Nuclear energy density functional by KIDS

0

Chang Ho Hyun Daegu University, Korea

NTSE Conference, Daejeon, Oct. 30, 2018

• KIDS EDF

Korea: 🕜 (taiji: source, beginning of the world) IBS: Panagiota Papakonstantinou, Yeunhwan Lim Daegu Univ.: Chang Ho Hyun Sungkyunkwan Univ.:Tae-Sun Park

• Application to nuclei

Panagiota Papakonstantinou (RISP/IBS, Korea) Hana Gil (Kyungpook Nat'l Univ., Korea) Yongseok Oh (Kyungpook Nat'l Univ., Korea)

Application to astrophysics
Chang-Hwan Lee (Pusan Nat'l Univ., Korea)
Kyujin Kwak (UNIST, Korea)
Young-Min Kim (UNIST, Korea)

Outline

- I. KIDS EDF
- II. Results for nuclear matter
- III. Results for nuclei
- IV. Summary

I. KIDS EDF

• Pionless EFT for the total cross section of $np \rightarrow d\gamma$ at BBN energies

Pionless EFT: Valid for $p < m_{\pi} (p \sim m_{\pi}, E_{\gamma} \sim 10 \text{ MeV})$

Y.-H. Song, S.-i. Ando, CHH, PRC 96 (2017)

- Pionless EFT for dilute neutron many-body system
 - Energy per particle of neutron gas with a pionless EFT

H.-W. Hammer, R.J.Furnstahl, NPA 678 (2000)

$$\mathcal{E}_{1} = \rho \left(g - 1\right) \frac{k_{\rm F}^{2}}{2M} \frac{2}{3\pi} k_{\rm F} a_{s} , \qquad \mathcal{E}_{2} = \rho \left(g - 1\right) \frac{k_{\rm F}^{2}}{2M} \left(k_{\rm F} a_{s}\right)^{2} \frac{4}{35\pi^{2}} \left(11 - 2\ln 2\right)$$
$$\mathcal{E}_{3} = \rho \frac{k_{\rm F}^{2}}{2M} \left[\left(g - 1\right) \frac{1}{10\pi} \left(k_{\rm F} a_{s}\right)^{2} k_{\rm F} r_{s} + \left(g + 1\right) \frac{1}{5\pi} \left(k_{\rm F} a_{p}\right)^{3} + \left(g - 1\right) \left\{ \left(0.07550 \pm 0.00003\right) + \left(g - 3\right) \left(0.05741 \pm 0.00002\right) \right\} \left(k_{\rm F} a_{s}\right)^{3} \right].$$

Energy per particle expanded in powers of $(k_F a_{s, p})$

 $a_{s,p}$: scattering length in free space (~ 20 fm ~1/(10 MeV))

• Expansion scheme in dense nuclear matter

- Momentum scale: $k_{\rm F}$ (270 MeV for saturated symmetric matter)
- $k_{\rm F}/m_{\rm \rho}$: less than 1 even at $\rho = 8\rho_0$ (because $k_{\rm F} \propto \rho^{1/3}$)
- Expand the energy density in powers of $k_{\rm F}/m_{
 m p}$

Rules

- Rule1: Expand EDF for **homogeneous matter** in powers of $k_{\rm F}$
- Rule2: Fit the parameters to the well-known nuclear matter properties
- Rule3: Keeping the parameters unchanged, apply the model to nuclei

II. Results for nuclear matter

• KIDS Ansatz

$$\mathcal{E}(\rho,\delta) = \mathcal{T}(\rho,\delta) + \sum_{i=0} c_i(\delta)\rho^{1+i/3}, \qquad \rho = \rho_n + \rho_p$$
$$c_i(\delta) = \alpha_i + \delta^2 \beta_i, \qquad \delta \equiv (\rho_n - \rho_p)/\rho$$

• Fitting

- $c_0(0), c_1(0), c_2(0): \rho_0, E/A, K_0 \text{ (assume } c_3(0) = 0)$
- $c_i(1)$: APR PNM EoS (14 data in $\rho = 0.02 0.96$ fm⁻³)

$$\chi^{2}(\delta) = \sum_{j} \exp\{-\beta \rho_{j}/\rho_{0}\} \left(\frac{\mathcal{E}(\rho_{j}) - D_{j}}{\mathcal{T}(\rho_{j})}\right)^{2}; \quad \beta \ge 0$$

• Fitting to APR PNM EoS

	c0	c0, c1	c0 - c2 (P3)	c0 - c3 (P4)	c0 - c5 (P5)
χ^2	0.071632	0.001566	0.000529	0.000138	0.000115

- Fitting improves with more terms: Natural
- Improvement saturates at P5 (5 terms for PNM)
- Double check: Fitting to QMC PNM EoS (J. Carlson et al., Rev, Mod. Phys. 87 (2015))

	P4	P5	P6
χ^2	1.5×10 ⁻⁶	1.3×10 ⁻⁶	1.3×10 ⁻⁶

• Different combination of terms: ex) Fitting with two terms

	c0, c1	c0, c2	c0,c3	c1, c2	c1, c3	c2, c3
χ^2	0.001566	0.000719	0.003220	0.010973	0.023312	0.050970

- Absence of lowest order term (c0) makes the fitting worse.
- High order terms make χ^2 larger.
- Best fitting result obtained when we increase order from the lowest order.

