International Conference "Nuclear Theory in the Supercomputing Era -2018" (NTSE-2018) October 29 – November 2, 2018

## No-core Monte Carlo shell model calculations with Daejeon16 NN interaction

Takashi Abe (CNS, the Univ of Tokyo)

Supported by MEXT and JICFuS Priority Issue 9 to be Tackled by Using Post K Computer "Elucidation of the Fundamental Laws and Evolution of the Universe"

Institute for Basic Science, Daejeon, Korea November 2, 2018

## Collaborators

- Takaharu Otsuka (RIKEN, Tokyo, Leuven, MSU)
- Yutaka Utsuno (JAEA)
- Noritaka Shimizu (Tokyo)
- Tooru Yoshida (RIST)
- Takayuki Miyagi (TRIUMF)
- Peter Navratil (TRIUMF)
- James P Vary (Iowa State U)
- Pieter Maris (Iowa State U)

Supported by MEXT and JICFuS

Priority Issue 9 to be Tackled by Using Post K Computer "Elucidation of the Fundamental Laws and Evolution of the Universe"

### Outline

- No-core Monte Carlo shell model (MCSM)
  - Introduction
  - Current status
- Cluster structure from no-core MCSM
  - Be isotopes
  - C isotopes
- Summary & future perspectives

# 1. No-core Monte Carlo shell model (MCSM)

- Introduction
- Current status

## "Ab initio" in low-energy nuclear structure physics

- Major challenge in nuclear physics
  - Nuclear structure & reactions directly from *ab-initio* calc. w/ nuclear forces
  - *ab-initio* approaches in nuclear structure calculations (A > 4):
     <u>Light mass</u>: Green's Function Monte Carlo, No-Core Shell Model (A ~ 12),
     <u>Medium/heavy mass</u>: Coupled Cluster (sub-shell closure +/- 1,2),
     Self-consistent Green's Function theory, IM-SRG, UMOA, Lattice EFT, ...
- Solve the non-relativistic many-body Schroedinger eq. and obtain the eigenvalues and eigenvectors.

$$H|\Psi\rangle = E|\Psi\rangle$$
  
$$H = T + V_{\rm NN} + V_{\rm 3N} + \dots + V_{\rm Coulomb}$$

Ab initio: All nucleons are active, and Hamiltonian consists of realistic NN (+ 3N + ...) potentials.

-> Computationally demanding -> Monte Carlo shell model (MCSM)

### M-scheme dimension in N<sub>shell</sub> truncation



#### Monte Carlo shell model (MCSM)





### Historical evolution/development of the MCSM



### How to obtain ab-initio results from no-core MCSM

• Two steps of the extrapolation

Same as in the MCSM w/ an inert core 1. Extrapolation of our MCSM (approx.) results to exact results in the fixed size of model space

#### **Energy-variance extrapolation**

N. Shimizu, Y. Utsuno, T. Mizusaki, T. Otsuka, T. Abe, & M. Honma, Phys. Rev. C82, 061305(R) (2010)



### Extrapolations



## Comparison of MCSM results w/ experiments



MCSM results are obtained using K computer by traditional extrapolation w/ optimum harmonic oscillator energies.

JISP16 results show good agreements w/ experimental data up to <sup>12</sup>C, slightly overbound for <sup>16</sup>O, and clearly overbound for <sup>20</sup>Ne.

Daejeon16 results show good agreements w/ experimental data up to <sup>20</sup>Ne. (Energy-variance extrapolation has not been done yet) <sup>11</sup>

### Comparison of MCSM results w/ experiments



MCSM results are obtained using K computer around optimum harmonic oscillator energies for radii. JISP16 results show good agreements w/ experimental data up to <sup>8</sup>Be, clearly smaller for heavier nuclei beyond <sup>12</sup>C as A increases. Daejeon16 results show larger radii than JISP16 ones (Energy-variance extrapolation has not been done yet)<sup>12</sup>

### Test of chiral 3N int. for closed-shell nuclei

#### Work in progress (<sup>12</sup>C, <sup>16</sup>O, ...)



# 2. Cluster structure from no-core MCSM

- Be isotopes
- C isotopes

### Cluster structure of Be & C isotopes



### <u>Remarks</u>

#### T. Yoshida (RIST)

• Size of model space & HO frequency are fixed.

$$-N_{shell} = 6$$
, hw = 15 MeV

- Not quantitative discussion, but qualitative
- Most of the results are preliminary.
- Starting from a realistic NN potential (JISP16)

### Energy levels & E2 transition strengths of Be isotopes



Expt.: <sup>8</sup>Be,<sup>10</sup>Be (Tilley et al., 2004), <sup>12</sup>Be (Shimoura et al., 2003) MCSM: JISP16 NN int.,  $N_{shell} = 6$ , hw = 15 MeV Expt.: <sup>8</sup>Be Datar *et al*. 2013 + estimate by GFMC <sup>10</sup>Be McCutchan *et al*. 2009 <sup>12</sup>Be Imai *et al*. 2009

#### Overall good agreement w/ experimental data

### Radii of Be isotopes



Rather good agreement w/ overall trend, except for <sup>11</sup>Be neutron halo

#### MCSM < Expt., FMD < AMD, Cluster model

Expt., FMD: F. Ajzenberg-Selove, NPA 506, 1 (1990), A. Krieger et al., PRL 108, 142501 (2012) AMD : Y. Kanada-En'yo, PRC91, 014315 (2015) Cluster: M. Ito & K. Ikeda, Rep. Prog. Phys. 77, 096301 (2014)

