THE RELATIVISTIC DYNAMICS IN MINKOWSKI SPACE: EXPLORING HADRON STRUCTURE

Tobias Frederico Instituto Tecnológico de Aeronáutica São José dos Campos – Brazil tobias@ita.br

Collaborators

- Abigail Castro (ITA/MSc), Cedric Mezrag (INFN/Roma I/PD),
- Dyana Duarte (ITA/PD), Emanuel Ydrefors (ITA/PD),
- Emanuele Pace (Roma II), Giovanni Salmè (INFN/Roma I),
- Jaume Carbonell (IPNO), Jorge H. Alvarenga Nogueira(ITA/Roma I/PhD),
- Michele Viviani (INFN/Pisa), Pieter Maris (ISU),
- Vladimir Karmanov (Lebedev), Wayne de Paula (ITA)

Int. Conf. Nuclear Theory in Supercomputing Era NTSE2018, IBS, Daejeon, Oct 29- Nov 2

Motivation

- Develop methods in continuous nonperturbative QCD in *Minkowski space-time*
- Solve the Bethe-Salpeter bound state equation 2 & 3 bodies
- Observables: spectrum, SL/TL momentum region
- Relation BSA to LF Fock-space expansion of the hadron wf
- Inversion Problem: Euclidean→Minkowski

Applications:

parton distributions (pdfs); generalized parton distributions; transverse momentum distributions (TMDs); Fragmentation functions; TL form factors

Beyond the valence

Sales, TF, Carlson, Sauer, PRC 63, 064003 (2001)

Marinho, TF, Pace, Salme, Sauer, PRD 77, 116010 (2008)

Population of lower x, due to the gluon radiation! (LF initial state interaction)

Bethe-Salpeter Amplitude → Light-Front WF (LFWF) basic ingredient in PDFs, GPDs and TMDs

$$\tilde{\Phi}(x, p) = \int \frac{d^4k}{(2\pi)^4} e^{ik \cdot x} \Phi(k, p)$$
$$p^{\mu} = p_1^{\mu} + p_2^{\mu} \qquad k^{\mu} = \frac{p_1^{\mu} - p_2^{\mu}}{2}$$

$$\begin{split} \tilde{\Phi}(x, p) &= \langle 0 | T\{\varphi_H(x^{\mu}/2)\varphi_H(-x^{\mu}/2)\} | p \rangle \\ &= \theta(x^+) \langle 0 | \varphi(\tilde{x}/2) e^{-iP^- x^+/2} \varphi(-\tilde{x}/2) | p \rangle e^{ip^- x^+/4} + \bullet \bullet \bullet \\ &= \theta(x^+) \sum_{n,n'} e^{ip^- x^+/4} \langle 0 | \varphi(\tilde{x}/2) | n' \rangle \langle n' | e^{-iP^- x^+/2} | n \rangle \langle n | \varphi(-\tilde{x}/2) | p \rangle + \bullet \bullet \end{split}$$

 $x^+ = 0$ only valence state remains! How to rebuilt the full BS amplitude?

Iterated Resolvents: Brodsky, Pauli, and Pinsky, Phys. Rep. 301, 299 (1998)

Reminder... Bethe-Salpeter Bound-State Equation (2 bosons)

$$\Phi(k, p) = G_0^{(12)}(k, p) \int \frac{d^4k'}{(2\pi)^4} iK(k, k'; p) \Phi(k', p)$$

$$G_0^{(12)}(k,p) = \frac{i}{\left[(p/2+k)^2 - m^2 + i\epsilon\right]} \frac{i}{\left[(p/2-k)^2 - m^2 + i\epsilon\right]}$$

Kernel: sum 2PI diagrams

- Valence LF wave function → BSA ?
- Valence → full Fock Space w-f ?

Sales, et al. PRC61, 044003 (2000)

Reverse operation: valence wave function \Rightarrow BS amplitude

Quasi-potential approach to LF projection: Expressing the BSE in the LF

$$|\Psi
angle = \Pi(\rho) |\phi_{LF}
angle$$

Sales, et al. PRC61, 044003 (2000); PRC63, 064003 (2001); Frederico et al. NPA737, 260c (2004); Marinho et al., PRD 76, 096001 (2007); Marinho et al. PRD77, 116010 (2008): Frederico and Salmè. FBS49. 163 (2011).

