KAKENHI grand 25870168

Priority Issue 9 to be Tackled by Using Post K Computer "Elucidation of the Fundamental Laws and Evolution of the Universe" (hp160211, hp150224)

NTSE 2016 @ Pacific National University, Khabarovsk, Russia, 2016/09/21

Large-scale shell-model studies for exotic nuclei and nuclear level densities

Noritaka Shimizu

Center for Nuclear Study, the University of Tokyo

CENTER *for* Nuclear Study

Contents

- Introduction of the activities in Tokyo nuclear theory group : large-scale nuclear structure calculations
 - Zr isotopes by Monte Carlo shell model
 - no-core Monte Carlo shell model + JISP16
 - Be isotopes + intrinsic density
 - UMOA + Daejeon 16
- Stochastic estimation of level density in large-scale shell model calculations (LSSM)
 - numerical framework of the stochastic estimation of level density
 - benchmark test
 - application : parity equilibration of ⁵⁸Ni level density

Computational science projects in Japan

- 9 projects
 - 1st : medicine design
 - ...
 - 8th: manufacturing
 - 9th: fundamental science

 particle physics, <u>nuclear</u> <u>physics</u>, astrophysics, ... "K computer" launched in 2012 Post-K project in 2021

Nuclear theory group in the University of Tokyo

Department of Physics

- Takaharu Otsuka
- Takashi Abe
- J. Menendez, T. Miyagi, S. Yoshida

Center for Nuclear Study

- Noritaka Shimizu
- T. Ichikawa, T. Togashi, N. Tsunoda, Y. Tsunoda, T. Yoshida
- Yutaka Utsuno (JAEA)

For no-core shell model calculations,

collab. with James Vary and Pieter Maris (Iowa State U)

- + Further optimization + extrapolation with energy variance
- = "advanced Monte Carlo shell model" N. Shimizu *et al.*, PTEP 2012

MCSM wave function

• Efficient description of nuclear many-body states based on the basic picture of nuclear structure

= intrinsic state + rotation + superposition

MCSM enables us to discuss "intrinsic deformation"

Recent achievement:

Quantum Phase Transition in the Shape of Zr isotopes

T. Togashi, Y. Tsunoda, T. Otsuka and N. Shimizu,

(a) 2[⁺]₁ levels 2.5 R_{4/2} 2 Ex (MeV) Calc. 5 Exp. 52 56 60 64 68 oblate 0.5 spherical prolate 0-Exp. 3 (b) 0⁺ levels spherical 2.5oblate triaxial prolate 2 $Exp.(0^{+})$ 0⁺_4 Ex (MeV) 0.5 0 50 52 54 56 58 60 62 64 66 68 70

Ν

Phys. Rev. Lett. accepted, arXiv:nucl-th 1606.09056

drastic change of Ex(2⁺) at N=60

"quantum phase transition" from spherical to prolate deformation is shown by the analysis of Monte Carlo shell model (model space: 28<Z<70, 40<N<94, realistic effective int.)

> "Type-II shell evolution" plays an important role.

T. Otsuka and Y. Tsunoda, J. Phys. G 43, 024009 (2016)

No-core shell model calculations with MCSM + JISP16

JISP16: Shirokov et al., PLB 644, 37 (2011)

no-core Monte Carlo shell model + JISP16

T. Yoshida, N. Shimizu, T Abe and T. Otsuka

shell-model calculations with $N_{shell} = 6$ and JISP16 interaction

overall tendency is good, rather overestimated

Expt. ⁸Be,¹⁰Be: Tilley *et al.*, 2004, ¹²Be: Shimoura *et al.*, 2003

Intrinsic density in Monte Carlo shell model

cf. Translationally invariant density ⁸Li 2+ Cockrell *et al.*, PRC86 (2012)

Mean-field approx. + angular-momentum projection

$$\left|\Psi\right\rangle = P^{J} \left|\phi(D)\right\rangle$$

Slater determinant Intrinsic state

Monte Carlo shell model

Intrinsic density by Monte Carlo shell model : Molecular orbits in ¹⁰Be

T. Yoshida, N. Shimizu, T Abe and T. Otsuka

 $p_{x+iv} - p_{x+iv}$

 $p_z - p_z$

Stochastic estimation of nuclear level density in the nuclear shell model: An application to parity-dependent level density in ⁵⁸Ni

Noritaka Shimizu (U. Tokyo), Yutaka Utsuno (JAEA), Yasunori Futamura (U. Tsukuba), Tetsuya Sakurai (U. Tsukuba), Takahiro Mizusaki (U. Senshu), and Takaharu Otsuka (U. Tokyo) Phys. Lett. B **753**, 13 (2016)

