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Abstract

We develop and test an ab initio time-dependent Basis Function (tBF)
method to solve non-perturbative and time-dependent problems in quantum
mechanics. For our test problem, we apply this method to the Coulomb exci-
tation of the deuteron by an impinging heavy ion. In the tBF method applied
to deuterium, we employ wave functions for its bound and excited states to
calculate its transition probabilities and the r.m.s. radius during the scattering
process. For comparison, corresponding results based on first-order perturba-
tion theory are also provided. For the Coulomb excitation process in a weak and
time-varying Coulomb field, where higher-order effects are negligible, we obtain
a good agreement of the results based on these two methods. The tBF method
is then applied to the Coulomb excitation process with stronger external field.
The higher-order effects, such as those appearing in the reorientation of the po-
larization of the deuteron system, are analyzed.
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1 Introduction

The importance of Coulomb excitation and its application in nuclear physics are well
known (see, e. g., Ref. [1] and references therein). A target nucleus transitions to
excited states when scattered by the electromagnetic (E&M) field produced by a
projectile heavy ion. First order perturbation theory works well when the field is
weak. When the field is strong (from, e. g., a highly charged ion), higher order effects,
such as reorientation, become important. For a precise description, the numerical
solution obtained from direct treatment of the time-dependent Schrödinger equation
is necessary [2]. In this work, we present a non-perturbative method to solve the
time-dependent Schrödinger equation, called the time-dependent basis function (tBF)
method. It is closely related to our previous work on time-dependent Basis Light-
Front Quantization (tBLFQ) [3, 4]. It enables tracking the evolution of quantum
states as a function of time. The dynamics of the quantum system is revealed at the
amplitude level. The tBF method will be especially useful when the interactions are
strong, in which cases the perturbative calculations are not reliable.
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In this paper, the deuteron Coulomb excitation problem is studied as a first test.
The heavy ion impinges along a fixed impact parameter so the center of mass of the
deuteron is held fixed during the collision process. The impact parameter is set to
be sufficiently large such that the strong nuclear force does not affect the scattering.
The projectile ion generates both time-varying electric (Coulomb) field and magnetic
field. While both the neutron and the proton interact with the magnetic field, only the
proton gets repelled by the Coulomb field. After the scattering, the polarization of the
deuteron system has been reoriented. For our initial test application, we will consider
only the Coulomb excitation effects modeled through the electric dipole transition
operator.

2 Theory and properties of the test application

For the purposes of introducing our tBF approach, we will take the specific example
of a peripheral heavy-ion collision with a deuteron and consider only its Coulomb
excitation. The target can easily be generalized to other systems such as 6Li or 12C.
Each of the simplifications will be lifted in future efforts as our main purpose here is to
introduce the method and provide initial tests. A main feature of our approach is that
we employ ab initio solutions for the ground and excited states of the target system
based on a realistic inter-nucleon interaction. Of course, phenomenological target
wave functions may also be employed and may be necessary for heavier targets.

2.1 Target properties

Within our application of the tBF method, the state wave functions of the target,
the neutron-proton (np) system, are solved with JISP16 NN interaction [5–7]. A
multipole expansion is conducted for the Coulomb field [8] produced by the heavy
ion and only the E1 multipole component is taken into account. The interaction
between the field and the np system can be expressed in terms of the nuclear matrix
elements that determine the radiative transitions. The time-dependent state wave
functions of the np system are solved numerically and then applied to calculate the
transition probabilities between states as well as the r.m.s. radius of the np system.
We demonstrate how the tBF method provides a complete dynamic picture of the
evolution of the np system, where all the higher-order effects are taken into account.