Example:Bosonic Yukawa model Ladder approx.

Main Tool: Nakanishi Integral Representation (NIR)

8

"Parametric representation for any Feynman diagram for interacting bosons, with a denominator carrying the overall analytical behavior in Minkowski space" [Nakanishi PR130(1963)1230]

Bethe-Salpeter amplitude

$$\Phi(k,p) = \int_{-1}^{1} dz' \int_{0}^{\infty} d\gamma' \frac{g(\gamma',z')}{(\gamma'+\kappa^2-k^2-p.kz'-i\epsilon)^3} \\ \kappa^2 = m^2 - \frac{M^2}{4}$$

BSE in Minkowski space with NIR for bosons Kusaka and Williams, PRD 51 (1995) 7026;

Light-front projection: integration in k⁻

Carbonell&Karmanov EPJA27(2006)1;EPJA27(2006)11;

TF, Salme, Viviani PRD85(2012)036009;PRD89(2014) 016010,EPJC75(2015)398 (application to scattering)

$$\psi_{LF}(\gamma, z) = \frac{1}{4} (1 - z^2) \int_0^\infty \frac{g(\gamma', z) d\gamma'}{\left[\gamma' + \gamma + z^2 m^2 + \kappa^2 (1 - z^2)\right]^2}$$

$$\gamma = k_{\perp}^z \qquad z = 2x - 1$$

- 0

¹⁰ *Generalized Stietjes transform and the LF valence wave function* Jaume Carbonell, TF, Vladimir Karmanov PLB769 (2017) 418

$$\psi_{LF}(\gamma,z) = \frac{1-z^2}{4} \int_0^\infty \frac{g(\gamma',z)d\gamma'}{\left[\gamma'+\gamma+z^2m^2+\left(1-z^2\right)\kappa^2\right]^2}.$$

$$f(\gamma) \equiv \int_{0}^{\infty} d\gamma' L(\gamma, \gamma') g(\gamma') = \int_{0}^{\infty} d\gamma' \frac{g(\gamma')}{(\gamma' + \gamma + b)^2}$$

J.H. Schwarz, J. Math. Phys. 46 (2005) 014501,

- UNIQUENESS OF THE NAKANISHI REPRESENTATION (NON-PERTURBATIVE)
- PHENOMENOLOGICAL APPLICATIONS from the valence wf \rightarrow BSA!

Solution Method of the Bethe-Salpeter eq.:

Carbonell&Karmanov EPJA27(2006)1;EPJA27(2006)11

 \Rightarrow

$$\Phi(k,p) = G_0(k,p) \int d^4k' \, \mathcal{K}_{BS}(k,k',p) \, \Phi(k',p)$$

$$\int_0^\infty d\gamma' \frac{g_b(\gamma',z;\kappa^2)}{[\gamma'+\gamma+z^2m^2+(1-z^2)\kappa^2-i\epsilon]^2} = \int_0^\infty d\gamma' \int_{-1}^1 dz' \ V_b^{LF}(\gamma,z;\gamma',z')g_b(\gamma',z';\kappa^2).$$

with $V_b^{LF}(\gamma, z; \gamma', z')$ determined by the irreducible kernel $\mathcal{I}(k, k', p)$!

UNIQUENESS OF THE NAKANISHI WEIGHT FUNCTION?

PERTURBATIVE PROOF BY NAKANISHI.

NON-PERTURBATIVE PROOF? Inverse Stieltjes: Int. Eq. in the normal form.

Two-Boson System: ground-state

Building a solvable model...

