Algebraic approach to the isovector pairing problem

Feng Pan ${ }^{1,2}$, X. Ding ${ }^{1}$, K. D. Launey ${ }^{2}$ J. P. Draayer ${ }^{2}$
${ }^{1}$ Department of Physics, Liaoning Normal University, Dalian 116029, China

${ }^{2}$ Dept. of Phys. \& Astro., Louisiana State University, Baton Rouge, LA 70803-4001, USA

Table of Contents

(1) Introduction
(2) $O(5)$ in the $O_{T}(3) \otimes O_{\mathcal{N}}(2)$ basis
(3) Applications to the isovecotr pairing model

4 Extended model within the seniority-zero symmetric subspace
(5) Summary

Introduction

In the $L S T$-coupling scheme of a spherical shell model, let $\left\{a_{\omega, \sigma, \tau}^{\dagger}, a_{\omega, \sigma, \tau}\right\}$ be a set of (valence) nucleon creation and annihilation operators, where $\omega=1,2, \cdots, \Omega \equiv \sum_{l}(2 I+1)$ is the spatial indices, σ and τ are spin and isospin index, respectively. It is well known that the total number of many-particle product states \mathcal{N}_{t} provided by $\left\{\Pi_{\phi_{k}}^{\dagger}|0\rangle=\prod_{i=1}^{k} a_{\omega_{i}, \sigma_{i}, \tau_{i}}^{\dagger}|0\rangle\right\}$, where $|0\rangle$ is the (valence) nucleon vacuum state, and $\phi_{k} \equiv\left\{\omega_{1}, \sigma_{1}, \tau_{1}, \cdots, \omega_{k}, \sigma_{k}, \tau_{k}\right\}$ stands for all sub-indices involved, is given by

$$
\mathcal{N}_{t}=\sum_{k=0}^{4 \Omega} \frac{(4 \Omega)!}{k!(4 \Omega-k)!}=2^{4 \Omega}
$$

The set of operators $\left\{Q_{\phi_{k}, \phi_{k^{\prime}}^{\prime}}=\Pi_{\phi_{k}}^{\dagger} \Pi_{\phi_{k^{\prime}}^{\prime}}, 1 \leq k, k^{\prime} \leq 4 \Omega\right\}$ generates the unitary group $U\left(2^{4 \Omega}\right)$. The set of the many-particle product (Fock) states $\left\{\Pi_{\phi_{1}}^{\dagger}|0\rangle, \cdots, \Pi_{\phi_{4 \Omega}}^{\dagger}|0\rangle\right\}$ spans the fundamental irrep $[1,0, \cdots, 0]$ of $U\left(2^{4 \Omega}\right)$.

Introduction

A subset of $\left\{\Pi_{\phi_{k}}^{\dagger}, \Pi_{\phi_{k}}\right\}$ with $k=1,2$ and $H_{\phi \phi^{\prime}}=\Pi_{\phi_{1}}^{\dagger} \Pi_{\phi_{1}^{\prime}}$ generate the $O(8 \Omega+1)$ group. And $U\left(2^{4 \Omega}\right) \supset O(8 \Omega+1)$ with the branching rule $[1,0, \cdots, 0] \downarrow\left(\frac{1}{2}, \cdots, \frac{1}{2}\right)$, where $\left(\frac{1}{2}, \cdots, \frac{1}{2}\right)$ with 4Ω components to be $\frac{1}{2}$ is a spinor representation of $O(8 \Omega+1)$. The largest nontrivial subgroup of $O(8 \Omega+1)$ is $O(8 \Omega)$ generated by $\left\{\Pi_{\phi_{2}}^{\dagger}, \Pi_{\phi_{2}}, H_{\phi \phi^{\prime}}\right\}$ with the branching rule:

$$
\begin{gathered}
O(8 \Omega+1) \downarrow O(8 \Omega) \\
\left(\frac{1}{2}, \cdots, \frac{1}{2}\right) \downarrow\left(\frac{1}{2}, \cdots, \frac{1}{2}, \frac{1}{2}\right) \oplus\left(\frac{1}{2}, \cdots, \frac{1}{2},-\frac{1}{2}\right) . \\
\nearrow\left[O(8) \supset U(4) \supset S U_{S}(2) \otimes S U_{T}(2)\right] \otimes\left[O(\Omega) \supset O_{L}(3)\right] \\
O(8 \Omega) \rightarrow O_{T}(5) \otimes\left(U(2 \Omega) \supset S p(2 \Omega) \supset O_{J}(3)\right) \\
\searrow U(4 \Omega) \supset\left[U(4) \supset S U_{S}(2) \otimes S U_{T}(2)\right] \otimes\left[U(\Omega) \supset O(\Omega) \supset O_{L}(3)\right] .
\end{gathered}
$$

