motion three- (and few-body) Hamiltonian is a direct sum of the binary
subHamiltonians, so the few-body basis functions can be constructed as direct
products of the two-body ones.

K(E;p,q) k
ijK

Momentum lattice basis

NTSE-16
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In general few-body case, the WP basis should be constructed for each Jacobi
coordinate. Such a basis corresponds to three-body scattering states of the channel
Hamiltonian.

The main advantage of the discretization here is an explicit finite-dimensional
representation for the few-body channel resolvent:

The total three-body Hamiltonian

0 a
a

H H v 
One can define three channel Hamiltonians

00
a

a a aH H v h h   

Then, the channel WP basis states are direct products of two-body WPs  for         and  
subHamiltonians a

ij i jZ z x 

   ( ) a a
a a ij ijij

G E G Z Z 

Three-body channel resolvent

0
ah

ah

a

b

c

,a alx

,a ay ,a alp

,a aq
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3N system (n-d scattering)

1 1 1 , U PV PV G U

Elastic scattering amplitude can be found from a diagonal matrix element of U

0 00

0

0

0 ,02 ( )
0

0

2
1 ,  ( )

3

j ji q
j

j

Um
e q d

q d
 -  

PRC 89, 064008 (2014)

The matrix analog of the AGS equation in the channel WP basis: 

the channel resolvent 

Breakup amplitude can be found from a non-diagonal elements of the same matrix
U

0

0

0

0 ,( )

0

( , ) ,   NN

i
j iji p

j

j i j
j

p d
U

T p q e q d
d d d

q d
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The  free permutation matrix

12 23 13 32P P P P P 

The matrix of the particle permutation operator is just the matrix of the 
overlapping of the free WP bases defined in different Jacobi sets:

' ' ' '
a a a b

ij ab i j ij i jX P X X X

The  permutation matrix for three identical particles can be found as follows:

Here P(p,q,p’,q’) is the kernel of the permutation operator in the momentum

space.

' '

'
' '

' '

( , , ', ')
' '

ij i j

ij i j

i j i j

P p q p q
X P X dpdq dp dq

d d d d
  
D D

0

* *
' ' ' ' ' ' ' ' , ' '

' '

a b a b a b a b ab
ij i j ik i k kj k j ik i k kj k j

ii ii

Z Z O O X X O O P     

The permutation operator matrix in the channel WP basis can be found using
the expansion of the scattering WPs over the free ones
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n+d→n+n+p breakup amplitudes 

5/2

( )
( , )

( )

A
K

K

q
 




3
  ( )

2

q
tg

p
q 

Benchmark calculations (Friar et al., PRC 1995)

Wave-packet

doublet quartet

3S1
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nd elastic differential cross sections for Nijmegen  NN 
potential  

En=3 MeV

En=9 MeV

En=35 MeV

Ann. Phys. 360, 613 (2015).
Com. Physics Commun. 204, 121 (2016)

The calculations are prepared on an 
ordinary PC with a GPU. 



Practical solution on a GPU

www.nvidia.com

GPU – graphics processing unit



Practical solution on a GPU



The optimized algorithm for the solution of  the realistic nd scattering 
problem consists of  the following main steps:

1. Construction of three-body WP basis including preparation of two- body 
bases (via diagonalization of the pairwise NN subHamiltonian matrix in 
the free WP basis). Calculation of channel resolvent G1.

2. Selection of nonzero elements of the overlap matrix.

3. Calculation of nonzero elements of the overlap matrix.

4. Solution of the resulted matrix equation by iterations using the Pade-
approximant technique.



As a result, we found the acceleration for the overlap matrix calculation in 90-
110 times, and the total acceleration in 10-50 times according to different basis
dimension. The total acceleration keep growing with the dimension increasing.

Acceleration for a solution of nd scattering problem with MT III potential 

P0 matrix

total solution



Solution of  the nd elastic scattering problem with fully realistic
NN interaction 

The GPU acceleration ratio η = t(CPU)/t(GPU) for the complete solution (solid
line) and the overlap matrix calculation (dashed) versus the matrix dimension M in 
solution of 18-channel Faddeev equations for partial nd elastic amplitude.



Conclusions

Continuum discretization and stationary wave-packet formalism are

shown to be convenient and effective tools for solving few-body

scattering problems.

The approach can be applied to few-body problems in different other

branches of quantum physics, e.g. in the quantum chemistry, solid

state theory etc.

Some developments such as discrete spectral shift function formalism

is suitable just for the discrete representation.

Other applications: Ann. Phys. 360, 613 (2015).
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Thank you for your attention!





Advantages
• The multi-dimensional integral equation with singular kernel is replaced by
simple matrix form with regular (averaged and smoothed) matrix elements.

• Due to matrix form for the permutation operator P, there is no need in time
consuming multi-dimensional interpolations of a current solution when one iterates
the equation kernel.

•The energy dependence remains in the resolvent matrix only (which is diagonal).
So that, calculations at many energies can be done with the same permutation
matrix P.

Partial phase shifts of
the elastic nd scattering
obtained within the WP
approach (solid lines) and
within the standard Faddeev
calculations (circles).

• The scheme is suitable for
a parallelization and realization
on GPU.
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