Nakanishi weight function

$$\mu = 0.5 \ B/M = 1$$

Karmanov, Carbonell, EPJA 27, 1 (2006) Frederico, Salmè, Viviani PRD89, 016010 (2014)

Valence wave function

FIG. 3. The longitudinal LF distribution $\phi(\xi)$ for the valence component Eq. (34) vs the longitudinal-momentum fraction ξ for $\mu/m = 0.05$, 0.15, 0.50. Dash-double-dotted line: B/m = 0.20. Dotted line: B/m = 0.50. Solid line: B/m = 1.0. Dashed line: B/m = 2.0. Recall that $\int_0^1 d\xi \phi(\xi) = P_{\rm val}$ (cf. Table III).

Light-front valence wave function L+XL¹³

Large momentum behavior

$$\psi_{LF}(\gamma,\xi) \to \alpha \ \gamma^{-2} C(\xi)$$

Fig. 2. Asymptotic function $C(\xi)$ defined from the LF wave function for $\gamma \to \infty$ (6) computed for the ladder kernel, $C^{(L)}(\xi)$ (dashed line), and ladder plus cross-ladder kernel, $C^{(L+CL)}(\xi)$ (solid line), with exchanged boson mass of $\mu = 0.15 \, m$. Calculations are performed for $B = 1.5 \, m$ (left frame) and $B = 0.118 \, m$ (right frame). A comparison with the analytical forms of $C(\xi)$ valid for the Wick-Cutkosky model for B = 2m (full box) and $B \to 0$ (dash-dotted line) both arbitrarily normalized.

Gigante, Nogueira, Ydrefors, Gutierrez, Karmanov, TF, PRD95(2017)056012.

Transverse distribution: Euclidean and Minkowski

$$\phi_M^T(\mathbf{k}_\perp) \equiv \int dk^0 dk^3 \Phi(k, p) = \frac{1}{2} \int dk^+ dk^- \Phi(k, p) \text{ and}$$

$$\phi_E^T(\mathbf{k}_\perp) \equiv i \int dk_E^0 dk^3 \Phi_E(k_E, p),$$

136

C. Gutierrez et al. / Physics Letters B 759 (2016) 131–137

Fig. 6. Transverse momentum amplitudes *s*-wave states, in Euclidean and Minkowski spaces, vs k_{\perp} , for both ground- and first-excited states, and two values of μ/m and α_{gr} (as indicated in the insets). The amplitudes ϕ_F^T and ϕ_M^T , arbitrarily normalized to 1 at the origin, are not easily distinguishable.

Gutierrez, Gigante, TF, Salmè, Viviani, Tomio PLB759 (2016) 131

Rotation in Complex Plane

Comparison between solution for the vertex function in the complex plane and NIR

Castro, de Paula, TF, Maris, Nogueira, Ydrefors; in preparation

$$\begin{aligned} \mathsf{A}(p_{0},\vec{p}^{2}) &= \int_{-\infty}^{\infty} dk_{0} \int \frac{d^{3}k}{(2\pi)^{4}} \frac{A(k_{0},\vec{k}^{2}) \ \mathsf{K}^{A}(p_{0},k_{0},\vec{p},\vec{k},\vec{p}\cdot\vec{k})}{(k_{0}^{2}+\vec{k}^{2}) \ A^{2}(k_{0},\vec{k}^{2}) + B^{2}(k_{0},\vec{k}^{2})} \\ B(p_{0},\vec{p}^{2}) &= m_{0} + g^{2} \int_{-\infty}^{\infty} dk_{0} \int \frac{d^{3}k}{(2\pi)^{4}} \frac{B(k_{0},\vec{k}^{2}) \ \mathsf{K}^{B}(p_{0},k_{0},\vec{p},\vec{k},\vec{p}\cdot\vec{k})}{(k_{0}^{2}+\vec{k}^{2}) \ A^{2}(k_{0},\vec{k}^{2}) + B^{2}(k_{0},\vec{k}^{2})} \\ \end{aligned}$$
Un-Wick rotation: $k_{0} \to k_{0} \exp i(\theta - \frac{k_{0}}{2})$ $p_{0} \to p_{0} \exp i(\theta - \frac{\pi}{2})$

Euclidean
$$\theta = \frac{\pi}{2}$$
 Minkowski $\theta = 0$

Parameters: $m_0 = 0.5$ $\mu = 1$ $\alpha = 0.3$ $\Lambda = 10$ M = B/A $\Delta(t) = \int d^3x \int \frac{d^4p}{(2\pi)^4} e^{i(tp_0 + \vec{x} \cdot \vec{p})} S_{s,v}(p^2) \propto e^{-mt}$