• Symmetry energy up to P5

- Around 0.25 fm⁻³, P3 deviates from P4 but agrees with each other to 0.6 fm⁻³.
- To 0.8 fm⁻³, P4 and P5 coincide, and behave very similar to $\rho \sim 1$ f m⁻³.

• Nuclear matter properties: P4 parameters

Dutra et al., PRC 85 (2012)

	K ₀ (MeV)	-Q ₀ (MeV)	J (MeV)	L (MeV)	K_{τ} (MeV)	$S(\rho_0/2)/J$	$3P_{PNM}/(L \rho_0)$
KIDS	240.00*	372.65	32.75	49.10	-377.06	0.667	1.03
Exp./Emp.	200-260	200-1200	30-35	40-76	-760,-372	0.57-0.86	0.90-1.10

*: Input data

Lattice chiral EFT: E .Epelbaum et al., EPJA40 (2009)

III. Results for nuclei

• Skyrme type force: reverse transformation of KIDS EDF

$$\begin{aligned} v_{i,j}(\mathbf{k},\mathbf{k}') &= (t_0 + y_0 P_{\sigma})\delta(\mathbf{r}_i - \mathbf{r}_j) + \frac{1}{6}\sum_{n=1}^3 (t_{3n} + y_{3n} P_{\sigma})\rho^{n/3}\delta(\mathbf{r}_i - \mathbf{r}_j) \\ &+ \frac{1}{2}(t_1 + y_1 P_{\sigma})[\delta(\mathbf{r}_i - \mathbf{r}_j)\mathbf{k}^2 + \mathbf{k}'^2\delta(\mathbf{r}_i - \mathbf{r}_j)] + (t_2 + y_2 P_{\sigma})\mathbf{k}' \cdot \delta(\mathbf{r}_i - \mathbf{r}_j)\mathbf{k} \\ &+ iW_0\,\mathbf{k}' \times \delta(\mathbf{r}_i - \mathbf{r}_j)\,\mathbf{k} \cdot (\boldsymbol{\sigma}_i - \boldsymbol{\sigma}_j), \end{aligned}$$

Transformation of coefficients

$$\begin{split} t_0 &= \frac{8}{3}c_0(0) \,, \quad y_0 = \frac{8}{3}c_0(0) - 4c_0(1), \\ t_{3n} &= 16c_n(0) \,, \quad y_{3n} = 16c_n(0) - 24c_n(1), \quad (n \neq 2) \\ t_{32} &= 16c_2(0) - \frac{3}{5}\left(\frac{3}{2}\pi^2\right)^{2/3}\theta_s \equiv 16c_2(0)(1-k) \\ y_{32} &= 16c_2(0) - 24c_2(1) + \frac{3}{5}(3\pi^2)^{2/3}\left(3\theta_\mu - \frac{\theta_s}{2^{2/3}}\right) \equiv [16c_2(0) - 24c_2(1)](1-k') \end{split}$$

with

k, *k*': fraction of gradient terms in the c2 term ($\rho^{2/3}$)

$$\begin{split} \theta_s \ \equiv \ 3t_1 + 5t_2 + 4y_2 &= \frac{5}{3}(3\pi^2)^{-2/3} 16c_2(0)k \\ \theta_\mu \ \equiv \ t_1 + 3t_2 - y_1 + 3y_2 &= -\frac{5}{9}(3\pi^2)^{-2/3} [16c_2(0) - 24c_2(1)]k' + \frac{\theta_s}{3 \cdot 2^{2/3}}. \end{split}$$

• Two parameter fitting

- Assume k = k'
- Equivalent to $y_1 = y_2 = 0$
- Parameters k, W_0 remaining
- Fit to E/A and R_c of
 ⁴⁰Ca, ⁴⁸Ca, ²⁰⁸Pb

• Dependence on the effective mass

- Assume non-zero to
 - y_1, y_2 values
- Fit them to produce specific values of effective mass
- Isoscalar effective

mass

$$\mu_s^{-1} \equiv (m_{\rm IS}^*/m)^{-1} = 1 + \frac{m}{8\hbar^2} \,\rho \,\theta_s.$$

Proton level scheme of 208Pb

- Dynamic property: Isoscalar giant monopole resonance
 - Sn fluffiness: ISGMR energy of Sn isotope larger than exp. by about 1 MeV

IV. Summary

- Trial to link low energy EFT to nuclear matter and structures
- Novel EDF constructed with established rules
- Minimal number of necessary terms identified
- Nuclear matter properties agree well with exp./emp. data
- Most updated data of neutron stars well reproduced
- Nuclear properties reproduced over wide range of mass number
- Effective mass controlled without altering bulk properties
- Possibility to reproduce dynamical properties of nuclei