Nuclear level density

- Statistical model is important where the level density is large
- Hauser-Feshbach theory
 - input: Level density, γ-ray strength function, optical potential
 - output: neutron-capture cross section

Nuclear engineering

Nucleosynthesis

superheavy nuclei

nuclear level density in LSSM

- Level density is a key input for Hauser-Feshbach theory. An empirical formula is usually used to obtain the level density.
 ⇒ microscopic model wanted
- Nuclear shell-model calculation is one of the most powerful tools to describe level density including various many-body correlations.
- Shell Model Monte Carlo (Y. Alhassid, H. Nakada *et al.*) is a most powerful tool to estimate level density. However, "sign problem" prevents us from using general realistic interaction.
- We propose a novel efficient method to compute level density in shell-model calculations avoiding direct count.

100

of iterations

200

 -190_{1}

-195

-200

-205

0

Energy (MeV)

Current limitation of large-scale shell-model calc.

Level density in nuclear shellmodel calc.

 Level density ⇒ count the number of eigenvalues of huge sparse matrix in a certain energy region

JSIAM Letters Vol.2 (2010) pp.127-130 © 2010 Japan Society for Industrial and Applied Mathematics (JSIAM Letters

Parallel stochastic estimation method of eigenvalue distribution

Yasunori Futamura¹, Hiroto Tadano¹ and Tetsuya Sakurai¹

¹ Graduate School of Systems and Information Engineering, University of Tsukuba, odai, Tsukuba-shi, Ibaraki 305-8573, Japan

E-mail futamura@mma.cs.tsukuba.ac.jp

Received July 29, 2010, Accepted October 22, 2010

Counting eigenvalues: Cauchy integral

Count poles of
$$f(z) = \operatorname{Tr}((z-H)^{-1}) = \sum_{i} \frac{1}{z-E_{i}}$$

Hutchinson estimator

Estimate the matrix trace in Monte Carlo way

$$\operatorname{Tr}(A) \cong \frac{1}{N_s} \sum_{i=1}^{N_s} v_i^T A v_i$$

- matrix elements of the vector, \boldsymbol{v}_i , are taken as -1 or 1 randomly with equal probability.
- well known in applied mathematics
- statistical error is small if non-diagonal matrix elements of A are small. (exact if A is diagonal)

•
$$v_i^T A v_i = \operatorname{Tr}(A) + \sum_{k \neq k'} (v_i)_k A_{kk'} (v_i)_{k'}$$

Non-diagonal part

Ref. M. F. Hutchinson, Comm. Stat. Sim. 19, 433 (1990)

Stochastic estimation of "trace"

N_s: Number of samples Stochastic sampling

$$\mu_k = \oint_{\Gamma_k} \operatorname{tr}((z - H)^{-1}) dz$$

$$\simeq \frac{1}{N_s} \sum_{s}^{N_s} \boldsymbol{v}_i^T (z - H)^{-1} \boldsymbol{v}_i$$

 N_s =32 show Next step : Matrix inverse

$$v_i^T (z - H)^{-1} v_i$$

solve linear equations to avoid the inverse of matrix
solve $v_i = (z - H) x_i$ and obtain $v_i^T x_i$
 $v_i = A x_i$

Complex Orthogonal Conjugate Gradient (COCG)

$$\begin{aligned} x_{k+1} &= x_k + \alpha_k p_k, & \alpha_k = r_k^T r_k / p_k^T A p_k \\ r_{k+1} &= r_k - \alpha_k A p_k, & \beta_k = r_{k+1}^T r_{k+1} / r_k^T r_k \\ p_{k+1} &= r_{k+1} + \beta_k p_k, \end{aligned}$$

The matrix appears only in matrix-vector product

 \Rightarrow efficient for sparse matrix

In practice, we adopt Block COCG (BCOCG) with block bilinear form.

Introduction to shift algorithm

too many $z_i^{(i)}$ to be computed ...

\Rightarrow Shift algorithm

solve $\boldsymbol{v}_i = (z_{ref} - \sigma - H) \boldsymbol{x}_i \sigma$: shift using solution of solve $\boldsymbol{v}_i = (z_{ref} - H) \boldsymbol{x}_i$

Shift invariance of Krylov subspace

- Purpose : solve $A\mathbf{x} = \mathbf{b}$ and $(A \sigma)\mathbf{x} = \mathbf{b}$ simultaneously (σ : constant number, "shift")
- Krylov subspace

 $\mathcal{K}\mathcal{N}(A,b) = \{b,Ab,A^2b,A^3b,\dots,A^{n-1}b\}$

- COCG solution of Ax = b is always on the Krylov subspace
- Is the solution of $(A \sigma)\mathbf{x} = b$?