[M. Moshinsky and C. Quesne, PLB 29, 482 (1969);
B. R. Judd and J. P. Elliott, Topics in Atomic and Nuclear Theory, 1970;
V. K. B. Kota, J. A. Castilho Alcarás, NPA 764, 181 (2006)]
F. Pan (LNNU, Dalian, China)

Canonical and non-canonical bases of $O_{T}(5)$

The generators of $O_{T}(5)$ can be expressed by linear combinations of a set of operators $\left\{E_{i j}\right\}(1 \leq i, j \leq 4)$ satisfying

$$
\left[E_{i j}, E_{l k}\right]=\delta_{j l} E_{i k}-\delta_{i k} E_{l j}, \quad\left(E_{i j}\right)^{\dagger}=E_{j i}
$$

In the $S U_{\Lambda}(2) \otimes S U_{l}(2)$ basis, the generators of $O_{T}(5)$ may be expressed as

$$
\begin{aligned}
& \nu_{+}=E_{12}, \nu_{-}=E_{21}, \nu_{0}=\frac{1}{2}\left(E_{11}-E_{22}\right), \\
& \tau_{+}=E_{34}, \tau_{-}=E_{43}, \tau_{0}=\frac{1}{2}\left(E_{33}-E_{44}\right), \\
& U_{\frac{1}{2} \frac{1}{2}}=\sqrt{\frac{1}{2}}\left(E_{14}+E_{32}\right), U_{\frac{1}{2}-\frac{1}{2}}=\sqrt{\frac{1}{2}}\left(E_{42}-E_{13}\right), \\
& U_{-\frac{1}{2} \frac{1}{2}}=\sqrt{\frac{1}{2}}\left(E_{24}-E_{31}\right), U_{-\frac{1}{2}-\frac{1}{2}}=-\sqrt{\frac{1}{2}}\left(E_{41}+E_{23}\right) .
\end{aligned}
$$

[K. T. Hecht, NP 63, 214 (1965);
R.T. Sharp and S.C. Pieper, JMP 9, 663 (1968);
N. Kemmer, D.L. Pursey, and S.A. Williams, JMP 9, 1224 (1968),]

Canonical and non-canonical bases of $O_{T}(5)$

After a linear transformation, the generators of $O_{T}(5)$ in the $O_{T}(5) \supset O_{T}(3) \times O_{\mathcal{N}}(2)$ basis may be expressed as

$$
\begin{gathered}
A_{1}^{\dagger}=E_{12}=\nu_{+}, \quad A_{-1}^{\dagger}=E_{34}=\tau_{+}, \\
A_{1}=E_{21}=\nu_{-}, \quad A_{-1}=E_{43}=\tau_{-}, \\
A_{0}^{\dagger}=\sqrt{\frac{1}{2}}\left(E_{14}+E_{32}\right)=U_{\frac{1}{2} \frac{1}{2}}, \quad A_{0}=\sqrt{\frac{1}{2}}\left(E_{41}+E_{23}\right)=-U_{-\frac{1}{2}-\frac{1}{2}}, \\
T_{+}=E_{13}-E_{42}=-\sqrt{2} U_{\frac{1}{2}-\frac{1}{2}}, \quad T_{-}=E_{31}-E_{24}=-\sqrt{2} U_{-\frac{1}{2} \frac{1}{2}} \\
T_{0}=\frac{1}{2}\left(E_{11}-E_{22}-E_{33}+E_{44}\right)=\nu_{0}-\tau_{0}, \\
\hat{\mathcal{N}}=\frac{1}{2}\left(E_{11}-E_{22}+E_{33}-E_{44}\right)=\nu_{0}+\tau_{0},
\end{gathered}
$$

where $\left\{T_{+}, T_{-}, T_{0}\right\}$ generate the subgroup $O_{T}(3)$, and $\hat{\mathcal{N}}$ generates the $O_{\mathcal{N}}(2) . \hat{\mathcal{N}}=\frac{\hat{n}}{2}-\Omega$, where $\Omega=\sum_{j}(j+1 / 2)$, in which the sum runs over all single-particle orbits considered, and \hat{n} is the total number operator of valence nucleons. [K. T. Hecht, Nucl. Phys. 63, 214 (1965); R.P. Hemenger and K.T. Hecht, NPA 145, 468 (1970);
K. Ahmed and R.T. Sharp, JMP 11, 1112 (1970);
K. T. Hecht, NPA 493, 29 (1989)]

