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History and problem setup

In 1938, Kurt Friedrichs1 considered a model Hamiltonian of the form

Hε = H0+ εV

with H0, the multiplication by the independent variable λ (a kind of the position
operator),

(H0 f )(λ ) = λ f (λ ), λ ∈ (−1,1)⊂ R, f ∈ L2(−1,1),

and V , an integral operator,

(V f )(λ ) =
∫ b

a
V (λ ,µ) f (µ)dµ,

where the kernel V (λ ,µ) is a continuous function in λ ,µ ∈ [a,b] of a Hölder
class. Furthermore, he assumed that

V (−1,µ) =V (1,µ) =V (λ ,−1) =V (λ ,1) for any λ ,µ ∈ [0,1].

Hermitian (self­adjoint) operator H0 has (absolutely) continuous spectrum that
fills the segment [−1,1]. Friedrichs studied what happens to the continuous
spectrum of H0 under the perturbation εV .

1K.Friedrichs, Über die Spectralzerlegung eines Integraloperators, Math. Ann. 115 (1938),
249–272.
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Friedrichs succeeded to prove that if ε is sufficiently small then Hε and H0 are
similar, which means that the spectrum of Hε is also continuous and fills [−1,1].

In a 1948 paper2, Friedrichs has extended this result to the case where the
unperturbed Hamiltonian H0 is the multiplication by independent variable in the
Hilbert space

H= L2(∆,h)
of square­integrable vector­valued functions

f : ∆ → h, ∥ f∥2 =
∫

∆
dλ ∥ f (λ )∥2

h,

where ∆ is a finite or infinite interval on the real axis,

∆ = (a,b), with −∞ ≤ a < b ≤+∞

and h is an auxiliary Hilbert space (finite­ or infinite­dimensional). In this case,
it is assumed that for every λ ,µ ∈ ∆ the quantity V (λ ,µ) is a bounded lin­
ear operator on h, that V (λ ,µ) = V (λ ,µ)∗, and that V is a Hölder continuous
operator­valued function of λ ,µ. This time, Friedrichs proves that, under cer­
tain additional assumptions on V (λ ,µ), for sufficiently small ε the perturbed

2K.O.Friedrichs,On the perturbation of continuous spectra, Comm. Pure Appl. Math. 1
(1948), 361­406.
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operator Hε = H0 + εV is unitarily equivalent to the unperturbed one, H0, and
thus the spectrum of Hε is absolutely continuous and fills the interval ∆.

In 1958, O.A. Ladyzhenskaya and L.D. Faddeev3 have dropped the smallness
requirement on V completely and considered the model operator

H = H0+V,

(H0 f )(λ ) = λ f (λ ), (V f )(λ ) =
∫

∆
V (λ ,µ) f (µ)dµ, (1)

f ∈L2(∆,h), ∆ = (a,b),

with NO small ε in front of V . Instead, they require compactness of the value
of V (λ ,µ) as an operator in h for any λ ,µ ∈ [a,b].

Proofs (and an extension) are given in a Faddeev’s 1964 work4: Complete
version of the scattering theory for the model under consideration. (The paper
of 1964 may be viewed as a relatively simple introduction to the methods and
ideas he used in his celebrated analysis of the three­body problem.)

3O.A. Ladyzhenskaya and L.D. Faddeev, On continuous spectrum perturbation theory, Dokl.
Akad. Nauk SSSR 120 (1958), 1187–1190.

4L.D.Faddeev, On a model of Friedrichs in the theory of perturbations of the continuous
spectrum, Trudy Mat. Inst. Steklov. 73 (1964), 292–313.
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Faddeev’s detail study of the Hamiltonian (1) is the first reason why this Hamil­
tonian is often called the Friedrichs­Faddeev model. The second reason is
related to the fact that the 1948 Friedrichs’ paper contains another important
(2× 2 block matrix) operator model that is called “simply” Friedrichs’ model.
The second model works for Feshbach resonances.

Many people used or worked on the Friedrichs/Friedrichs­Faddeev models
and their generalizations (Albeverio, Lakaev, Gadella, Pavlov, Pronko, Isozaki,
Richard,...). Source of explicitly solvable examples.