⇒ It is on the same Krylov subspace $\mathcal{K}\mathcal{T}(A - \sigma, b) = \{b, (A - \sigma)b, (A - \sigma)^2 b, ..., (A - \sigma)^{n-1}b\}$ $= \mathcal{K}\mathcal{T}(A, b)$

 Especially in COCG method, the residual of the shifted COCG is conserved except for its norm

$$r_k^{\sigma} = rac{1}{\pi_k^{\sigma}} r_k$$
 $\pi_{k+1}^{\sigma} = (1 + \alpha_k \sigma) \pi_k^{\sigma} + rac{\alpha_k \beta_{k-1}}{\alpha_{k-1}} (\pi_k^{\sigma} - \pi_{k-1}^{\sigma})$
 $\alpha_k^{\sigma} = rac{\pi_k^{\sigma}}{\pi_{k+1}^{\sigma}} \alpha_k,$
 $\beta_k^{\sigma} = \left(rac{\pi_k^{\sigma}}{\pi_{k+1}^{\sigma}}
ight) eta_k$

Recipe for estimating level density

$$\mu_k = \frac{1}{2\pi i} \oint_{\Gamma_k} dz \, \operatorname{tr}((z-H)^{-1})$$

- Prepare mesh points $z_i^{(k)}$ to calculate the contour integral of z.
- Prepare random vectors v_i to estimate trace with Hutchinson estimator.
- Solve $(z H)\mathbf{x}_i = \mathbf{v}_i$ by Block COCG method to obtain $\mathbf{v}_i^T (z - H)^{-1} \mathbf{v}_i$

• $v_i^T \left(z_j^{(k)} - H \right)^{-1} v_i$ for any *j*, *k* are calculated by shift algorithm

Benchmark test

- High excitation energy
 ⇒ high level density
 ⇒ slow COCG convergence
- Level density converges much faster than COCG

Benchmark of spin-dependent level

- density at large-scale problem
- Spin-dependent level density: replace initial sample vectors of *M*-scheme, v_i , by angular-momentum projected vectors $P^J v_i$

$$\rho(E) \approx \frac{1}{N} \sum_{i} \oint_{\Gamma} \vec{v}_{i}^{T} (z - H)^{-1} \vec{v}_{i} dz$$

- ⁵⁶Ni in pf-shell
 1.0x10⁹ *M*-scheme dimension,
 1.5x10⁷ *J*-scheme dimension
 impossible to obtain level density
 by conventional Lanczos method
- To converge the level density in whole energy region, 700 COCG iterations are required.
- 100 COCG iterations are enough for lowenergy region

Subtract spurious center-of-mass states (Lawson method)

 $H' = H + \beta_{\rm CM} H_{\rm CM}$

- ⁴⁸Ca J=1⁻, sd-pf-sdg shell, 1ħω truncation
- Lift up spurious center-of mass excited states by Lawson method clearly.
- agree well with the exact calc.

comparison with experiment: level density of ⁵⁷Fe

Realistic interaction gives a unified description of low-lying spectroscopy and level density in low-energy region

27

Level density by large-scale shell model calc.

Stochastic estimation for density of states

$$\rho(E) = \oint_{\Gamma} \operatorname{tr}\left((z - H)^{-1}\right) dz$$

a good description of level density

Puzzle: parity dependence of level density

- Spin-parity dependence: crucial for application (due to selectivity)
- Parity-equilibration of level density is often assumed by empirical formulas
- Experiment shows that 2+ and 2level densities of ⁵⁸Ni are similar value to each other (Kalmykov 2007)
- Microscopic calculations (SMMC, HFB-based methods) overestimate
 2+ level density and underestimate
 2- level density

experiment

 Δ HFB

Ref. Y. Kalmykov, C. Ozen, K. Langanke, G. Martinez-Pinedo, P. von Neumann-Cosel and A. Richter, Phys. Rev. Lett. **99**, 202502 (2007).