2.2 Peripheral scattering setup

The scattering plane is set to be the x-z plane, as shown in Fig. 1. The heavy ion,
with charge Ze, moves straight with a constant velocity parallel to the ẑ-axis. The
speed is taken as 0.1 (note we adopt the natural units and set ~ = c = 1 throughout
the paper) for our numerical results. The impact parameter is sufficiently large (taken
as 7.5 fm for our numerical application) such that the strong nuclear force does not
play a role. The nucleon mass is taken to be 938.92 MeV and the unit charge of the
deuteron target is carried by the proton. No meson exchange current is evaluated.
As an approximation, we consider the case where the impact parameter is constant
throughout the collision process so that the center of mass of the target is always
fixed at the origin. In this work, we consider only the E1 multipole contribution
for the Coulomb excitation, though other multipole components, e. g., E0, M1, E2,
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Figure 1: Schematic view of the scattering between the heavy ion and the deuteron
target. The scattering plane is set to be in the x-z plane. The heavy ion moves in a
straight trajectory parallel to the ẑ-axis. The center of mass of the target is fixed at
the origin. No recoil of the target is considered when the heavy ion skims over. b is
the impact parameter, v is the constant speed of the heavy ion projectile (along the
ẑ-axis), L0 is the horizontal distance to cut off the Coulomb interaction between the
np system and the heavy ion, θ is the polar angle of the position of the heavy ion, R
is the distance from the center of heavy ion to the origin, r is the separation between
the proton and the neutron.

etc., contribute to the full problem. A cut-off distance is introduced for the Coulomb
interaction, beyond which no significant transition takes place.

2.3 Hamiltonian

In the relative coordinates of the np system, the full Hamiltonian Hfull (for the target
interacting with external E&M field generated by the moving heavy ion) consists of
two parts

Hfull = H0 + Vint, (1)

where
H0 = HKE + VNN +Hext (2)

is the time-independent Hamiltonian for the np system. The HKE is the intrinsic
kinetic energy of the np system. The VNN describes the realistic nucleon-nucleon
(NN) interaction. In this work, it is taken to be the JISP16 NN interaction [5–7].
Since the np system is weakly bound, a small external harmonic oscillator (HO)
trap Hext with ω = 5 MeV is introduced to regulate the continuum states and produce
a discretized representation of the continuum. In future works, we will employ a basis
space regulator that does not affect the ground state while discretizing the continuum
without an external field.

All the eigenstates of H0 are obtained by diagonalization in a sufficiently large
model space

H0|βj〉 = Ej |βj〉. (3)

These energy eigenstates form the complete basis set {|βj〉} of the np system in our
test problem. The time-dependent background field Vint induces transitions between
eigenstates of the np system in the trap.
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2.4 Background field

Vint is the time-dependent part of the full Hamiltonian. It is evaluated locally through
the coupling between the four potential Aµ = (ϕ, ~A) from the moving charge and the
four current of the np system Jµ = (ρ,~j),

Vint(t) =

∫
AµJ

µ d~r =

∫
ρ(~r, t) ϕ(~r, t) d~r −

∫
~j(~r, t) · ~A(~r, t) d~r, (4)

where the relative coordinates relate to the single-particle coordinates of the np system
as ~r = ~rp − ~rn. The second term in Eq. (4) is neglected since the heavy ion is moving
with low velocity in our initial application. Only the interaction between the Coulomb
field of the incident heavy ion and the charge of the np system is evaluated. Moreover,
the multipole expansion of the Coulomb field [8] is performed and only the E1 term
is kept.

2.5 Interaction picture

The basis set is formed by the eigenstates of the free Hamiltonian H0. The transi-
tions between these eigenstates are described in the interaction picture, in which the
equation of motion (EOM) of the np system is

i
∂

∂t
|ψ; t〉I = eiH0t Vint(t) e

−iH0t |ψ; t〉I ≡ VI(t)|ψ; t〉I , (5)

where VI(t) is the interaction part of Hamiltonian in the interaction picture. The
subscript “I” is adopted to distinguish the quantities in the interaction picture from
those in the Schrödinger picture. The above EOM can be solved by integration

|ψ; t〉I = T̂

{
exp

[
− i

∫ t

t0

VI(t′) dt′

]}
|ψ; t0〉I , (6)

where T̂ is the time ordering operator towards the future. Instead of functional
expansion in perturbation theory, the above equation is evaluated numerically in the
tBF approach. For this purpose, we divide the time interval [−T, T ] into n segments,
each segment with step length δt = 2T

n . The integration in the exponent is then
replaced as

T̂

{
exp

[
− i

∫ T

−T

VI(t) dt

]}

∑
δt−−−→
[

1 − iVI(tn) δt

][
1 − iVI(tn−1) δt

]
· · ·
[

1 − iVI(t1) δt

]
. (7)