Notice that the typical two­body Schrödingrer operator may be viewed as a
particular case of the Friedrichs­Faddeev model with a = 0 and b =+∞. Simply
consider the c.m. Schrödingrer operator in the momentum (k) space and make
the variable change |k|2 → λ ; in this case the internal space is h = L2(S2), i.e.
the space of square­integrable functions on the unit sphere in R3).
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It turned out that there is a gap in study of analytical properties and structure of
the FF T ­ and S­matrices on uphysical sheets of the energy plane. We fill this
gap by using the ideas and approach from a couple of the speaker’s works5,6.

Furthermore, we will perform a complex deformation (a generalization of com­
plex scaling) of the FF Hamiltonian. Discrete spectrum of the complexly de­
formed Hamiltonian contains the “complex scaling resonances”. We show
these resonances are simultaneously the scattering matrix resonances.

With Friedrichs­Faddeev model — downgrading / great simplification of the prob­
lem in both cases...

5A. K. Motovilov, Analytic continuation of S matrix in multichannel problems, Theor. Math.
Phys. 95 (1993), 692–699.

6A. K. Motovilov, Representations for the three–body T–matrix, scattering matrices and resol­
vent in unphysical energy sheets, Math. Nachr. 187 (1997), 147–210.
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Structure of the T­ and S­matrices for the FF model on un­
physical energy sheets

First, let us recollect the description of the Friedrichs­Faddeev (FF) model. We
assume that h is an auxiliary (“internal”) Hilbert space and ∆= (a,b), an interval
on R,

−∞ ≤ a < b ≤+∞.

Hilbert space of the problem is the space of square­integrable h­valued func­
tions on ∆,

H= L2(∆,h) (consists of functions f : ∆ → h),

with scalar product

⟨ f ,g⟩=
∫ b

a
dλ ⟨ f (λ ),g(λ )⟩h.

Surely, the norm on H is given by

∥ f∥=
(∫ b

a
dλ∥ f (λ )∥2

h

)1/2

.

⟨·, ·⟩h and ∥ · ∥h denote, respectively, the scalar product and norm on h.
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Unperturbed Hamiltonian H0 is the operator of multiplication by λ

(H0 f )(λ ) = λ f (λ ), λ ∈ ∆, f ∈ H= L2(∆,h),

The perturbation (potential) V is given by the integral

(V f )(λ ) =
∫ b

a
V (λ ,µ) f (µ)dµ,

where for each λ ,µ ∈ (a,b) the value of V (λ ,µ) is a compact operator in h. We
assume V (λ ,µ) admits analytic continuation both in λ and µ into some domain
Ω ⊂ C containing ∆ (that is, we assume

V (λ ,µ) is holomorphic in both λ ,µ ∈ Ω, (a,b)⊂ Ω).

Furthermore, V (λ ,µ) = V (µ,λ )∗ for real λ ,µ ∈ ∆ (for Hermiticity of V ). In ad­
dition: V (a,µ) =V (b,µ) =V (λ ,a) =V (λ ,b) = 0 or suitable requirements on the
rate of decreasing of V (λ ,µ) as |λ |, |µ| → ∞ (in case of infinite a or/and b).

As usually, the total Hamiltonian is

H = H0+V.
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Also we use the standard notation: for z outside the corresponding spectrum,

R0(z) = (H0− z)−1, R(z) = (H − z)−1, T (z) =V −V R(z)V.

(The kernel T (λ ,µ,z) is a B(h)­valued function of λ ,µ,z.)

Recall that (for admissible z, in particular for z ̸∈ spec(H0)∪ spec(H))

R(z) = R0(z)−R0(z)T (z)R(z). (2)

Thus, the spectral problem for H is reduced to the study of the T ­matrix T (z).

From Faddeev (1964): T (λ ,µ,z) is well­behaved function of λ ,µ ∈ ∆ and z on
the complex plane C punctured at σp(H) and cut along [a,b]. T (λ ,µ,z) has
limits

T (λ ,µ,E ± i0), E ∈ ∆\σp(H)

that are (in our case) smooth in λ ,µ ∈ ∆. The scattering matrix for the pair
(H0,H) is given by

S+(E) = Ih−2πiT (E,E,E + i0), E ∈ (a,b)\σp(H).

