Convergence in the ab initio symplectic no-core configuration interaction framework

Nuclear Theory in the Supercomputing Era Daejeon, South Korea Nov. 2, 2018

Collaborators

Mark Caprio

University of Notre Dame

Tomáš Dytrych

Academy of Sciences of the Czech Republic, Louisiana State University

Acknowledgements

David Rowe, University of Toronto
Chao Yang, LBNL
Pieter Maris, Iowa State University Petr Navrátil, TRIUMF
Calvin Johnson, San Diego State University Patrick Fasano, University of Notre Dame Robert Power, University College Cork (REU)

Outline

- $\mathrm{SU}(3)$ No-core shell model (SU(3)-NCSM)
- Symplectic no-core configuration interaction (SpNCCI) framework
- Convergence in SpNCCI
- Truncations by $\operatorname{Sp}(3, \mathbb{R})$ irreps

SU(3)-NCSM

$\mathrm{SU}(3)$ generators

$Q_{2 M}$	Algebraic quadrupole
$L_{1 M}$	Orbital angular momentum

$\mathrm{SU}(3)$	\supset	$\mathrm{SO}(3)$		
(λ, μ)	κ	L		
		\otimes	\supset	$\mathrm{SU}(2)$
		$\mathrm{SU}(2)$		J
		S		

SU(3) svmmetry of a configuration

- $\operatorname{SU}(3)$ coupling particles within major shells Each particle has $\operatorname{SU}(3)$ symmetry $(N, 0)$, $N=2 n+\ell$.
- SU(3) coupling successive shells
- $\operatorname{SU}(3)$ coupling protons and neutrons

SU(3)-NCSM

$\mathrm{SU}(3)$ generators

$Q_{2 M} \quad$ Algebraic quadrupole
 $L_{1 M}$ Orbital angular momentum

$\mathrm{SU}(3)$	\supset	$\mathrm{SO}(3)$		
(λ, μ)	κ	L		
		\otimes	\supset	$\mathrm{SU}(2)$
		$\mathrm{SU}(2)$		J
		S		

$(\lambda, \mu) \quad \mathrm{SU}(3)$ irrep label
$\kappa \quad \mathrm{SU}(3)$ to $\mathrm{SO}(3)$ branching multiplicity

There are many $\mathrm{SU}(3) \times \mathrm{SU}(2)$ irreps in $\mathrm{SU}(3)-\mathrm{NCSM}$ basis with the same $(\lambda, \mu) S$
$L \quad \mathrm{SO}(3)$ orbital angular momentum

密tRIUMF

$\mathrm{Sp}(3, \mathbb{R})$

$\mathrm{Sp}(3, \mathbb{R})$ generators can be grouped into ladder and $\mathrm{U}(3)$ operators

Start from a single U(3) irrep at lowest "grade" N Lowest grade irrep (LGI)

$A^{(20)}$	$\sim b^{\dagger} b^{\dagger}$		Raises N
$H^{(00)}, C^{(11)}$	$\sim b^{\dagger} b$		$\mathrm{U}(3)$ generators
$B^{(02)}$	$\sim b b$		Lowers N

Retriumf

$\mathrm{Sp}(3, \mathbb{R})$

$\mathrm{Sp}(3, \mathbb{R})$ generators can be grouped into ladder and $\mathrm{U}(3)$ operators

Start from a single U(3) irrep at lowest "grade" N Lowest grade irrep (LGI)

$A^{(20)}$	$\sim b^{\dagger} b^{\dagger}$		Raises N
$H^{(00)}, C^{(11)}$	$\sim b^{\dagger} b$		$\mathrm{U}(3)$ generators
$B^{(02)}$	$\sim b b$		Lowers N

Ladder upward in N using $A^{(20)} \quad$ No limit!

$$
\begin{aligned}
B^{(02)}|\sigma\rangle & =0 \\
\left|\psi^{(\omega}\right\rangle & \sim\left[A^{(20)} A^{(20)} \cdots A^{(20)}|\sigma\rangle\right]^{\omega} \\
& \operatorname{Sp}(3, \mathbb{R}) \underset{v}{\supset} \underset{\omega}{\mathrm{U}(3)} \underset{\omega}{\mathrm{U}(3)} \sim \underset{N_{\omega}}{\mathrm{U}(1)} \otimes \underset{\left(\lambda_{\omega}, \mu_{\omega}\right)}{\operatorname{SU}(3)}
\end{aligned}
$$