Basis vectors of $O_{T}(5) \supset O_{T}(3) \otimes O_{\mathcal{N}}(2)$

A basis vector of $O_{T}(5) \supset S U_{\Lambda}(2) \otimes S U_{I}(2)$ is also an eigenstate of T_{0} and $\hat{\mathcal{N}}$ with eigenvalues

$$
\begin{equation*}
M_{T}=m_{\Lambda}-m_{l}, \quad \mathcal{N}=m_{\Lambda}+m_{l} \tag{1}
\end{equation*}
$$

For a given irrep $\left(v_{1}, v_{2}\right)$ of $O(5)$, all possible basis vectors of $O(5) \supset S U_{\Lambda}(2) \otimes S U_{l}(2) \supset U_{\Lambda}(1) \otimes U_{l}(1)$ restricted by the conditions (1) form a complete set for the fixed M_{T} and \mathcal{N}. Thus, the basis vectors of $O(5) \supset O_{T}(3) \otimes O_{\mathcal{N}}(2)$ can be expanded in terms of them with the restriction on the quantum numbers

$$
m_{\Lambda}=\frac{1}{2}\left(\mathcal{N}+M_{T}\right), \quad m_{l}=\frac{1}{2}\left(\mathcal{N}-M_{T}\right)
$$

Basis vectors of $O_{T}(5) \supset O_{T}(3) \otimes O_{\mathcal{N}}(2)$

For fixed \mathcal{N} and $M_{T} \geq 0$, the following basis vectors are all possible within the $O(5)$ irrep $\left(v_{1}, v_{2}\right)$:

$$
\left|\begin{array}{c}
\left(v_{1}, v_{2}\right) \tag{2}\\
\Lambda, \\
\frac{1}{2}\left(\mathcal{N}+M_{T}\right), \\
\frac{1}{2}\left(\mathcal{N}-M_{T}\right)
\end{array}\right\rangle
$$

with the restrictions:

$$
\begin{equation*}
\frac{1}{2}\left|\mathcal{N}+M_{T}\right| \leq \Lambda \leq \frac{1}{2}\left(v_{1}+v_{2}\right), \quad \frac{1}{2}\left|\mathcal{N}-M_{T}\right| \leq I \leq \frac{1}{2}\left(v_{1}-v_{2}\right) \tag{3}
\end{equation*}
$$

Basis vectors of $O_{T}(5) \supset O_{T}(3) \otimes O_{\mathcal{N}}(2)$

Hence, the basis vectors of $O(5) \supset O_{T}(3) \otimes O_{\mathcal{N}}(2)$ may be expanded in terms of $O(5) \supset S U_{\Lambda}(2) \otimes S U_{l}(2)$ as

$$
\begin{aligned}
& \left.\left.\begin{array}{c}
\left(v_{1}, v_{2}\right) \\
\zeta=M_{T}, \mathcal{N}
\end{array}\right\rangle=\sum_{q=0}^{v_{1}-v_{2}}{\operatorname{Min}\left[v_{1}+v_{2}-q-|\mathcal{N}+T|, 2 v 2\right]}_{\sum_{p=\operatorname{Max}[0,} \sum_{\left.q-v_{1}+v_{2}+|\mathcal{N}-T|\right]}^{(\zeta)} c_{p, q} \times}^{\left.\begin{array}{c}
\left(v_{1}, v_{2}\right) \\
\Lambda=\frac{1}{2}\left(v_{1}+v_{2}-p-q\right), \quad l=\frac{1}{2}\left(v_{1}-v_{2}+p-q\right) \\
\frac{1}{2}(\mathcal{N}+T),
\end{array}\right\rangle,} \begin{array}{c}
\frac{1}{2}(\mathcal{N}-T)
\end{array}\right\rangle,
\end{aligned}
$$

which must satisfy

$$
-\sqrt{\frac{1}{2}} T_{+}\left|\begin{array}{c}
\left(v_{1}, v_{2}\right) \\
\zeta=M_{T}, \mathcal{N}
\end{array}\right\rangle=U_{\frac{1}{2}-\frac{1}{2}}\left|\begin{array}{l}
\left(v_{1}, v_{2}\right) \\
\zeta=M_{T}, \mathcal{N}
\end{array}\right\rangle=0 .
$$