Notice that the eigenvalue set σp(H) is finite.
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Take a look of the Lippmann­Schwinger equations

T (z) =V −V R0(z)T (z) and T (z) =V −T (z)R0(z)V

for the T ­matrix T (z):

T (λ ,µ,z) =V (λ ,µ)−
∫ b

a
dν

V (λ ,ν)T (ν ,µ,z)
ν − z

, (3)

T (λ ,µ,z) =V (λ ,µ)−
∫ b

a
dν

T (λ ,ν ,z)V (ν ,µ)
ν − z

, (4)

z ̸∈ (a,b), λ ,µ ∈ (a,b)

Clearly, (3) and (4) imply analyticity of T (λ ,µ,z) in λ ⊂ Ω and in µ ⊂ Ω, respec­
tively.

Proposition 1. One can replace (a,b) in (3) and (4) by arbitrary piecewise
smooth Jordan contour γ ⊂ Ω obtained by continuous deformation from (a,b)
provided that the end points are fixed and the point z during the transformation
is avoided.

In the following C+ = {z ∈ C | Imz > 0} (C− = {z ∈ C | Imz < 0}) denotes the
upper (lower) halfplane of C.
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In particular, Proposition 1 implies that for
γ ⊂ Ω∩C± one can equivalently write

T (λ ,µ,z) =V (λ ,µ) (5)

−
∫

γ
dν

V (λ ,ν)T (ν ,µ,z)
ν − z

,

λ ,µ ∈ Ω, z ∈ C\Ωγ,

where the set Ωγ in C confined by (and
containing) the interval [a,b] and the curve
γ.

In principle, one could allow z to enter Ωγ from above and then solve (or at
least prove the solvability of) the equation (5). In the following, if one tries to
re­establish the original integration over the interval (a,b), it will be necessary
to take the residue at the pole z. That is, the Lippmann­Schwinger equation
(5) changes its form and, hence, for z ∈ Ω∪C− the solution T ′(λ ,µ,z) is taken,
in fact, on the part Ω∪C− belonging to the unphysical sheet of the Riemann
energy surface of T .

In fact we can solve the continued equation explicitly!
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Simply start with γ = (a,b) and Imz > 0:

T (λ ,µ,z) =V (λ ,µ) (6)

−
∫ b

a
dν

V (λ ,ν)T (ν ,µ,z)
ν − z

,

λ ,µ ∈ Ω.

↖ Intermediate contour γ.

↙ Final contour γ.

After the transformation of the contour,
pulling z downstairs, and computing the
residue at ν = z:

T ′(λ ,µ,z) =V (λ ,µ)−2πi V (λ ,z)T ′(z,µ,z)−
∫ b

a
dν

V (λ ,ν)T ′(ν ,µ,z)
ν − z

, (7)

λ ,µ ∈ Ω, z ∈ Ω∩C−.

“Prime” in T ′ means that the T is already taken on the unphysical sheet Π−
sticked to the physical energy sheet along the upper rim of the cut (a,b).
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T ′(λ ,µ,z)+
∫ b

a
dν

V (λ ,ν)T ′(ν ,µ,z)
ν − z

=V (λ ,µ)−2πiV (λ ,z)T ′(z,µ,z), (8)

λ ,µ ∈ Ω, z ∈ Ω∩C−.

T ′(λ ,µ,z) is an “off­shell” object
T ′(z,µ,z) is “half­on­shell” (with respect to the first argument)

Equation (8) allows us to express the off­shell T ′ exclusively through the half­
on­shell T ′ by taking into account that, on the physical sheet,

(I +V R0(z))T (z) =V =⇒ (I +V R0(z))−1V = T (z), z ̸∈ σp(H).

Thus, (8) implies

T ′(λ ,µ,z) = T (λ ,µ,z)−2πiT (λ ,z,z)T ′(z,µ,z). (9)

Next step: T ′(z,µ,z) = T (z,µ,z)−2πiT (z,z,z)T ′(z,µ,z), which means Tell
on z ̸∈
σ(S−(z))S−(z)T ′(z,µ,z) = T (z,µ,z), that is, T ′(z,µ,z) = S−(z)−1T (z,µ,z)

where the scattering matrix S−(z), z ∈ Ω∩C− (on the physical sheet!), is given
by

S−(z) := Ih+2πiT (z,z,z). .
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Finally, from the relations obtained (write them once again),

T ′(λ ,µ,z) =T (λ ,µ,z)−2πiT (λ ,z,z)T ′(z,µ,z),
T ′(z,µ,z) =S−(z)−1T (z,µ,z),

it follows that

T ′(λ ,µ,z) = T (λ ,µ,z)−2πiT (λ ,z,z)S−(z)−1T (z,µ,z). (10)

All the entries on the r.h.s. part of (10) are taken on the physical sheet!