By multiple insertions of the projection operator defined from this complete basis set
in Eq. (3),

1 =
∑

j

|βj〉〈βj |, (8)

the right hand side of Eq. (7) reduces to matrix multiplications. The final state after
evolution |ψ; t〉I in Eq. (6) is therefore obtained.
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2.6 Interaction matrix

Taking only the E1 multipole component of the Coulomb field, the transition matrix
element [1, 2] is

〈βj |VI(t)|βk〉 =
4π

3
Zαei(Ej−Ek)t

∑

µ

Y ∗
1µ(ΩR̂)

|R(t)|2 〈βj |
r

2
Y1µ(Ωr̂)|βk〉, (9)

where Ej and Ek are respective eigenenergies of eigenvectors |βj〉 and |βk〉 of the
Hamiltonian H0, Yλµ(Ω) (λ = 1 for the E1 multipole contribution) denotes the spher-
ical harmonics following the Condon–Shortley convention [9], and α is the coupling
constant for the E&M interaction. In the relative coordinates of the np system, r is
the distance from the proton to the neutron, while ~R(t) is the position of the heavy ion
projectile. The kernel in Eq. (9) is the matrix element for the E1 transition between
eigenstates of the np system.

To compute the interaction matrix, the three dimensional harmonic oscillator
(3DHO) representation is adopted. We adopt a model space truncation parame-
ter 2n+ l ≤ Nmax = 60 to define our approximation to the full basis space which
leads to our definition of the complete 3DHO basis set {|nlsJM〉} for each eigenvec-
tor in the basis set {|βj〉} of the np system (specified by good quantum numbers s, J
and M):

1 =
∑

nl

|nlsJM〉〈nlsJM |. (10)

Here, for each 3DHO basis wave function, n is the radial quantum number which
denotes the number of nodes of the radial part of the wave function, l is the quan-
tum number of orbital angular momentum ~l, s is the quantum number for spin ~s, ~l
and ~s couple to the total angular momentum ~J , which is a conserved quantity of the
Hamiltonian H0. M is the magnetic quantum number of ~J along the quantization
axis (ẑ-axis in this case). The E1 matrix element in Eq. (9) becomes

〈βj |
r

2
Y1µ(r̂)|βk〉

=
∑

nl

∑

n′l′

〈ξjJjMj |nlsJjMj〉〈nlsJjMj |
r

2
Y1µ(r̂)|n′l′s′JkMk〉〈n′l′s′JkMk|ξkJkMk〉,

(11)

where

|βj〉 =
∑

nl

〈nlsJjMj|ξjJjMj〉|nlsJjMj〉 ≡
∑

nl

aj;nl|nlsJjMj〉, (12)

|βk〉 =
∑

n′l′

〈n′l′s′JkMk|ξkJkMk〉|n′l′s′JkMk〉 ≡
∑

n′l′

ak;n′l′ |n′l′s′JkMk〉, (13)

and ξj and ξk denote additional quantum numbers necessary to describe |βj〉 and |βk〉,
respectively. In this work, the amplitudes {aj;nl} and {ak;n′l′} are solved by diago-
nalization of H0 in the 3DHO representation. The middle kernel in Eq. (11) is the
E1 matrix element (r/2)Y1µ(r̂) in the 3DHO representation. It can be solved by
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converting into the coordinate representation,

〈nlsJjMj|
r

2
Y1µ(r̂)|n′l′s′JkMk〉

=
∑

mlms

∑

m′
l
m′

s

δss′δmsm′
s
(lmlsms|JjMj)(l

′m′
ls

′m′
s|JkMk)

∫
R∗

nl(r)
r

2
Rn′l′(r) r

2dr

× (−1)ml

√
3(2l+ 1)(2l′ + 1)