Basis vectors of $O_{T}(5) \supset O_{T}(3) \otimes O_{\mathcal{N}}(2)$

which leads to the following four-term relation to determine the expansion coefficients $\left\{c_{p, q}^{(\zeta)}\right\}:$: NPA 974 (2018) 86]

$$
\begin{aligned}
& c_{p, q+1}^{(\zeta)}(-1)^{2 \mathcal{N}-2 q+2 v_{1}}\left[\frac{(1+q)\left(2 v_{1}-q+2\right)\left(v_{1}+v_{2}-q+1\right)\left(v_{1}+v_{2}-p-q+T+\mathcal{N}+1\right)\left(v_{1}-v_{2}+T-\mathcal{N}+p-q+1\right)\left(v_{1}-v_{2}-q\right)}{\left(v_{1}+v_{2}-p-q\right)\left(v_{1}-v_{2}+p-q\right)}\right]^{\frac{1}{2}} \\
& +c_{p+1, q}^{(\zeta)}(-1)^{v_{1}+v_{2}+\mathcal{N}-p-q+T}\left[\frac{(1+p)\left(2 v_{2}-p\right)\left(v_{1}+v_{2}-p+1\right)\left(v_{1}+v_{2}+T+\mathcal{N}-p-q+1\right)\left(v_{1}-v_{2}+p+2\right)\left(v_{1}-v_{2}-T+\mathcal{N}+p-q+1\right)}{\left(v_{1}+v_{2}-p-q\right)\left(v_{1}-v_{2}+p-q+2\right)}\right]^{\frac{1}{2}} \\
& +c_{p-1, q}^{(\zeta)}(-1)^{v_{1}-v_{2}+\mathcal{N}+p-q-T}\left[\frac{p\left(2 v_{2}-p+1\right)\left(v_{1}+v_{2}-p+2\right)\left(v_{1}+v_{2}-T-\mathcal{N}-p-q+1\right)\left(v_{1}-v_{2}+p+1\right)\left(v_{1}-v_{2}+T-\mathcal{N}+p-q+1\right)}{\left(v_{1}+v_{2}-p-q+2\right)\left(v_{1}-v_{2}+p-q\right)}\right]^{\frac{1}{2}} \\
& +c_{p, q-1}^{(\zeta)}\left[\frac{q\left(2 v_{1}-q+3\right)\left(v_{1}+v_{2}-q+2\right)\left(v_{1}+v_{2}-T-\mathcal{N}-p-q+1\right)\left(v_{1}-v_{2}-T+\mathcal{N}+p-q+1\right)\left(v_{1}-v_{2}-q+1\right)}{\left(v_{1}+v_{2}-p-q+2\right)\left(v_{1}-v_{2}+p-q+2\right)}\right]^{\frac{1}{2}}=0 .
\end{aligned}
$$

$$
\mathbf{P}\left(\left(v_{1}, v_{2}\right), \mathcal{N}, T\right) \mathbf{c}^{(\zeta)}=\Lambda \mathbf{c}^{(\zeta)},
$$

Basis vectors of $O_{T}(5) \supset O_{T}(3) \otimes O_{\mathcal{N}}(2)$

$$
\begin{equation*}
\mathbf{P}\left(\left(v_{1}, v_{2}\right), \mathcal{N}, T\right) \mathbf{c}^{(\zeta)}=\Lambda \mathbf{c}^{(\zeta)} \tag{4}
\end{equation*}
$$

Once the matrix $\mathbf{P}\left(\left(v_{1}, v_{2}\right), \mathcal{N}, T\right)$ is constructed, it can be verified that the number of $\Lambda=0$ solutions of Eq. (4) equals exactly to the number of rows of $\mathbf{P}\left(\left(v_{1}, v_{2}\right), \mathcal{N}, T\right)$ with all entries zero.

The eigenvectors $\mathbf{c}^{(\zeta)}$ belong to the null space of $\mathbf{P}\left(\left(v_{1}, v_{2}\right), \mathcal{N}, T\right)$.
Since there are many ways currently available to find null-space vectors of a matrix, to find solutions of Eq. (4) with $\Lambda=0$ becomes practically easy.

Non-orthogonality

The projection matrix $\mathbf{P}\left(\left(v_{1}, v_{2}\right), \mathcal{N}, T\right)$ is nonsymmetric. The basis vectors are also non-orthogonal with respect to the multiplicity label ζ.

Basis vectors of $O_{T}(5) \supset O_{T}(3) \otimes O_{\mathcal{N}}(2)$

Computing time and memory requirements.

