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Outline

– SU(3) No-core shell model (SU(3)-NCSM)

– Symplectic no-core configuration interaction (SpNCCI) framework

– Convergence in SpNCCI

– Truncations by Sp(3,R) irreps



SU(3)-NCSM

SU(3) generators
Q2M Algebraic quadrupole

L1M Orbital angular momentum

SU(3) ⊃ SO(3)
(λ,µ) κ L

⊗ ⊃ SU(2)
SU(2) J

S

(λ,µ) SU(3) irrep label

κ SU(3) to SO(3) branching multiplicity

L SO(3) orbital angular momentum

SU(3) symmetry of a configuration

– SU(3) coupling particles within major shells
Each particle has SU(3) symmetry (N,0),
N = 2n + `.

– SU(3) coupling successive shells

– SU(3) coupling protons and neutrons
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SU(3) basis constructionSU(3) basis construction

Complete NCSM basis constructed by coupling the antisymmetric U(N)xU(2)⊃⊃SU(3)xSU(2) representations

obtain antisymmetric U(N)xU(2)⊃⊃SU(3)xSU(2) representations
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number of states =
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perform SU(3)xSU(2) inter-shell coupling

f®(¸ ¹)Sg

apply selection rules to winnow the model space

block-cyclic distribution of basis states over diagonal processes

each block is spanned by basis states of irrep ½(¸¹)S

·1 L1 J1
·2 L2 J2
·3 L3 J3
·4 L4 J4
·6 L6 J6
·7 L7 J7
·8 L8 J8
·9 L9 J9
·10 L10 J10
·11 L11 J11
·12 L12 J12
·13 L13 J13
·14 L14 J14
·15 L15 J15
·16 L16 J16
·17 L17 J17

f·i Li Jig

½dim [(¸ ¹)S] (¦®i)(¦½j)(¦®k)(¦½l)

(0 0)S = 0

(3 0)S = 1=2

(1 0)S = 1=2

(1 0)S1 = 1=2

T. Dytrych

There are many SU(3) × SU(2) irreps in
SU(3)-NCSM basis with the same (λ,µ)S



Sp(3,R)
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16(2,1)

A(20) ∼ b†b† Raises N

H(00),C(11) ∼ b†b U(3) generators

B(02) ∼ bb Lowers N

Sp(3,R) generators can be grouped into ladder and U(3) operators

Start from a single U(3) irrep at lowest “grade" N
Lowest grade irrep (LGI)

Ladder upward in N using A(20) No limit!

B(02) |σ〉 = 0

|ψω〉 ∼
[
A(20)A(20) · · ·A(20) |σ〉

]ω
Sp(3,R)

σ
⊃
υ

U(3)
ω

U(3)
ω
∼ U(1)

Nω
⊗SU(3)

(λω,µω)
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Sp(3,R) raising operator on configurations
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Sp(3,R) basis states are highly correlated
States are linear combinations of many different
oscillator configurations



Symplectic many-body basis
– Reorganize many-body basis into Sp(3,R) irreps

States are linear combinations of oscillator configurations

– Select a set of symplectic irreps, e.g., keep only irreps whose LGI have Nex ≤ Nσ,max
Nσ,max truncation

– Within each irrep, only states with total number of excitation quanta Nex ≤ Nmax are included

N

λ μ Nσ,ex=0

(a)

N

λ μ

Nσ,ex=2

(b)

N

λ μ

Nσ,max=2

(c)



Calculations in a symplectic basis
– Expand Sp(3,R) states in terms of SU(3)-NCSM states

– Diagonalize Sp(3,R) Casimir operator in SU(3)-coupled basis (SA-NCSM)
T. Dytrych et al., J. Phys. G: Nucl. Part. Phys. 35 (2008) 123101.
T. Dytrych et al., Phys. Rev. Lett.111 (2013) 252501.

– Expand LGI in SU(3)-coupled basis. Repeatedly apply raising operator.
F. Q. Luo, Ph.D. thesis, University of Notre Dame (2014).

