Applications of Lattice Effective Field Theory to Nuclear Forces and Structure

Dean Lee
Facility for Rare Isotope Beams
Department of Physics and Astronomy
Michigan State University
Nuclear Lattice EFT Collaboration

Nuclear Theory in the Supercomputing Era
Institute for Basic Science, Daejeon, Korea
October 29, 2018
Outline

Lattice effective field theory

Improved short-range interactions

Nuclear forces and nuclear structure

Nuclear thermodynamics using pinholes

Eigenvector continuation

Superfluidity and pairing correlations

Summary and outlook
Lattice effective field theory

\[a \sim 0.5 - 2 \text{ fm} \]

TALENT summer school lectures: qmc2016.wordpress.ncsu.edu
Construct the effective potential order by order

\[V^{OPEP} \quad \text{Contact interactions} \quad V^{TPEP} \]

Leading order (LO) Next-to-leading order (NLO)
Improved short-range lattice operators

We define the smeared annihilation and creation operators. This procedure gives us better rotational symmetry properties when taking spatial derivatives as finite differences.

\[
a_{i,j}^{s_{NL}}(n) = a_{i,j}(n) + s_{NL} \sum_{|n'|=1} a_{i,j}(n+n')
\]

\[
a_{i,j}^{s_{NL}}(n) = a_{i,j}^{\dagger}(n) + s_{NL} \sum_{|n'|=1} a_{i,j}^{\dagger}(n+n')
\]

Next we form bilinear functions of the annihilation operators with spin and isospin quantum numbers \(S, S_z, I, I_z\).

\[
[a(n)a(n')]^{s_{NL}}_{S,S_z,I,I_z} = \sum_{i,j,i',j'} a_{i,j}^{s_{NL}}(n)M_{ii'}(S, S_z)M_{jj'}(I, I_z)a_{i',j'}^{s_{NL}}(n')
\]

We put in orbital angular momentum using solid spherical harmonics

\[
R_{L,L_z}(r) = \sqrt{\frac{4\pi}{2L + 1}} r^L Y_{L,L_z}(\theta, \phi),
\]

that are written as functions of the lattice derivatives on one of the annihilation operators

\[
P^{2M,s_{NL}}_{S,S_z,L,L_z,I,I_z}(n) = [a(n) \nabla^{2M}_{1/2} R^*_{L,L_z}(\nabla)a(n)]^{s_{NL}}_{S,S_z,I,I_z}
\]

We then project onto the selected spin and orbital angular momentum using Clebsch-Gordan coefficients

\[
O^{2M,s_{NL}}_{S,L,J,J_z,I,I_z}(n) = \sum_{S_z, L_z} \langle SS_z LL_z|JJ_z \rangle P^{2M,s_{NL}}_{S,S_z,L,L_z,I,I_z}(n)
\]
$a = 1.973 \text{ fm}$
\[a = 1.644 \text{ fm} \]
$a = 1.315\text{ fm}$
\[a = 0.987 \text{ fm} \]
TABLE II. The deuteron properties and S-wave parameters calculated with the full NN interaction up to chiral order $O(Q^4)$ using $a = 0.99$ fm. The error bars we quote in this table indicate uncertainties from the fitting procedure only.

<table>
<thead>
<tr>
<th></th>
<th>LO</th>
<th>NLO</th>
<th>N2LO</th>
<th>N3LO</th>
<th>Empirical</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_d (MeV)</td>
<td>2.2246 ± 0.0002</td>
<td>2.224575 ± 0.000016</td>
<td>2.224575 ± 0.000025</td>
<td>2.224575 ± 0.000011</td>
<td>$2.224575(9)[24]$</td>
</tr>
<tr>
<td>A_s (fm$^{-1/2}$)</td>
<td>0.8662 ± 0.0007</td>
<td>0.8772 ± 0.0003</td>
<td>0.8777 ± 0.0004</td>
<td>0.8785 ± 0.0004</td>
<td>$0.8846(9)[25]$</td>
</tr>
<tr>
<td>η</td>
<td>0.0212 ± 0.0000</td>
<td>0.0258 ± 0.0001</td>
<td>0.0257 ± 0.0002</td>
<td>0.0254 ± 0.0001</td>
<td>$0.0256(4)[26]$</td>
</tr>
<tr>
<td>Q_d (fm2)</td>
<td>0.2134 ± 0.00000</td>
<td>0.2641 ± 0.0016</td>
<td>0.2623 ± 0.0023</td>
<td>0.2597 ± 0.0013</td>
<td>$0.2859(3)[27]$</td>
</tr>
<tr>
<td>r_d (fm)</td>
<td>1.9660 ± 0.0001</td>
<td>1.9548 ± 0.0005</td>
<td>1.9555 ± 0.0008</td>
<td>1.9545 ± 0.0005</td>
<td>$1.97535(85)[28]$</td>
</tr>
<tr>
<td>a_{3S_1}</td>
<td>5.461 ± 0.000</td>
<td>5.415 ± 0.001</td>
<td>5.421 ± 0.002</td>
<td>5.417 ± 0.001</td>
<td>$5.424(4)[29]$</td>
</tr>
<tr>
<td>r_{3S_1}</td>
<td>1.831 ± 0.0003</td>
<td>1.759 ± 0.002</td>
<td>1.760 ± 0.003</td>
<td>1.758 ± 0.002</td>
<td>$1.759(5)[29]$</td>
</tr>
<tr>
<td>a_{1S_0}</td>
<td>-23.8 ± 0.1</td>
<td>-23.69 ± 0.05</td>
<td>-23.8 ± 0.2</td>
<td>-23.678 ± 0.038</td>
<td>$-23.748(10)[29]$</td>
</tr>
<tr>
<td>r_{1S_0}</td>
<td>2.666 ± 0.001</td>
<td>2.647 ± 0.003</td>
<td>2.69 ± 0.02</td>
<td>2.647 ± 0.004</td>
<td>$2.75(5)[29]$</td>
</tr>
</tbody>
</table>
Nuclear forces and nuclear structure