It can be observed tat the maximal number of terms occurs in $T=\mathcal{N}=0$ case. In such extreme case, the upper bound of the number of terms involved in the expansion can be estimated by

$$
\begin{equation*}
d(\mathcal{N}=0, T=0) \leq \sum_{q=0}^{v_{1}-v_{2}} \sum_{p=\operatorname{Max}\left[0, q-v_{1}+v_{2}\right]}^{\operatorname{Min}\left[v_{1}+v_{2}-q, 2 v_{2}\right]} 1=\left(1+v_{1}-v_{2}\right)\left(2 v_{2}+1\right), \tag{5}
\end{equation*}
$$

which shows that $\operatorname{Max}[d(\mathcal{N}, T)] \leq d(\mathcal{N}=0, T=0)$ increases with v_{1} linearly and with v_{2} quadratically.

Matrix representations of $O_{T}(5) \supset O_{T}(3) \otimes O_{\mathcal{N}}(2)$

Using the Wigner-Eckart theorem, we have

$$
\begin{aligned}
\left\langle\begin{array}{l}
\left(v_{1}, v_{2}\right) \\
\zeta^{\prime} \\
T^{\prime} M_{T}^{\prime}, \mathcal{N}^{\prime}
\end{array}\right| \mathcal{A}_{\mu}^{+}\left|\begin{array}{c}
\left(v_{1}, v_{2}\right) \\
\zeta T M_{T}, \mathcal{N}
\end{array}\right\rangle & =\delta_{\mathcal{N}^{\prime}, \mathcal{N}+1}\left\langle T M_{T}, 1 \mu \mid T^{\prime} M_{T}^{\prime}\right\rangle \times \\
& \left\langle\begin{array}{c}
\left(v_{1}, v_{2}\right) \\
\zeta^{\prime} T^{\prime}, \mathcal{N}+1
\end{array}\left\|\mathcal{A}^{+}\right\| \begin{array}{c}
\left(v_{1}, v_{2}\right) \\
\zeta T, \mathcal{N}
\end{array}\right\rangle .
\end{aligned}
$$

Example

$\left\langle\begin{array}{c}\left(v_{1}, v_{2}\right) \\ \zeta^{\prime} T+1, \mathcal{N}+1\end{array}\left\|\mathcal{A}^{+}\right\| \begin{array}{l}\left(v_{1}, v_{2}\right) \\ \zeta T, \mathcal{N}\end{array}\right\rangle=-\frac{1}{2} \sum_{q, p} \tilde{c}_{p, q}^{\left(\zeta^{\prime}\right)}(\mathcal{N}+1, T+1) \times$
$\tilde{c}_{p, q}^{(\zeta)}(\mathcal{N}, T) \sqrt{\left(v_{1}+v_{2}-p-q-\mathcal{N}-T\right)\left(v_{1}+v_{2}-p-q+\mathcal{N}+T+2\right)}$.

Applications to the isovector pairing model

The isovector pairing interaction Hamiltonian may be written as

$$
\begin{equation*}
\hat{H}=\sum_{j} \epsilon_{j} n_{j}-G_{\pi} A_{+1}^{\dagger} A_{+1}-G_{\pi \nu} A_{0}^{\dagger} A_{0}-G_{\nu} A_{-1}^{\dagger} A_{-1}, \tag{6}
\end{equation*}
$$

which can be diagonalized in the $\bigotimes_{i=1}^{p} O_{i}(5)$ subspace, where p is the number of j-orbits.

The parameter rectangle of the isovector pairing Hamiltonian. $S U_{\Lambda}(2) \otimes S U_{l}(2):$ Richardson-Gaudin;
$O_{T}(3): \quad$ F. Pan, and J. P. Draayer, PRC 66, 044314 (2002);
J. Dukelsky et al, PRL 96, 072503 (2006)

Extended model within the seniority-zero symmetric subspace

Let $|\rho\rangle$ be the orthonormalized basis vectors of $O(5) \supset O_{T}(3) \otimes O_{\mathcal{N}}(2)$, $\rho \equiv\left\{\left(\omega_{1}, \omega_{2}\right) \beta \mathcal{N} T M_{T} ; \eta\right\}$, where $\left(\omega_{1}, \omega_{2}\right)=(\Omega-v / 2, t)$ is an irrep of $O(5)$ from the Kronecker product of p copies of $O(5)$ irreps

$$
\otimes_{i=1}^{p}\left(\omega_{1, i}, \omega_{2, i}\right) \text { of } O_{1}(5) \otimes \cdots \otimes O_{p}(5) \downarrow O(5)
$$