4π

(
l 1 l′

−ml µ m′
l

)(
l 1 l′

0 0 0

)
, (14)

where Rnl(r) is the radial part of 3DHO wave function in the coordinate representa-
tion,

Rnl(r) =

√
2n!

r30Γ(n+ l + 3
2 )

( r
r0

)l
exp

(
− r2

2r20

)
L
l+ 1

2
n

(
r2

r20

)
, (15)

with Lα
n(r2/r20) the associated Laguerre polynomial. r0 =

√
1/mω is the oscillator

length with m the reduced mass of the np system and the HO frequency ω taken to
be the same as the frequency of the trap. This definition ensures that Rnl(r) starts
positive at the origin. The radial integral in Eq. (14) is evaluated to be

∫
R∗

nl(r)
r

2
Rn′l′(r) r

2 dr

=
r0
2





√
n+ l + 3

2 δnn′ −√
n δn,n′+1 for l′ = l + 1;√

n′ + l′ + 3
2 δnn′ −

√
n′ δn′,n+1 for l = l′ + 1;

0 else.

(16)

(lmlsms|JjMj) in Eq. (14) is the CG-coefficient and

(
l 1 l′

−ml µ m′
l

)

is the 3j-symbol following the Condon–Shortley convention [9]. The angular part
determines the selection rule of the E1 transition.

2.7 Evolution of states

The method described in Eq. (7) is known as the Euler scheme. This approach is
not stable because it is not symmetric in time. The norm of the state vector |ψ; t〉I
may not be conserved under time evolution [10], which violates the conservation of
probability. We therefore adopt the MSD2 [11] scheme

|ψ, t+ δt〉I ≈ |ψ, t− δt〉I − 2iVI(t) δt |ψ, t〉I . (17)

For comparison with results from the MSD2 scheme, we also present the evolution
calculated from the first-order perturbation theory. From Eq. (7), the evolution of
state vector is evaluated to the leading order in the interaction VI ,

|ψ; tn〉I →
[

1 − i δt
(
VI(tn) + VI(tn−1) + ...+ VI(t1)

)]
|ψ; 0〉I . (18)



108 W. Du, P. Yin, G. Chen, X. Zhao and J. P. Vary

2.8 Observables

During the evolution, the wave function of the np system at a certain moment in
terms of the basis set {|βj〉} is

|ψ; t〉 =
∑

j

Aj(t)|βj〉, (19)

where |βj〉 denotes the tBF basis solved from Eq. (3). The amplitudes Aj(t) are
tracked for each basis state during evolution. Applying the time-dependent np wave
function Eq. (19), we can track the r.m.s. radius of the np system as

〈
r2(t)

〉1
2 =

1

2

√
〈ψ; t|r2|ψ; t〉. (20)

3 Results and discussion

For our test problem, we consider 3 interaction channels for the np system. They
are (3S1,

3D1), 3P0 and 3P1. For each channel, the lowest states (degenerate in
magnetic quantum numbers M) of H0 are considered. The eigenenergy of each state
is also shown in Fig. 2.

The heavy ion projectile is chosen to be fully stripped (all electrons removed)
124Sn, with Z = 50. It moves in a straight trajectory parallel to the ẑ-axis with
a constant velocity which magnitude is set to 0.1 in our test problem. The center
of mass of the np system is fixed at the origin. The impact parameter is fixed to
be 7.5 fm. The exposure duration is 10 MeV−1 (6.582 × 10−21 sec), during which
time the projectile travels approximately 200 fm (100 fm before distance of closest
approach and 100 fm after that). The initial state is prepared to be polarized along
the negative ẑ-axis. That is, the initial state is selected to be the (3S1,

3D1), M = −1
state.

Applying either the tBF method or the first-order perturbation theory, we will
calculate the wave functions of the np system at selected moments during evolution.
The wave functions are then applied to calculate the transition probabilities as well
as the r.m.s. radius of the np system as a function of time. The dependence of these
properties on the strength of external Coulomb field is also investigated by altering
the coupling constant. We note that our discussion of properties at intermediate times
is allowed in quantum mechanics but only the results at asymptotic times correspond
to experimental observables.