Spectral Representation (Nakanishi Integral representation)

$$\Sigma_{\text{scalar}}(p^2) = B(p^2) - m_0 = \int_0^\infty \frac{\rho_B(s)}{p^2 - s + i\epsilon}$$
$$\rho_B(s) = -\text{Im}[B(s)/\pi]$$

BSE for two-fermions

19

Carbonell and Karmanov EPJA 46 (2010) 387; de Paula, TF,Salmè, Viviani PRD 94 (2016) 071901;

Vector Exchange in LadderVertex Form-Factor $i \mathcal{K}_V^{(Ld)\mu\nu}(k,k') = -ig^2 \; \frac{g^{\mu\nu}}{(k-k')^2 - \mu^2 + i\epsilon}$ $F(q) = \frac{\mu^2 - \Lambda^2}{q^2 - \Lambda^2 + i\epsilon}$

fermion-antifermion 0⁻: $\Phi(k,p) = S_1\phi_1 + S_2\phi_2 + S_3\phi_3 + S_4\phi_4$

$$S_1 = \gamma_5 \quad S_2 = \frac{1}{M} \not\!\!\!\!\! p \gamma_5 \quad S_3 = \frac{k \cdot p}{M^3} \not\!\!\!\! p \gamma_5 - \frac{1}{M} \not\!\!\!\! k \gamma_5 \quad S_4 = \frac{i}{M^2} \sigma_{\mu\nu} p^{\mu} k^{\nu} \gamma_5$$

Nakanishi Integral Representation :

$$\phi_i(k,p) = \int_{-1}^{+1} dz' \int_0^\infty d\gamma' \frac{g_i(\gamma',z')}{(k^2 + p \cdot k \ z' + M^2/4 - m^2 - \gamma' + i\epsilon)^3}$$

Light-front projection: integration over k (LF singularities)

For the two-fermion BSE, singularities have generic form:

$$\mathcal{C}_j = \int_{-\infty}^{\infty} \frac{dk^-}{2\pi} (k^-)^j \, \mathcal{S}(k^-, \mathbf{v}, \mathbf{z}, \mathbf{z}', \gamma, \gamma') \qquad j = 1, 2, 3$$

with $\mathcal{S}(k^-, v, z, z', \gamma, \gamma')$ explicitly calculable

N.B., in the worst case

$$\mathcal{S}(k^-, v, z, z', \gamma, \gamma') \sim \frac{1}{[k^-]^2} \quad \text{for} \quad k^- \to \infty$$

End-point singularities: T.M. Yan , Phys. Rev. D 7, 1780 (1973)

$$\mathcal{I}(\beta, y) = \int_{-\infty}^{\infty} \frac{dx}{\left[\beta x - y \mp i\epsilon\right]^2} = \pm \frac{2\pi i \,\,\delta(\beta)}{\left[-y \mp i\epsilon\right]}$$

 \rightarrow Kernel with delta's and its derivatives!

End-point singularities – more intuitive: can be treated by the pole-dislocation method de Melo et al. NPA631 (1998) 574C, PLB708 (2012) 87

Example: Scalar boson exchange

Figure 2. Nakanishi weight-functions $g_i(\gamma, z; \kappa^2)$, Eqs. 3.1 and 3.2 evaluated for the 0⁺ twofermion system with a scalar boson exchange such that $\mu/m = 0.5$ and B/m = 0.1 (the corresponding coupling is $g^2 = 52.817$ [17]). The vertex form-factor cutoff is $\Lambda/m = 2$. Left panel: $g_i(\gamma, z_0; \kappa^2)$ with $z_0 = 0.6$ and running γ/m^2 . Right panel: $g_i(\gamma_0, z; \kappa^2)$ with $\gamma_0/m^2 = 0.54$ and running z, The Nakanishi weight-functions are normalized with respect to $g_1(0, 0; \kappa^2)$. Solid line: g_1 . Dashed line: g_2 . Dotted line: g_3 . Dot-dashed line: g_4 .