$\Omega=\sum_{i=1}^{p} \Omega_{i}=\sum_{i}\left(j_{i}+1 / 2\right), v$ is the total seniority number, t is the reduced isospin of unpaired nucleons, β is the branching-multiplicity label needed in the $O(5) \downarrow O_{T}(3) \otimes O_{\mathcal{N}}(2)$ reduction, T and M_{T} are quantum number of total isospin and that of its projection, respectively, $\mathcal{N}=\Omega-N / 2$ with N being the total number of nucleons, and η stands for a set of other quantum numbers related to the total angular momentum. $\{|\rho\rangle\}$ is a complete set of basis vectors needed in the $O(5) \supset O_{T}(3) \otimes O_{\mathcal{N}}(2)$ basis.

Extended model within the seniority-zero symmetric subspace

$$
\hat{H}_{\mathrm{SP}}=-G \sum_{\mu} A_{\mu}^{\dagger} A_{\mu}=\sum_{\rho} E^{\rho}|\rho\rangle\langle\rho|,
$$

which may be projected into the seniority-zero (symmetric) subspace:

$$
\tilde{H}_{\mathrm{SP}}=P_{v=0} \hat{H}_{\mathrm{SP}} P_{v=0}
$$

where

$$
P_{v=0}=\sum_{\mathcal{N} T M_{T}}\left|(\Omega, 0) \mathcal{N} T M_{T}\right\rangle\left\langle(\Omega, 0) \mathcal{N} T M_{T}\right|
$$

is a projection operator. The above Hamiltonian can be expressed as

$$
\begin{gathered}
\tilde{H}_{\mathrm{SP}}=\sum_{n T M_{T}} E^{(\Omega, 0) n T} \sum_{\rho_{1}, \cdots, \rho_{p}, \tilde{\rho}_{1}, \cdots, \tilde{\rho}_{p}} F_{\rho_{1}, \cdots, \rho_{p}}^{n T M_{T}} \times \\
F_{\tilde{\rho}_{1}, \cdots, \tilde{\rho}_{p}}^{n T M_{i=1}} \prod_{i=1}^{p} K_{n_{i} T_{i}}^{-1} Z_{T_{i} M_{T, i}}^{\left(n_{i} 0\right)}\left[\mathbf{A}^{\dagger}\left(j_{i}\right)\right] \prod_{i^{\prime}=1}^{p} K_{\tilde{n}_{i^{\prime}} \tilde{T}_{i^{\prime}}}^{-1} Z_{\tilde{T}_{i^{\prime}} \tilde{M}_{T, i^{\prime}}}^{\left(\tilde{n}_{i^{\prime}} 0\right)}\left[\mathbf{A}\left(j_{i^{\prime}}\right)\right] .
\end{gathered}
$$

Extended model within the seniority-zero symmetric subspace

$$
\begin{gather*}
Z_{T M_{T}}^{(n)}\left[\mathbf{A}^{\dagger}\right]=\left[\frac{\left.2^{T+M_{T}(2 T+1)!!\left(T+M_{T}\right)!\left(T-M_{T}\right)!T}\right]^{\frac{1}{2}}}{(n-T)!(n+T+1)!(2 T)!} \times\right. \\
\left(2 A_{1}^{\dagger} A_{-1}^{\dagger}-A_{0}^{\dagger 2}\right)^{\frac{n-T}{2}} \sum_{x=M_{T}[(T) / 2]}^{\left[\left(T+M_{T}\right]\right) \frac{A_{1}^{\dagger} A_{0}^{\dagger+} M_{T}-2 y_{-1}^{\dagger \dagger-M_{T}}}{2 \times\left(y-M_{T}\right)!y!\left(T+M_{T}-2 y\right)!},} \\
K_{n T}^{-1}=\left[\frac{2^{\frac{1}{2}(n-T)}(\Omega-(n+T) / 2)!(2 \Omega+1-n+T)!!}{\Omega_{i}!(2 \Omega+1)!!}\right]^{\frac{1}{2}}, \tag{7}
\end{gather*}
$$

[K. T. Hecht, NPA 493, 29 (1989)] and

$$
\begin{equation*}
F_{\rho_{1}, \cdots, \rho_{\rho}}^{n T M_{T}}\left\langle\rho_{1}, \cdots, \rho_{\rho} \mid(\Omega, 0) \mathcal{N} T M_{T}\right\rangle \tag{8}
\end{equation*}
$$

is the $O(5) \supset\left(O_{T}(3) \supset O_{T}(2)\right) \otimes O_{\mathcal{N}}(2)$ multi-coupling coefficient.