<table>
<thead>
<tr>
<th></th>
<th>E (MeV)</th>
<th>exp.</th>
<th>R_{ch} (fm)</th>
<th>exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3H</td>
<td>−8.47</td>
<td>−8.48</td>
<td>1.90</td>
<td>1.76</td>
</tr>
<tr>
<td>4He</td>
<td>−28.3</td>
<td>−28.3</td>
<td>1.72</td>
<td>1.68</td>
</tr>
<tr>
<td>16O</td>
<td>−118.4</td>
<td>−127.6</td>
<td>2.74</td>
<td>2.70</td>
</tr>
<tr>
<td>20Ne</td>
<td>−157.5</td>
<td>−160.6</td>
<td>2.95</td>
<td>3.01</td>
</tr>
<tr>
<td>24Mg</td>
<td>−194.7</td>
<td>−198.3</td>
<td>3.13</td>
<td>3.06</td>
</tr>
<tr>
<td>28Si</td>
<td>−231.1</td>
<td>−236.5</td>
<td>3.26</td>
<td>3.12</td>
</tr>
<tr>
<td>40Ca</td>
<td>−334.9</td>
<td>−342.1</td>
<td>3.42</td>
<td>3.48</td>
</tr>
</tbody>
</table>
Nuclear thermodynamics using pinholes

In order to compute thermodynamic properties of finite nuclei, nuclear matter, and neutron matter, we need to compute the partition function

$$\text{Tr} \exp(-\beta H)$$

We compute the quantum mechanical trace over A-nucleon states by summing over pinholes (position eigenstates) for the initial and final states

$$\text{Tr} \ O = \frac{1}{A!} \sum_{i_1 \cdots i_A, j_1 \cdots j_A, n_1 \cdots n_A} \langle 0| a_{i_A, j_A} (n_A) \cdots a_{i_1, j_1} (n_1) O a_{i_1, j_1}^\dagger (n_1) \cdots a_{i_A, j_A}^\dagger (n_A)|0\rangle$$

This can be used to calculate the partition function in the canonical ensemble.
Metropolis updates of pinholes

\[\tau = \beta \]

\[\tau = 0 \]

hybrid Monte Carlo
updates of auxiliary/pion fields
$L^3 = (12 \text{ fm})^3$
Entropy $S(T_0) = \int_0^{T_0} \frac{1}{T} dU$

Level Density $\rho(E) = \frac{e^S}{\sqrt{2\pi C_V T}}$
\[L^3 = (12 \text{ fm})^3 \]
$L^3 = (9.3 \text{ fm})^3$
We demonstrate that when a control parameter in the Hamiltonian matrix is varied smoothly, the extremal eigenvectors do not explore the large dimensionality of the linear space. Instead they trace out trajectories with significant displacements in only a small number of linearly-independent directions.

We prove this empirical observation using analytic function theory and the principles of analytic continuation.

Since the eigenvector trajectory is a low-dimensional manifold embedded in a very large space, we can find the desired eigenvector using methods similar to image recognition in machine learning.