de Paula, TF, Salmè, Viviani PRD 94 (2016) 071901;

PION MODEL

W. de Paula, TF, Pimentel, Salmè, Viviani, EPJC 77 (2017) 764

- Gluon effective mass ~ 500 MeV Landau Gauge LQCD [Oliveira, Bicudo, JPG 38 (2011) 045003; Duarte, Oliveira, Silva, Phys. Rev. D 94 (2016) 01450240]
- Mquark = 250 MeV [Parappilly, et al, PR D73 (2006) 054504]
- Λ/m =1, 2, 3

Ladder approximation (L): suppression of XL (non-planar diagram) for $N_c=3$

[A. Nogueira, CR Ji, Ydrefors, TF, PLB 777 (2018) 207]

Light-front amplitudes

 $(B/m = 1.35, \mu/m = 2.0, \Lambda/m = 1.0, m_q = 215 \text{ MeV})$: $f_{\pi} = 96 \text{ MeV}$

Valence distribution functions

W. de Paula, et. al, in preparation

Valence probability:

$$N_2 = \frac{1}{32\pi^2} \int_{-1}^{1} dz \int_0^\infty d\gamma \left\{ \tilde{\psi}_{val}(\gamma,\xi) \ \tilde{\psi}_{val}(\gamma,\xi) + \frac{\gamma}{M^2} \ \psi_{val;4}(\gamma,\xi) \ \psi_{val;4}(\gamma,\xi) \right\}$$

$$\begin{split} \tilde{\psi}_{val}(\gamma,z) &= -\frac{i}{M} \int_{0}^{\infty} d\gamma' \frac{g_{2}(\gamma',z)}{[\gamma+\gamma'+m^{2}z^{2}+(1-z^{2})\kappa^{2}-i\epsilon]^{2}} \\ &-\frac{i}{M} \frac{z}{2} \int_{0}^{\infty} d\gamma' \frac{g_{3}(\gamma',z)}{[\gamma+\gamma'+m^{2}z^{2}+(1-z^{2})\kappa^{2}-i\epsilon]^{2}} \\ &+\frac{i}{M^{3}} \int_{0}^{\infty} d\gamma' \frac{\partial g_{3}(\gamma',z)/\partial z}{[\gamma+\gamma'+z^{2}m^{2}+(1-z^{2})\kappa^{2}-i\epsilon]} \end{split}$$

$$\psi_{val;4}(\gamma,z) = -\frac{i}{M} \int_0^\infty d\gamma' \frac{g_4(\gamma',z)}{[\gamma+\gamma'+m^2z^2+(1-z^2)\kappa^2-i\epsilon]^2} \,.$$

Valence distribution functions: longitudinal and transverse

Preliminary result for a fermion-scalar bound system

The covariant decomposition of the BS amplitude for a $(1/2)^+$ bound system, composed by a fermion and a scalar, reads

with A. Nogueira, Salmè and Pace

$$\Phi(k,p) = \left[S_1 \phi_1(k,p) + S_2 \phi_2(k,p)\right] U(p,s)$$

with U(p,s) a Dirac spinor, $S_1(k) = 1$, $S_2(k) = k/M$, and $M^2 = p^2$

A first check: scalar coupling $\alpha^s = \lambda_F^s \lambda_S^s / (8\pi m_S)$, for $m_F = m_S$ and $\mu/\bar{m} = 0.15$, 0.50

Longitudinal light-cone distribution for a fermion in the valence component. Solid line : $B/\bar{m} = 0.1$. Dotted line: $B/\bar{m} = 0.5$. Dotted line: $B/\bar{m} = 1.0$

Transverse light-cone distribution for a fermion in the valence component.