Extended model within the seniority-zero symmetric subspace

$$
\begin{aligned}
F_{\rho_{1}, \cdots, \rho_{p}}^{n T} M_{T} & =\frac{K_{n}^{-1} T}{\prod_{i=1}^{p} K_{n_{i} T_{i}}^{-1}}\left\langle\begin{array}{ccc|c}
\left(n_{1}, 0\right) & \cdots & \left(n_{p}, 0\right) & (n, 0) \\
T_{1} M_{T, 1} & \cdots & T_{p} M_{T, p} & T, M_{T}
\end{array}\right\rangle= \\
& \frac{K_{n T}^{-1}}{\prod_{i=1}^{p} K_{n_{i} T_{i}}^{-1}}\langle 0| \prod_{i=1}^{p} Z_{T_{i} M_{T, i}}^{\left(n_{i} 0\right)}\left[\mathbf{b}\left(j_{i}\right)\right] Z_{T M_{T}}^{(n 0)}\left[\mathbf{b}^{\dagger}\right]|0\rangle \\
& =\frac{K_{n T}^{-1}}{\prod_{i=1}^{p} K_{n_{i} T_{i}}^{-1}}\langle 0| \prod_{i=1}^{p} Z_{T_{i} M_{T, i}}^{\left(n_{i} 0\right)}[\mathbf{b}] Z_{T M_{T}}^{(n 0)}\left[\mathbf{b}^{\dagger}\right]|0\rangle
\end{aligned}
$$

Extended model within the seniority-zero symmetric subspace

A spherical mean-field plus the extended pairing Hamiltonian

$$
\begin{equation*}
\hat{H}_{\mathrm{ext}}=\sum_{i=1}^{p} \epsilon_{j_{i}} \hat{N}_{j_{i}}+\tilde{H}_{\mathrm{SP}} \tag{9}
\end{equation*}
$$

where $\epsilon_{j_{i}}(i=1,2, \cdots, p)$ are single-particle energies generated from any mean-field, is exactly solvable within the seniority-zero symmetric subspace, namely, with $v_{i}=0 \forall i$. The eigenstate may be written as

$$
\begin{gather*}
\left|\zeta_{n T}, \mathcal{N} T M_{T}\right\rangle=\sum_{\rho_{1}, \cdots, \rho_{p}} \frac{F_{\rho_{1}, \cdots, \rho_{p}}^{n T M_{T}}}{2 \sum_{i=1}^{p} \epsilon_{j} n_{i}-E_{n T}^{\left(\zeta_{n} T\right)}} \times \\
\left.\prod_{i^{\prime}=1}^{p} K_{n_{i^{\prime}} T_{i^{\prime}}}^{-1} Z_{\left.T_{i^{\prime}} M_{T, i^{\prime}}^{\left(n_{i}^{\prime}\right.} 0\right)} \mathbf{A}^{\dagger}\left(j_{i^{\prime}}\right)\right]|0\rangle \tag{10}
\end{gather*}
$$

Extended model within the seniority-zero symmetric subspace

The eigenvalue $E_{n T}^{\left(\zeta_{n} T\right)}$ is determined by

$$
\begin{gather*}
1-\frac{G_{\mathrm{ext}}}{2}(n(2 \Omega+3-n)-T(T+1)) \times \\
\sum_{\rho_{1}, \cdots, \rho_{\rho}} \frac{\left(F_{\rho_{1}, \cdots, \rho_{\rho}}^{n T}\right)^{2}}{2 \sum_{i=1}^{p} \epsilon_{j_{i}} n_{i}-E_{n T}^{\left(\zeta_{n} T\right)}}=0 \text { for } n \neq 0 \tag{11}
\end{gather*}
$$

and $E_{00}^{\left(\zeta_{0,0}=1\right)}=0$ for $n=0$.