### E2 & E0 transition strength of <sup>12</sup>Be



Expt.:

S. Shimoura, et al., Phys. Lett. B 654 87 (2007) N. Imai, et al., Phys. Lett. B 673 179 (2009)

# Density distribution from ab initio calc.

- Green's function Monte Carlo (GFMC)
  - "Intrinsic" density is constructed
    by aligning the moment of inertia among samples
    R. B. Wiringa, S. C. Pieper, J. Carlson, & V. R. Pandharipande,
    Phys. Rev. C62, 014001 (2000)
- No-core full configuration (NCFC)
- Translationally-invariant density is obtained
  by deconvoluting the intrinsic & CM w.f.
  C. Cockrell J. P. Vary & P. Maris, Phys. Rev. C86, 034325 (2012)
- Lattice EFT
  - Triangle structure of carbon-12

E. Epelbaum, H. Krebs, T. A. Lahde, D. Lee, & U.-G. Meissner, Phys. Rev. Lett. 109, 252501 (2012), ...

• FMD

H. Feldmeier, Nucl. Phys. A515, 147 (1990), ...



### Density distribution in MCSM

$$|\Phi\rangle = \sum_{i=1}^{N_{basis}} c_i |\Phi_i\rangle = c_1 \bigotimes + c_2 \bigotimes + c_3 \bigotimes + c_4 \bigotimes + c_4 \bigotimes + \ldots$$
Angular-momentum projection
$$|\Psi\rangle = \sum_{i=1}^{N_{basis}} c_i P^J P^{\pi} |\Phi_i\rangle$$
A way to construct  
an "intrinsic" density
$$|\Psi\rangle = \sum_{i=1}^{N_{basis}} c_i P^J P^{\pi} |\Phi_i\rangle$$
B Be 0<sup>+</sup> ground state
$$|\Psi\rangle = \sum_{i=1}^{N_{basis}} e^{-i\theta_i} e^{-i\theta_i}$$
Chapter of the state of

N. Shimizu, T. Abe, Y. Tsunoda, Y. Utsuno, T. Yoshida, T. Mizusaki, M. Honma, T. Otsuka<sub>20</sub> Progress in Theoretical and Experimental Physics, 01A205 (2012)

#### How to construct an "intrinsic" density from MCSM w.f.



• MCSM wave function

$$|\Psi\rangle = \sum_{i=1}^{N_{basis}} c_i P^J P^{\pi} \Phi_i \rangle$$



• Wave function <u>w/o the projections</u>  $\sum_{i=1}^{N_{basis}} c_i |\Phi_i\rangle = c_1 + c_2 + \dots + c_{N_{basis}} + \dots + c_{N_{basis}} \vee \gamma$ Rotation by diagonalizing Q-moment **z** (Q<sub>zz</sub> > Q<sub>yy</sub> > Q<sub>xx</sub>)

• Wave function w/o the projection w/ the alignment of Q-moment



#### Density distribution of Be isotopes



### Energy level & transition strength of <sup>12</sup>C



E<sub>gs</sub> = -76.64 MeV (MCSM, JISP16, N<sub>shell</sub> = 6, hw = 15 MeV)

## Closer look at density distributions in <sup>12</sup>C

- Dendrogram in "Cluster analysis" of statistics
- Basis vectors are divided into 16 groups (in this case)



# Overlap probability in <sup>12</sup>C

- Dendrogram in "Cluster analysis" of statistics
- Basis vectors are divided into 16 groups (in this case)
- <u>0<sup>+</sup></u><sub>1</sub> : Concentrated in 14<sup>th</sup> (3 clusters) & 15<sup>th</sup> (compact shape) groups #10 #6 #2 #3 #4 #7 #8 #9 #11 #12 #13 #14 #15 #16 #5 #1 0.00 0.34 0.29 0.04 0.11 0.98 0.32 0.00 0.03 0.07 0.87 0.20 0.0 0.11 0.00 0.00
- <u>0<sup>+</sup></u><sub>2</sub>: Scattered among all groups —> Gas-like state?

| *    | **<br><b>???</b> | 007  | ?    | 5    | 04   | 5    |      |      | 90   | <b>()</b> |      | **   | e-9  |      | 5    |
|------|------------------|------|------|------|------|------|------|------|------|-----------|------|------|------|------|------|
| 0.11 | 0.02             | 0.18 | 0.20 | 0.02 | 0.14 | 0.07 | 0.08 | 0.14 | 0.37 | 0.16      | 0.14 | 0.48 | 0.22 | 0.66 | 0.03 |

• <u>0<sup>+</sup></u><sub>3</sub> : Concentrated in 6<sup>th</sup> & 7<sup>th</sup> (linear shape) groups



# Summary

- MCSM results for light nuclei (A<= 20) w/ a NN potential can be extrapolated to the infinite basis space to obtain ab initio solution.
  - Daejoen16 NN interaction gives better agreement w. experimental data than those by JISP16 (preliminary, need energy-variance extrapolation).
- Cluster structure of Be & C isotopes can be visualized using MCSM wave functions.

### Future perspective

- Introduction of 3NF effects explicitly in the no-core MCSM
- Heavier nuclei beyond <sup>20</sup>Ne
- Quantitative analysis on cluster structure of Be & C isotopes