Figure 2: Basis set of the np system
for evolution.
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Figure 3: Time evolution of the np system (characterized by 7 basis states) in the
weak and time-varying Coulomb field. The initial deuteron system is polarized along
the negative ẑ-axis. The duration is 10 MeV−1 and the coupling constant is 1/137.04.
The charge of the heavy ion projectile is Z = 50 and it moves parallel to the ẑ-axis with
a constant speed 0.1. The impact parameter is 7.5 fm. The initial state is prepared
to be the (3S1,

3D1), M = −1 ground state (the lowest basis state in our eigenbasis).
For each basis state, the red solid curve represents the probability calculated by the
MSD2 scheme during evolution, while the blue dashed curve is the result from first-
order perturbation theory.
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3.1 Results with the physical coupling constant

In Fig. 3, we plot the time evolution of the probabilities of the np system when it
is exposed to a weak, time-varying Coulomb field. The coupling constant is set to
be α = 1/137.04.

Intense probability fluctuations are found for some states at the middle of the
scattering process, when the heavy ion is close to the np system. Such fluctuations
are transient and they are signs of the virtual quantum processes. The probabilities
converge to stable values when the Coulomb field fades away. The distance for the
Coulomb field to be effective is related to the external interaction energy Vint and
internal energy gaps of the np system.

For levels that obey the E1 selection rule, good agreement for the transition prob-
abilities is obtained between calculations from the tBF method (red solid lines) and
calculations from first-order perturbation theory (blue dashed lines). This shows
that the tBF method is consistent with first-order perturbation theory when the
interaction field is weak. For states that violate the E1 selection rule, however,
differences are found between the results from the tBF method and those from first-
order perturbation theory. For example, the forbidden states, (3S1,

3D1), M = 0
state, (3S1,

3D1), M = 1 state and 3P1, M = 1 state are excited at the end of
evolution, though with relatively small probabilities. These “forbidden transitions”
result from the higher-order processes which are excluded from first-order perturba-
tion theory.

In Fig. 4, we present the r.m.s. radius for the np system during evolution. Due
to the external HO potential trap Hext in Eq. (2) introduced for constraining the np
system, its r.m.s. radius before evolution, 1.472 fm, is approximately 25% smaller
than the physical r.m.s. radius, 1.975(3) fm, of the natural deuteron [12, 13]. The
r.m.s. radius expands when the np system gets excited to high-lying levels. The tiny
difference in the r.m.s. radii given by the two approaches is due to the “forbidden
transitions” to high-lying levels, which are the higher-order effects included by the
tBF method. In general, the r.m.s. radius given by the tBF method (red solid line)
agrees with that based on the perturbation theory (blue dashed line). At the end of
evolution, both methods predict the net expansion of the order of 10−4 fm.
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Figure 4: The r.m.s. radius of the np
system during evolution. The simula-
tion conditions for the intermediate np
wave functions are the same as those
described in Fig. 3. The red solid curve
represents the r.m.s. radius calculated
from the wave function obtained via
the tBF method, while the blue dashed
curve is the r.m.s. radius based on the
wave function from first-order pertur-
bation theory.
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3.2 Results with an enlarged coupling constant

We test the tBF method for the evolution of the np system in the presence of a stronger
and time-varying Coulomb field, where the coupling constant is set to α = 1/13.704.
We perform this calculation in order to enhance the visibility of the non-perturbative
quantum effects that may become more evident with closer encounters and/or with
relativistic heavy ions.
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Figure 5: The same as in Fig. 3. However, the coupling constant is set to 1/13.704.
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Figure 6: The same as in Fig. 4. How-
ever, the coupling constant is set to
1/13.704.

For the np system, the non-perturbative tBF calculation for the transition prob-
abilities during evolution (red solid lines) are shown in Fig. 5. The transition prob-
abilities based on first-order perturbation theory are again provided (blue dashed
lines) for comparison. However, it is easily anticipated, and observed, that first-order
perturbation theory is not sufficient in this case.