Extended model within the seniority-zero symmetric subspace

Example

We use this model to estimate np-pairing contribution in even-even $N \sim Z$ nuclei suitably to be described in the $f_{5} p g_{9}$-shell outside the ${ }^{56} \mathrm{Ni}$ core with the single-particle energies given in [M. Honma et al, PRC 80, 064323 (2009)]. For even-even $N \sim Z$ nuclei, the average np-interaction energy defined as [J.-Y. Zhang, R. F. Casten, and D. S. Brenner, PLB 227,1 (1989)]:

$$
\begin{gather*}
\delta V_{\mathrm{pn}}^{\mathrm{ee}}(A=Z+N) \equiv \delta V_{\mathrm{pn}}^{\mathrm{ee}}(Z, N)= \\
\frac{1}{4}(B(Z, N)+B(Z-2, N-2)- \\
B(Z, N-2)-B(Z-2, N)), \tag{12}
\end{gather*}
$$

where $B(Z, N)$ is the binding energy of the even-even nucleus.

Extended model within the seniority-zero symmetric subspace

Example

Since ${ }^{56} \mathrm{Ni}$ is taken to be the core, the binding energy of a nucleus considered is defined as

$$
\begin{array}{r}
B\left(28+N_{\pi}, 28+N_{\nu}\right)=B(28,28)+E_{\mathrm{C}}(28,28)- \\
E_{\mathrm{C}}\left(28+N_{\pi}, 28+N_{\nu}\right)-E_{\mathrm{sym}}\left(28+N_{\pi}, 28+N_{\nu}\right)+ \\
\left(N_{\pi}+N_{\nu}\right) E_{0}-E_{\left(N_{\pi}+N_{\nu}\right) / 2}^{(1)}
\end{array}
$$

where $E_{0}=7.5 \mathrm{MeV}, E_{\mathrm{C}}(Z, N)=0.7173 \frac{Z(Z-1)}{A^{1 / 3}}\left(1-Z^{-2 / 3}\right) \mathrm{MeV}$ and

$$
E_{\mathrm{sym}}(Z, N)=\frac{29.2876}{A}|N-Z|^{2}\left(1+\frac{2-|I|}{2+|I| A}-\frac{1.4492}{A^{1 / 3}}\right) \mathrm{MeV}
$$

with $I=|N-Z| / A$. [N. Wang, M. Liu, X. Wu, PRC 81, 059902 (2010)]

Extended model within the seniority-zero symmetric subspace

Example

$\delta V_{\mathrm{pn}}^{\text {ee }}$ values (in MeV) derived from binding energies of even-even $N=Z$ and $N=Z \pm 2$ nuclei with mass number $A=60+4 k$ for $k=0,1, \cdots, 5$. [F. Pan, X. Ding, K.D. Launey, L. Dai, J.P. Draayer, PLB 780(2018) 1]

Extended model within the seniority-zero symmetric subspace

Example

Figure: The extended isovector pairing interaction strength $G_{\text {ext }}$ (in MeV) fitted by a quadratic function of the mass number A for $A=58-80$, from which we get $G_{\text {ext }}=4.262-0.1308 A+0.0013 A^{2} \mathrm{MeV}$ (solid line).

Summary

A simple and effective angular momentum projection to construct basis vectors of $O_{T}(5) \supset O_{T}(3) \otimes S O_{\mathcal{N}}(2)$ from the canonical basis vectors of $O_{T}(5) \supset S U_{\Lambda}(2) \otimes S U_{l}(2)$ is outlined.

The expansion coefficients can be obtained as components of the null-space vectors of a projection matrix, of which there are only four nonzero elements in each row.

Formulae for evaluating Matrix elements of $O_{T}(5)$ generators in the $O_{T}(5) \supset O_{T}(3) \otimes S O_{\mathcal{N}}(2)$ basis are explicitly given.

Summary

The null-space vectors are also non-orthogonal. The Gram-Schmidt orthonormalization is needed.

An extended pairing Hamiltonian that describes multi-pair interactions among isospin $T=1$ and angular momentum $J=0$ neutron-neutron, proton-proton, and neutron-proton pairs in a spherical mean field, such as the spherical shell model, is proposed based on the standard $T=1$ pairing formalism.

As an example of the application, the average neutron-proton interaction in even-even $N \sim Z$ nuclei that can be suitably described in the $f_{5} p g_{9}$ shell is estimated in the present model, with a focus on the role of np-pairing correlations.

Summary

$O_{T}(5) \supset O_{T}(3) \otimes O_{\mathcal{N}}(2)$ basis may be adopted in diagonalizing the $\mathrm{T}=1$ Hamiltonian with isospin symmetry breaking.

The new angular momentum projection method may be used to built basis vectors of the Wigner $U(4)$ group in $U(4) \supset S U_{S}(2) \otimes S U_{T}(2)$ basis by using the canonical $U(4)$ basis vectors.