Model space and interaction for LSSM calc. of *pf*-shell nuclei

- Target :
 - *pf*-shell nuclei (e.g. Ni isotopes)
- Valence shell
 - Full sd-pf-sdg shell
 - $0\hbar\omega$ for natural-parity states and

 $1\hbar\omega$ states for unnatural-parity states **Od1s**

- up to 6-particle excitation from $0f_{7/2}$ orbit
- Effective interaction

- SDPF-MU for *sd*, *pf* shells VMU for *sdg* shell (Y. Utsuno 2012)
 - SDPF-MU is successful in *sd-pf* shell calculations including exotic nuclei (e.g. ⁴²Si, ⁴⁴S)
- $g_{9/2}$ SPE: fitted to $9/2^+_1$ in ⁵¹Ti
- Removal of spurious center-of-mass motion
 - Lawson method: $H = H_{SM} + \beta H_{CM}$

Large-scale shell model calculations around ⁵⁸Ni

•	Excitation energies and		J^{π}	E_x (MeV)		C^2S		
	one-particle spectroscopi	С		Cal.	Exp.	j	Cal.	Exp.
	factors around ⁵⁸ Ni	$^{57}\mathrm{Co}$	$7/2^{-}_{1}$	0	0	$\pi 0 f_{7/2}^{-1}$	5.28	4.27, 5.53
		⁵⁸ Ni -p	$1/2_{1}^{+}$	3.037	2.981	$\pi 1 s_{1/2}^{-1}$	0.98	1.05, 1.31
			$3/2_{1}^{+}$	3.565	3.560	$\pi 0 d_{3/2}^{-1}$	1.70	1.50, 2.33
•	Model space :	⁵⁷ Ni	$3/2_1^-$	0	0	$\nu 1 p_{3/2}^{-1}$	1.14	1.04, 1.25, 0.96
	 <i>sd, pf, sdg</i> shells SDPF-MU for <i>sd, pf</i> shells 	⁵⁸ Ni -n	$1/2_{1}^{+}$	5.581	5.580	$\nu 1 s_{1/2}^{-1}$	0.51	0.62, 1.08
			$3/2_1^+$	5.579	4.372	$\nu 0 d_{3/2}^{-1}$	0.29	0.01
			$3/2_{2}^{+}$	6.093	6.027	$\nu 0 d_{3/2}^{-1}$	0.22	0.66, 0.54
	VMU for <i>sdg</i> shell	$^{59}\mathrm{Cu}$	$3/2^{-}_{1}$	0	0	$\pi 1 p_{3/2}^{+1}$	0.53	0.46, 0.49, 0.25
	 – 0ħω for natural-parity 	⁵⁸ Ni +p	$9/2_1^+$	3.139	3.023	$\pi 0 g_{9/2}^{+1}$	0.26	0.24,0.32,0.27
	states, 1ħω for unnatural-	⁵⁹ Ni	$3/2_1^-$	0	0	$\nu 1 p_{3/2}^{+1}$	0.51	0.82, 0.33
	parity states	⁵⁸ Ni +n	$9/2_1^+$	3.053	3.054	$\nu 0g_{9/2}^{+1}$	0.63	0.84, 0.39
	 up to 6-particle excitation from 0f orbit 		$5/2_{1}^{+}$	4.088	3.544	$\nu 1d_{5/2}^{+1}$	0.04	0.03
			$5/2^+_2$	4.595	4.506	$\nu 1d_{5/2}^{+1}$	0.30	0.23, 0.14
			$1/2_{1}^{+}$	4.399	5.149	$\nu 2s_{1/2}^{+1}$	0.00	0.09
	- 1.5x10 ¹⁰ <i>M</i> -scheme dim.		$1/2_{2}^{+}$	5.492	5.569	$\nu 2s_{1/2}^{+1}$	0.18	0.02
	for ⁵⁸ Ni 2⁻ states		$1/2^{+}_{3}$	5.589	5.692	$\nu 2s_{1/2}^{\tilde{+}1}$	0.02	0.13
						·		

SDPF-MU int.Y. Utsuno *et al.,* PRC 86, 051301R (2012)VMU int.T. Otsuka *et al.,* PRL 104, 012501 (2010)

Single-particle characters of 58Ni \pm p, n are successfully described by LSSM

Application: parity dependence of level density

Contradiction between experiment and theory is resolved.

- No parity dependence (exp.) vs. strong parity dependence (prev. calc.)

Current limitation of large-scale shell-model calc.

Summary of LSSM level-density study

- We introduced a new stochastic estimation of level density in nuclear shell-model calculations utilizing conjugate gradient method.
 - Features: possible to treat any realistic interaction, spin-parity dependence, and removal of center-of-mass contamination.
 - Computational cost: similar order to obtaining a few low-lying states in Lanczos method
 - Benchmark : level densities by the new method agree well with the exact Lanczos results. Good convergence is seen.
- Parity equilibration of ⁵⁸Ni J=2 states of and low-lying spectroscopic information around ⁵⁸Ni are successfully described in a shell-model framework