密tRIUMF

$\mathrm{Sp}(3, \mathbb{R})$

$\mathrm{Sp}(3, \mathbb{R})$ generators can be grouped into ladder and $\mathrm{U}(3)$ operators

Start from a single U(3) irrep at lowest "grade" N Lowest grade irrep (LGI)

$A^{(20)}$	$\sim b^{\dagger} b^{\dagger}$		Raises N
$H^{(00)}, C^{(11)}$	$\sim b^{\dagger} b$		$\mathrm{U}(3)$ generators
$B^{(02)}$	$\sim b b$		Lowers N

Ladder upward in N using $A^{(20)} \quad$ No limit!

$$
\begin{aligned}
B^{(02)}|\sigma\rangle & =0 \\
\left|\psi^{(\omega}\right\rangle & \sim\left[A^{(20)} A^{(20)} \cdots A^{(20)}|\sigma\rangle\right]^{\omega} \\
& \operatorname{Sp}(3, \mathbb{R}) \underset{v}{\supset} \underset{\omega}{\mathrm{U}(3)} \underset{\omega}{\mathrm{U}(3)} \sim \underset{N_{\omega}}{\mathrm{U}(1)} \otimes \underset{\left(\lambda_{\omega}, \mu_{\omega}\right)}{\operatorname{SU}(3)}
\end{aligned}
$$

$\mathrm{Sp}(3, \mathrm{R})$ raising operator on configurations

$\mathrm{Sp}(3, \mathrm{R})$ basis states are highly correlated States are linear combinations of many different oscillator configurations

Retriumf

Symplectic many-body basis

- Reorganize many-body basis into $\mathrm{Sp}(3, \mathbb{R})$ irreps

States are linear combinations of oscillator configurations

- Select a set of symplectic irreps, e.g., keep only irreps whose LGI have $N_{\text {ex }} \leq N_{\sigma, \text { max }}$

$$
N_{\sigma, \text { max }} \text { truncation }
$$

- Within each irrep, only states with total number of excitation quanta $N_{\text {ex }} \leq N_{\text {max }}$ are included

Calculations in a symplectic basis

- Expand $\operatorname{Sp}(3, \mathbb{R})$ states in terms of $\operatorname{SU}(3)-N C S M$ states
- Diagonalize $\operatorname{Sp}(3, \mathbb{R})$ Casimir operator in $\mathrm{SU}(3)$-coupled basis (SA-NCSM)
T. Dytrych et al., J. Phys. G: Nucl. Part. Phys. 35 (2008) 123101.
T. Dytrych et al., Phys. Rev. Lett. 111 (2013) 252501.
- Expand LGI in SU(3)-coupled basis. Repeatedly apply raising operator.
F. Q. Luo, Ph.D. thesis, University of Notre Dame (2014).
- Expand matrix elements between excited states in terms of matrix elements between less excited states using operator commutators
- Reduce calculation to sum over coefficients and LGI matrix elements

```
Y. Suzuki and K. T. Hecht, Nuc. Phys. A 455 (1986) }315
    E. Reske, Ph. D. thesis, University of Michigan (1984).
```

- Recurrence relation between one-body matrix elements.

```
J. Escher and J. P. Draayer, J. Math. Phys. }39\mathrm{ (1998) }51223
```


SpNCCI framework

1. Decompose Hamiltonian in terms of fundamental relative operators $\mathcal{U}(a, b)$

$$
H=\sum \underbrace{\langle a\|H\| b\rangle}_{\text {Relative RMEs }} \mathcal{U}(a, b)
$$

A unit tensor $\mathcal{U}(a, b)$ is an operator with a single "unit" non-zero reduced matrix element defined with respect to a basis. Two- or three-body relative harmonic oscillator basis

$$
\left\langle a^{\prime}\|\mathcal{U}(a, b)\| b^{\prime}\right\rangle=\delta_{a^{\prime}, a} \delta_{b^{\prime}, b}
$$