In a similar way we perform the continuation of T (λ ,µ,z) from the lower half­
plane C− to the part Ω∩C+ of the unphysical energy sheet Π+ attached to the
physical sheet along the lower rim of the cut (a,b).
Combined result (for both Πℓ, ℓ=±1, identified with the respective sign ±)

T (λ ,µ,z)
∣∣
z ∈ Πℓ

=
(
T (λ ,µ,z)+2πiℓT (λ ,z,z)Sℓ(z)−1T (z,µ,z)

)∣∣
z ∈ Cℓ∩Ω.

R.h.s. entries are on the physical sheet,

S±(z) = Ih∓2πiT (z,z,z).

Whether Π− and Π+ represent the same (“second”) unphysical sheet, depends
on the analytical properties of V (λ ,µ) outside Ω (if available).
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Continuation formulae for T imply for the continuation of S± the following:

S±(z)
∣∣
Π∓

= S∓(z)−1
∣∣
z ∈ C∓∩Ω.

Thus, the resonances, e.g., on the unphysical sheet Π− are nothing but zeros
of the operator­function S−(z) = Ih+2πi T (z,z,z) on the physical sheet. That is,
the points z ∈ C−∩Ω on the physical sheet where

S−(z)A = 0 for a non­zero vector A ∈ h.
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Friedrichs­Faddeev model and complex scaling

In the coordinate space, the standard
complex scaling means the replace­
ment of the original c.m. two­body
Hamiltonian

H =−∆+V̂ (r)

by the non­Hermitian operator

H(θ) =−e−2iθ∆+V̂ (eiθr),

for a non­negative θ ≤ π/2, provided the local potential V̂ (r) admits analytic
continuation to a domain of complex C3­arguments r.
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Having performed the Fourier transform and then making the change |k|2 → λ
one arrives at the complex version of the Friedrichs­Faddeev model

(H(θ) f )(λ ) = e−2iθλ f (λ )+ e−2iθ
∫ ∞

0
V (e−2iθλ ,e−2iθ µ) f (µ)dµ, (11)

f ∈ L2
(
R+,L2(S2)

)
.

The operator­valued function V (λ ,µ) (= V (λ − µ) in the case of local V̂ ) is
explicitly expressed through the Fourier transform of V̂ . For every admissible
λ ,µ ∈ C the value of V (λ ,µ) is a (compact) operator in h= L2(S2).

The Hamiltonian (11) may be immediately rewritten as the Friedrichs­Faddeev
model on a contour in the complex plane,

(Hγ f )(λ ) = λ f (λ )+
∫

γ
V (λ ,µ) f (µ)dµ, λ ∈ γ,

where
γ = e−2iθR+ := {z ∈ C | z = e−2iθx, 0 ≤ x < ∞}

and f ∈ L2
(
γ,L2(S2)

)
.
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In the two­body problem case, we assume that V (λ ,µ) is analytic in both λ and
µ on some domain Ω ⊂ C containing the positive semiaxis R+ and symmetric
with respect to R+. In addition, ∥V (λ ,µ)∥ should decrease sufficiently rapidly
as |λ | → ∞ and/or |µ| → ∞ (in order to ensure compactness of the arising
integral operators).

γ γ
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In the following we consider a family of the Friedrichs­Faddeev Hamiltonians

Hγ= H0,γ +Vγ

associated with Jordan curves γ ⊂ Ω originating in (a,b). Here Ω denotes the
holomorphy domain of V (λ ,µ) in λ and µ; Ω may not include a and/or b;(

H0,γ f
)
(λ )= λ f (λ ) and

(
Vγ f

)
(λ ) =

∫
γ
V (λ ,µ) f (µ)dµ, λ ∈ γ,

where f ∈ L2(γ,h),

L2(γ,h) =
{

f : γ → h

∣∣∣∣ ∫γ
|dλ |∥ f (λ )∥2

h < ∞
}
.