– Expand matrix elements between excited states in terms of matrix elements between less
excited states using operator commutators

– Reduce calculation to sum over coefficients and LGI matrix elements
Y. Suzuki and K. T. Hecht, Nuc. Phys. A 455 (1986) 315.
E. Reske, Ph. D. thesis, University of Michigan (1984).

– Recurrence relation between one-body matrix elements.
J. Escher and J. P. Draayer, J. Math. Phys. 39 (1998) 51223.



SpNCCI framework

1. Decompose Hamiltonian in terms of fundamental relative operatorsU(a,b)

H =
∑

〈a||H||b〉︸   ︷︷   ︸
Relative RMEs

U(a,b)

A unit tensorU(a,b) is an operator with a single “unit" non-zero reduced matrix element
defined with respect to a basis. Two- or three-body relative harmonic oscillator basis

〈a′||U(a,b)||b′〉 = δa′,aδb′,b



SpNCCI framework
2. Compute the matrix elements of the unit tensorsU(a,b) in the symplectic
many-body basis

〈ψ′N′ |U(a,b)|ψN〉 =
∑

ψ̄′
N̄′
ψ̄N̄cd

〈ψ̄′N̄ |U(c,d)|ψ̄N̄〉

Recall : ψN ∝ AψN−2

Action of the lowering operator

J± |JMi =
p

(J ⌥ M)(J ± M + 1) |JM ± 1i

J� |J � Ji = 0

Irreducible representation (irrep) J

M = �J, ..., J

hN 0||U||Ni = hN 0||UA||N � 2i

= hN 0||A U||N � 2i + hN 0||[U , A]||N � 2i

= hN 0 � 2||U||N � 2i + hN 0||[U , A]||N � 2i

H =
X

ha||H||biU(a, b) (1)
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00 HO Hamiltonian
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U

N

N’



SpNCCI framework
1. Decompose Hamiltonian in terms of fundamental relative operatorsU(a,b)

H =
∑

〈a||H||b〉︸   ︷︷   ︸
Relative RMEs

U(a,b)

2. Compute the matrix elements of the unit tensorsU(a,b) in the symplectic
many-body basis

〈ψ′N′ |U(a,b)|ψN〉 =
∑

ψ̄′
N̄′
ψ̄N̄cd

〈ψ̄′N̄ |U(c,d)|ψ̄N̄〉

3. Construct the Hamiltonian matrix by combing the decomposition of the
Hamiltonian in terms of unit tensor with matrix elements of relative unit tensors.

〈ψ′N′ |H|ψN〉 =
∑
ab

〈a||H||b〉 〈ψ′N′ |U(a,b)|ψN〉



Symplectic many-body basis
– Reorganize many-body basis into Sp(3,R) irreps

States are linear combinations of oscillator configurations

– Select a set of symplectic irreps, e.g., keep only irreps whose LGI have Nex ≤ Nσ,max
Nσ,max truncation

– Within each irrep, only states with total number of excitation quanta Nex ≤ Nmax are included
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Convergence in the SpNCCI framework
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Convergence in the SpNCCI framework

– Results converge with respect to Nmax and ~ω within each Nσ,max space but
not necessarily to actual value

– To get convergence with respect to Sp(3,R) irreps included, we need higher
Nσ,max

– Convergence is achieved when results do not change as more irreps are
included



Sp(3,R) decomposition

6Li
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– The 6Li ground state is dominantly a single irrep Sp(3,R) (≈ 86%)

– Only a subset of the Sp(3,R) irreps contribute at more than 0.01%

– SpNCCI basis can be further truncated by specific irreps
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Trucating by Sp(3,R) irreps

N
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0 Nex=2Nex=4 Nex=6
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Sp(3,R)xSU(2) irrep σS

Truncation by Sp(3,R) subspaces: Accumulate wavefunction amplitudes over states
with same Sp(3,R) labels σS. (SA-NCSM, SpNCCI)
Keep all Sp(3,R) irreps with the same labels σS.