SpNCCI framework

2. Compute the matrix elements of the unit tensors $\mathcal{U}(a, b)$ in the symplectic many-body basis

$$
\left\langle\psi_{N^{\prime}}^{\prime}\right| \mathcal{U}(a, b)\left|\psi_{N}\right\rangle=\sum_{\bar{\psi}_{\bar{N}^{\prime}}^{\prime} \bar{\psi}_{\bar{N}} c d}\left\langle\bar{\psi}_{\bar{N}}^{\prime}\right| \mathcal{U}(c, d)\left|\bar{\psi}_{\bar{N}}\right\rangle
$$

Recall : $\psi_{N} \propto A \psi_{N-2}$

$$
\begin{aligned}
\left\langle N^{\prime}\right||\mathcal{U} \| N\rangle & =\left\langle N^{\prime}\right||\mathcal{U} A \| N-2\rangle \\
& =\left\langle N^{\prime}\right||A \mathcal{U} \| N-2\rangle+\left\langle N^{\prime}\right||[\mathcal{U}, A]||N-2\rangle \\
& \left.=\left\langle N^{\prime}-2\right||\mathcal{U}||N-2\rangle+\left\langle N^{\prime}\right| \| \mathcal{U}, A\right]||N-2\rangle
\end{aligned}
$$

Express commutator in terms of other unit tensors $[\mathcal{U}, A] \propto \sum \mathcal{U}$

SpNCCI framework

1. Decompose Hamiltonian in terms of fundamental relative operators $\mathcal{U}(a, b)$

$$
H=\sum \underbrace{\langle a\|H\| b\rangle}_{\text {Relative RMEs }} \mathcal{U}(a, b)
$$

2. Compute the matrix elements of the unit tensors $\mathcal{U}(a, b)$ in the symplectic many-body basis

$$
\left\langle\psi_{N^{\prime}}^{\prime}\right| \mathcal{U}(a, b)\left|\psi_{N}\right\rangle=\sum_{\bar{\psi}_{\bar{N}^{\prime}}, \bar{\psi}_{\bar{N}} c d}\left\langle\bar{\psi}_{\bar{N}}^{\prime}\right| \mathcal{U}(c, d)\left|\bar{\psi}_{\bar{N}}\right\rangle
$$

3. Construct the Hamiltonian matrix by combing the decomposition of the Hamiltonian in terms of unit tensor with matrix elements of relative unit tensors.

$$
\left\langle\psi_{N^{\prime}}^{\prime}\right| H\left|\psi_{N}\right\rangle=\sum_{a b}\langle a||H \| b\rangle\left\langle\psi_{N^{\prime}}^{\prime}\right| \mathcal{U}(a, b)\left|\psi_{N}\right\rangle
$$

Retriumf

Symplectic many-body basis

- Reorganize many-body basis into $\mathrm{Sp}(3, \mathbb{R})$ irreps

States are linear combinations of oscillator configurations

- Select a set of symplectic irreps, e.g., keep only irreps whose LGI have $N_{\text {ex }} \leq N_{\sigma, \text { max }}$

$$
N_{\sigma, \text { max }} \text { truncation }
$$

- Within each irrep, only states with total number of excitation quanta $N_{\text {ex }} \leq N_{\text {max }}$ are included

密triumf

Convergence in the SpNCCI framework

©TRiumf

Convergence in the SpNCCI framework

©triumf

Convergence in the SpNCCI framework

©triumf

Convergence in the SpNCCI framework

Convergence in the SpNCCI framework

Convergence in the SpNCCI framework

- Results converge with respect to $N_{\text {max }}$ and $\hbar \omega$ within each $N_{\sigma, \text { max }}$ space but not necessarily to actual value
- To get convergence with respect to $\operatorname{Sp}(3, \mathbb{R})$ irreps included, we need higher $N_{\sigma, \text { max }}$
- Convergence is achieved when results do not change as more irreps are included