Equivalence of the complex rotation resonances and
scattering resonances in the Friedrichs­Faddeev model

From now on, for simplicity, we assume that both a and b are finite and, in
addition, V (λ ,µ) is continuous at λ = a,b and µ = a,b; a,b ∈ ∂Ω.
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As usually, we introduce the T ­matrices for the pairs (H0,γ,Hγ),

Tγ(z) =Vγ −Vγ(Hγ − z)−1Vγ, z ̸∈ σ(Hγ). (12)

For Rγ(z) = (Hγ − z)−1 we have

Rγ(z) = R0,γ(z)−R0,γ(z)Tγ(z)R0,γ(z),

where R0,γ(z) = (H0,γ − z)−1, z ̸∈ σ(H0,γ).

Notice that H0,γ has only continuous spectrum and this spectrum coincides with
the curve γ. Thus, the discrete eigenvalues of Hγ are nothing but the poles of
the operator­valued function Tγ(z).

Already from (12) one may conclude that, for any fixed z ̸∈ σ(Hγ), the kernel
Tγ(λ ,µ,z) is holomorphic in the variables λ ,µ ∈ Ω (since V is holomorphic).
Indeed, (12) means

Tγ(λ ,µ,z) =V (λ ,µ)+
∫

γ
dµ ′

∫
γ
dλ ′ V (λ ,µ ′)Rγ(µ ′,λ ′,z)V (λ ′,µ).

One may pull λ and µ anywhere in Ω. And this will be true after analytic
continuation of Rγ(µ ′,λ ′,z) in z through γ!
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Now look at the Lippmann­Schwinger equation for Tγ,

Tγ(λ ,µ,z) =V (λ ,µ)−
∫

γ
dν

V (λ ,ν)Tγ(ν ,µ,z)
ν − z

, z ̸∈ γ, λ ,µ ∈ γ. (13)

Let z lie outside the set Ωγ in C con­
fined by (and containing) the interval [a,b]
and the curve γ. Consider for such a z
the Lippmann­Shwinger equation for the
”original” T ­matrix — it is associated with
the interval (a,b):

T (λ ,µ,z) =V (λ ,µ)−
∫ b

a
dν

V (λ ,ν)T (ν ,µ,z)
ν − z

, z ̸∈ Ωγ, λ ,µ ∈ (a,b). (14)
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λ ∈ Ω, one may transform the interval [a,b] into the contour γ and obtain:

T (λ ,µ,z) =V (λ ,µ)−
∫

γ
dν

V (λ ,ν)T (ν ,µ,z)
ν − z

, z ̸∈ Ωγ, λ ,µ ∈ (a,b). (15)

Compare (13) and (15). Pull λ ,µ on γ. Uniqueness theorem for the solution to
(15) implies:

Tγ(λ ,µ,z) = T (λ ,µ,z) whenever λ ,µ ∈ γ, z ∈ Ω\Ωγ (and z ̸∈ σd(H)).

γ1

Ω12
γ2

Similarly,

Tγ1(λ ,µ,z) = Tγ2(λ ,µ,z)

whenever λ ,µ ∈ γ1 or λ ,µ ∈ γ2,
z ∈ Ω\Ω12 (and z ̸∈ σd(H)).
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Finally, by the uniqueness principle for analytic continuation, for z inside Ωγ
the kernel Tγ(λ ,µ,z) represents just the analytic continuation of T (λ ,µ, ·) to the
interior of Ωγ lying in the unphysical sheet. Hence, the poles of Tγ(z) within Ωγ
represent resonances of the original Friedrichs­Faddeev Hamiltonian on (a,b)!
(This also means that the positions of these poles do not depend on γ!)

Therefore, we have proven the following statement.

The spectrum of Hγ inside Ωγ represents the scattering­matrix resonances.
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Conclusion

• For the (analytic) Friedrichs­Faddeev model, we have derived
representations that explicitly express the T­matrix and scatter­
ing matrix un unphysical energy sheets in terms of these same
operators considered exclusively on the physical sheet.

• A resonance on a sheet Πl corresponds to a point z on the
physical sheet where the corresponding scattering matrix Sl(z)
has eigenvalue zero, that is

Sl(z)A = 0

for some non­zero A ∈ h.

• We have shown that, for the Friedrichs­Faddeev model, the
scaling/rotation resonances are exactly the scattering matrix
resonances.