Consider a one-parameter family of Hamiltonian matrices of the form
\[H(c) = H_0 + cH_1 \]
where \(H_0 \) and \(H_1 \) are Hermitian. Let the eigenvalues and eigenvectors be
\[H(c)|\psi_j(c)\rangle = E_j(c)|\psi_j(c)\rangle \]
We can perform series expansions around the point \(c = 0 \).
\[E_j(c) = \sum_{n=0}^{\infty} E_j^{(n)}(0) c^n / n! \]
\[|\psi_j(c)\rangle = \sum_{n=0}^{\infty} |\psi_j^{(n)}(0)\rangle c^n / n! \]
This is the strategy of perturbation theory. We can compute each term in the series when the eigenvalues and eigenvectors of \(H_0 \) are known or computable.
Perturbation theory

\[|\psi_j(c)\rangle = \sum_{n=0}^{\infty} |\psi_j^{(n)}(0)\rangle c^n / n! \]
Perturbation theory fails at strong attractive coupling
Restrict the linear space to the span of three vectors

![Graph showing E_0/t vs U/t with exact energies, EC with 3 sampling points, and sampling points indicated.](image)
\[|\psi_j(c)\rangle = \sum_{n=0}^{\infty} |\psi_j^{(n)}(w)\rangle (c - w)^n / n! \]
\[|\psi_j(c)\rangle = \sum_{n=0}^{\infty} |\psi_j^{(n)}(w)\rangle (c - w)^n / n! \]
\[|\psi_j^{(n)}(w)\rangle = \sum_{m=0}^{\infty} |\psi_j^{(n+m)}(0)\rangle w^m / m! \]
\[|\psi_j(c)\rangle = \lim_{N,M \to \infty} \sum_{n=0}^{N} \sum_{m=0}^{M} |\psi_j^{(n+m)}(0)\rangle w^m (c - w)^n / (m! n!) \]

\[|\psi_j^{(n)}(w)\rangle = \sum_{m=0}^{\infty} |\psi_j^{(n+m)}(0)\rangle w^m / m! \]
\[|\psi_j(c)\rangle = \sum_{n=0}^{\infty} |\psi_j^{(n)}(w)\rangle (c - w)^n / n! \]
\[|\psi_j^{(n)}(w)\rangle = \sum_{m=0}^{\infty} |\psi_j^{(n+m)}(0)\rangle w^m / m! \]

\[|\psi_j(c)\rangle = \lim_{N,M \to \infty} \sum_{n=0}^{N} \sum_{m=0}^{M} |\psi_j^{(n+m)}(0)\rangle w^m (c - w)^n / (m! n!) \]
The eigenvector can be well approximated as a linear combination of a few vectors, using either the original series expansion

$$|\psi_j(c)\rangle = \sum_{n=0}^{\infty} |\psi_j^{(n)}(0)\rangle c^n / n!$$

or the rearranged multi-series expansion we obtained through analytic continuation

$$|\psi_j(c)\rangle = \lim_{N,M \to \infty} \sum_{n=0}^{N} \sum_{m=0}^{M} |\psi_j^{(n+m)}(0)\rangle w^m (c - w)^n / (m! n!)$$

As c is varied the eigenvector does not explore the large dimensionality of the linear space, but is instead well approximated by a low-dimension manifold.
We can “learn” the eigenvector trajectory in one region and perform eigenvector continuation to another region.
Applying eigenvector continuation to more than one eigenvector at a time accelerates convergence near avoided level crossings.

Superfluidity and pairing correlations

The two-body density matrix is defined as

\[
\rho_2(\vec{r}_1', \vec{r}_2', \vec{r}_1, \vec{r}_2) = \left\langle \psi_\uparrow^\dagger(\vec{r}_2')\psi_\uparrow^\dagger(\vec{r}_1')\psi_\uparrow(\vec{r}_1)\psi_\downarrow(\vec{r}_2) \right\rangle
\]

Long-range correlations in the two-body density matrix is a signature for pair superfluidity:

\[
\rho_2(\vec{r}_1', \vec{r}_2', \vec{r}_1, \vec{r}_2) \to \alpha N/2 \cdot \phi^* (|\vec{r}_1' - \vec{r}_2'|) \phi (|\vec{r}_1 - \vec{r}_2|) \\
|\vec{r}_1 - \vec{r}_1'|, |\vec{r}_2 - \vec{r}_2'| \to \infty
\]

Yang, RMP 34, 694 (1962)
Pairing Correlation Function for $N = 38 \ L = 11$

$$N/V = 0.00372 \ \text{fm}^{-3}$$

$$a = 1.97 \ \text{fm}$$

Courtesy: Rongzheng He
Summary and Outlook

These are exciting times for the nuclear theory community. In lattice EFT, we have new projects in motion which are pushing the current frontiers.

Currently working to improve our understanding of the detailed connection between bare nuclear forces and nuclear structure for light and medium-mass nuclei.
Applying the adiabatic projection method to low-energy nucleon-nucleus and alpha-nucleus scattering and reactions.

Using the pinhole algorithm to study the detailed structure of nuclei and thermodynamics of finite nuclei, nuclear matter, and neutron matter.

Implementing eigenvector continuation to treat all higher-order interactions in chiral effective field theory and other applications.

Calculating the two-body density matrix to measure pairing correlations in neutron matter and finite nuclei.