The evident difference on transition probabilities is found between the calculation
based on the tBF method and that on first-order perturbation theory. This differ-
ence shows that the higher-order effects are crucial for the precise calculation of the
Coulomb excitation process in a strong field. Such higher order effects result in a
significant reorientation of the polarization of the np system. This is observed from
the large transition probabilities to levels that are forbidden by the first order E1
selection rule, e. g., to the (3S1,

3D1), M = 1 state.

We observe that the np system is not significantly excited at the end of evolution.
Though re-distributed, almost all of the population are still resident in the (3S1,

3D1)
levels. This results in a negligible expansion of the np system after the scattering
process (Fig. 6), which is at the order of 10−4 fm. Note that the r.m.s. radius is
a simple characteristic of the full final state distribution. Population of the excited
states would be expected to lead to breakup or gamma emission back to the ground
state but we do not incorporate those final state effects in our current calculations.

4 Conclusions and outlook

We have developed and applied a non-perturbative method, the time-dependent Basis
Function (tBF) method, to study scattering problems in strong and time-dependent
external fields. Since the tBF method enables calculations of intermediate state wave
functions, it enables a detailed investigation on the dynamics of a system during
evolution. As a test problem, we study the Coulomb excitation of the deuteron
target when a heavy ion projectile impinges. The target deuteron is placed in a
weak external harmonic oscillator potential trap and its center of mass is fixed. The
energy eigenfunctions of the target (np) system are calculated with the JISP16 NN -
interaction, from which only seven of them are kept as basis states for this test
problem. For simplicity, only the E1 component of the Coulomb field is considered.
Due to the Coulomb excitation, the np system gets excited during the scattering
process. We calculate the np wave functions at selected moments during evolution
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based on the tBF method. The wave functions are then applied to calculate the
transition probabilities as well as the r.m.s. radius of the np system. For comparison,
we also provide corresponding calculations which are based on first-order perturbation
theory.

We first study the Coulomb excitation problem in a weak, time-varying external
field. For those states that obey the E1 selection rule, we obtain agreement for the
transition probability between these two approaches. This confirms that the tBF
method is consistent with first-order perturbation theory in the limit of the weak
interaction field. However, for the other states that violate the E1 selection rule,
deviations from zero are obtained in the tBF approach. These deviations signify the
higher-order effects missing in first-order perturbation theory.

In scattering problems with a stronger interaction field, the higher-order effects are
expected to be important. To show this, we investigate the same Coulomb excitation
problem but with a strong, time-varying external field. We achieve this by tuning
the coupling constant to 1/13.704, while all the remaining parameters are kept the
same as those in the previous simulation. In this case, it is found that the higher-
order effects largely reorient the polarization of the deuteron system, while the r.m.s.
radius changes minimally after the evolution. At later times, differences in the level
distribution and r.m.s. radius of the np system are observed between predictions
based on the tBF method and first-order perturbation theory. This justifies a full
non-perturbative treatment in the presence of strong interaction field.

In the next step, with the validity of the tBF method confirmed, we will apply
this method to simulate the scattering process of the deuteron in the presence of
both the electromagnetic interaction and the strong interaction due to an impinging
heavy ion. In such cases, both the Coulomb interaction and the strong interaction
can modify the polarization of the deuteron system [14–16]. Specific attention will
be paid to the time-evolution of the charge and momentum distribution of the np
system. These studies will be very important for understanding the dynamics of the
deuteron breakup reaction [17, 18] and would serve as a precursor for investigating
the internal structures of larger nuclei.
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C. Düweke, R. Emmerich, A. Imig, K. Grigoryev, M. Mikirtychiants and A. Vasi-
lyev, Phys. Rev. Lett. 104, 222501 (2010).

[17] C. A. Bertulani and L. F. Canto, Nucl. Phys. A 539, 163 (1992).

[18] L. F. Canto, R. Donangelo, A. Romanelli, M. S. Hussein and A. F. R. de Toledo
Piza, Phys. Rev. C 55, 570(R) (1997).