Relativistic Three-body Bound states with contact interaction

TF, PLB 282 (1992) 409

$$\int = 2 \int \frac{d^4k}{(2\pi)^4} = + \frac{i}{[k^2 - m^2 + i\epsilon]} \frac{i}{[(p - q - k)^2 - m^2 + i\epsilon]} v(k, p).$$

$$F(M_{12}) = \begin{cases} \frac{8\pi^2}{1} \frac{1}{2y'_{M_{12}}} \log \frac{1+y'_{M_{12}}}{1-y'_{M_{12}}} - \frac{\pi}{2am}, & \text{if } M_{12}^2 < 0 \\ \frac{1}{2y'_{M_{12}}} \log \frac{1+y'_{M_{12}}}{1-y'_{M_{12}}} - \frac{\pi}{2am}, & \text{if } M_{12}^2 < 0 \\ \frac{1}{2y'_{M_{12}}} \log \frac{1+y'_{M_{12}}}{1-y'_{M_{12}}} - \frac{\pi}{2am}, & \text{if } 0 \le M_{12}^2 < 4m^2 \end{cases}$$

Euclidean space solution

Ydrefors, Alvarenga Nogueira, TF, Karmanov PLB 770 (2017)131

Wick rotation after the transformation

$$n \quad k = k' + \frac{1}{3}p, \quad q = q' + \frac{1}{3}p.$$

Faddeev-BSE in Eucl. Space vs. Truncation in the LF valence sector

10

0.0001

Direct solution in Minkowski space

Ydrefors, Alvarenga Nogueira, Karmanonv and TF; in preparation

Generalization of the technique used in the two-boson problem in ladder approximation Carbonell and Karmanov PRD90(2014) 056002

$$\begin{aligned}
\nu(q_0, q_v) &= \frac{\mathcal{F}(M_{12})}{(2\pi)^4} \int_0^\infty k_v^2 dk_v \left\{ \frac{2\pi i}{2\varepsilon_k} \left[\Pi(q_0, q_v; \varepsilon_k, k_v) v(\varepsilon_k, k_v) + \Pi(q_0, q_v; -\varepsilon_k, k_v) v(-\varepsilon_k, k_v) \right] \\
&- 2 \int_{-\infty}^0 dk_0 \left[\frac{\Pi(q_0, q_v; k_0, k_v) v(k_0, k_v) - \Pi(q_0, q_v; -\varepsilon_k, k_v) v(-\varepsilon_k, k_v)}{k_0^2 - \varepsilon_k^2} \right] \\
&- 2 \int_0^\infty dk_0 \left[\frac{\Pi(q_0, q_v; k_0, k_v) v(k_0, k_v) - \Pi(q_0, q_v; \varepsilon_k, k_v) v(\varepsilon_k, k_v)}{k_0^2 - \varepsilon_k^2} \right] \right\},
\end{aligned}$$
(9)

Conclusions and Perspectives

- A method for solving bosonic and fermionic BSE: NIR (LF singularities-fermions);
- Euclidean and Minkowski BSE for 3-bósons;

•

- Un-Wick rotation: BSE and SD promissing tool allied to Integral Representations;
- Self-energies, vertex corrections, Landau gauge, ingredients from LQCD....
- Confinement Generalized Stieljes transform and LF wave function (hint)?
- Beyond the pion, kaon, D, B, rho..., and the nucleon
- Form-Factors, PDFs, TMDs, Fragmentation Functions...

THANK YOU!

LIA/CNRS - SUBATOMIC PHYSICS: FROM THEORY TO APPLICATIONS

IPNO (Jaume Carbonell).... + Brazilian Institutions ...

Numerical method

$$g_b^{(Ld)}(\gamma, z; \kappa^2) = \sum_{\ell=0}^{N_z} \sum_{j=0}^{N_g} A_{\ell j} G_\ell(z) \mathcal{L}_j(\gamma).$$

$$G_{\ell}(z) = 4(1-z^2)\Gamma(5/2)\sqrt{\frac{(2\ell+5/2)(2\ell)!}{\pi\Gamma(2\ell+5)}}C_{2\ell}^{(5/2)}(z)$$
even Gegenbauer polynomials

$$\mathcal{L}_{j}(\gamma) = \sqrt{a} L_{j}(a\gamma) e^{-a\gamma/2}$$

Laguerre polynomials

Solution of the eigenvalue problem for g^2 for each given B

B=2m-M binding energy