Retriumf

$\mathrm{Sp}(3, \mathbb{R})$ decomposition

- The ${ }^{6} \mathrm{Li}$ ground state is dominantly a single irrep $\operatorname{Sp}(3, \mathbb{R})(\approx 86 \%)$
- Only a subset of the $\operatorname{Sp}(3, \mathbb{R})$ irreps contribute at more than 0.01%
- SpNCCI basis can be further truncated by specific irreps

Trucating by $\operatorname{Sp}(3, \mathbb{R})$ irreps

Truncation by $\mathrm{Sp}(3, \mathbb{R})$ subspaces: Accumulate wavefunction amplitudes over states with same $\operatorname{Sp}(3, \mathbb{R})$ labels σS. (SA-NCSM, $\operatorname{SpNCCI})$
Keep all $\operatorname{Sp}(3, \mathbb{R})$ irreps with the same labels σS.

Truncation by $\mathbf{S p}(\mathbf{3}, \mathbb{R})$ irrep: Accumulate amplitudes over states belonging to a single $\mathrm{Sp}(3, \mathbb{R})$ irrep (SpNCCI)
Truncate within σS subspaces
May need to transform to "Hamiltonian preferred" basis

Generating the recurrence seeds LSU3Shell

Expand LGI in terms of SU(3)-NCSM basis states:

$$
\underbrace{B_{\text {intr }}^{(0,2)}|\sigma S\rangle}_{\text {Identify LGI }}=0 \quad \underbrace{N_{\mathrm{cm}}^{(0,0)}|\sigma S\rangle=0}_{\text {Ensure LGI is CMF }}
$$

- Solve for simultaneous null space
- Null vectors are center-of-mass free LGI
- Set of Null vectors are arbitrary

Apply unitary transformation to set of LGI (null vectors) to get Hamiltonian preferred LGIs

Defining Hamiltonian preferred LGI

- Do low $N_{\text {max }}$ calculation to get trial wavefunction
- Basis consists of sets states $|\gamma \sigma v \omega \kappa L S J\rangle$ with the same symmetry labels σ and S but belonging to different irreps indexed by γ.
- For each σS, regroup into matrix where rows are index by γ and columns correspond to states in each irrep.
- Do SVD decomposition to get unitary transformation for LGI null vectors.

Trucating by $\operatorname{Sp}(3, \mathbb{R})$ irreps

Truncation by $\mathrm{Sp}(3, \mathbb{R})$ subspaces: Accumulate wavefunction amplitudes over states with same $\operatorname{Sp}(3, \mathbb{R})$ labels σS. (SA-NCSM, $\operatorname{SpNCCI})$
Keep all $\operatorname{Sp}(3, \mathbb{R})$ irreps with the same labels σS.

Truncation by $\mathbf{S p}(\mathbf{3}, \mathbb{R})$ irrep: Accumulate amplitudes over states belonging to a single $\mathrm{Sp}(3, \mathbb{R})$ irrep (SpNCCI)
Truncate within σS subspaces
May need to transform to "Hamiltonian preferred" basis

密triumf

Truncations by $\operatorname{Sp}(3, \mathbb{R})$ Subspaces

Truncations by $\operatorname{Sp}(3, \mathbb{R})$ Irreps

Summary

- To obtain accurate binding energies (and other observables) it is necessary to include high $N_{\sigma, \text { ex }}$ irreps. ($N_{\sigma, \text { ex }}=10,12 \ldots$)
- Not all $\operatorname{Sp}(3, \mathbb{R})$ irreps at each $N_{\sigma, \text { ex }}$ significantly contribute
- Truncation by $\operatorname{Sp}(3, \mathbb{R})$ irreps can significantly reduce the basis size

Going Forward...

- Develop systematic truncation methods Importance truncation
- Consider alternative methods for obtaining LGI unitary transformation
- MPI parallelize spncci
- Include three-body interactions

Canada's national laboratory for particle and nuclear physics and accelerator-based science

TRIUMF: Alberta | British Columbia | Calgary | Carleton | Guelph | Manitoba | McGill | McMaster | Montréal | Northern British Columbia | Queen's | Regina | Saint Mary's | Simon Fraser | Toronto | Victoria | Western | Winnipeg | York

Follow us at TRIUMFLab