Truncation by Sp(3,R) irrep: Accumulate
amplitudes over states belonging to a single
Sp(3,R) irrep (SpNCCI)
Truncate within σS subspaces

May need to transform to “Hamiltonian
preferred" basis



Generating the recurrence seeds LSU3Shell

B(0,2)
intr |σS〉︸     ︷︷     ︸

Identify LGI

= 0 N(0,0)
cm |σS〉 = 0︸           ︷︷           ︸

Ensure LGI is CMF

labels �S, i.e., each expansion will be restricted to a given U(3) ⇥ SU(2) subspace

�S. So, the reduced matrix of B
(0,2)
intr and N

(0,0)
cm is partitioned into blocks defined by

having kets belonging to a single U(3)⇥SU(2) subspace �S. One such block is given

by 2
6666666666666666666666664

h0�S||N (0,0)
cm ||0�Si · · · h0�S||N (0,0)

cm ||⌘max�Si
...

...

h⌘max�S||N (0,0)
cm ||0�Si · · · h⌘max�S||N (0,0)

cm ||⌘max�Si

h0!S||B(0,2)
intr ||0�Si · · · h0!S||B(0,2)

intr ||⌘max�Si

h1!S||B(0,2)
intr ||0�Si · · · h1!S||B(0,2)

intr ||⌘max�Si
...

...

h⌘0max!S||B(0,2)
intr ||0�Si · · · h⌘0max!S||B(0,2)

intr ||⌘max�Si

h0!0S||B(0,2)
intr ||0�Si · · · h0!0S||B(0,2)

intr ||⌘max�Si
...

...

3
7777777777777777777777775

. (4.3)

For a null vector to be an expansion of an LGI, it cannot be connected to any !

subspace by B(0,2). Thus the matrix above will include multiple h!||B(0,2)||�i blocks,

such that all ! in the product of � ⇥ (0, 2) are present in the matrix.

Once we have constructed the reduced matrix of B
(0,2)
intr and N

(0,0)
cm , the LGI ex-

pansions are then obtained as null vectors of the reduced matrix of using a standard

null solver. The null vectors obtained from the null solver are e↵ectively random.

Any linear combination of the null vectors would provide an equally valid basis for

the null space an therefore an equally valid expansion for a set of LGIs. Whether or

not there is a linear combination which results in a “best” symplectic basis, i.e., one

which most closely matches the physical problem, is an open question.

48

Expand LGI in terms of SU(3)-NCSM basis states:

– Solve for simultaneous null space

– Null vectors are center-of-mass free LGI

– Set of Null vectors are arbitrary

Apply unitary transformation to set of
LGI (null vectors) to get Hamiltonian
preferred LGIs



Defining Hamiltonian preferred LGI
– Do low Nmax calculation to get trial wavefunction

– Basis consists of sets states |γσυωκLSJ〉 with the same symmetry labels σ and S
but belonging to different irreps indexed by γ.

– For each σS, regroup into matrix where rows are index by γ and columns
correspond to states in each irrep.

– Do SVD decomposition to get unitary transformation for LGI null vectors.


. . .

σS
. . .


−→

 υωκL
γ

︸                          ︷︷                          ︸
σS



Trucating by Sp(3,R) irreps
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Truncations by Sp(3,R) Subspaces



Truncations by Sp(3,R) Irreps



Summary

– To obtain accurate binding energies (and other observables) it is necessary to
include high Nσ,ex irreps. (Nσ,ex = 10, 12 . . . )

– Not all Sp(3,R) irreps at each Nσ,ex significantly contribute

– Truncation by Sp(3,R) irreps can significantly reduce the basis size

Going Forward. . .

– Develop systematic truncation methods Importance truncation

– Consider alternative methods for obtaining LGI unitary transformation

– MPI parallelize spncci

– Include three-body interactions
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