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Introduction

The binding energy per nucleons (BE/A) 

▷ LDM1 : Previous LDM parameter set 

▷ LDM2 : LDM parameter set in NNDC

▷ Exp. Data : AME2016

▪ Tendency of BE/A which is come from experimental data can be reproduced by liquid drop model

▪ Many LDMs and parameter sets are existed to explain nuclear mass

▪ LDM can’t explain shell closure (magic numbers) : Difference value between experimental data and LDM  

▷ BELDM is calculated by LDM2

▷ Exp. Data : AME2016

▷ 𝐵𝐸exp − 𝐵𝐸𝐿𝐷𝑀 /𝐴

N=126N=82N=50N=28



Introduction

Shell effects in total binding energy  

✓ W.D. Myers (1976)✓ S.G. Nilsson & I. Ragnarsson (1995)

𝐵𝐸exp − 𝐵𝐸𝐿𝐷𝑀

Occurrence of Shell effects due to shell closure (magic number)

Strutinsky’s method : Macroscopic-microscopic approach to shell effect

Shell correction method for shell effect is developed by V.M. Strutinsky

Shell effect
Theoretical shell calculation

Discrepancy
Model and Experimental



Motivation

𝐵𝐸exp − 𝐵𝐸𝐿𝐷𝑀 /𝐴 value in region of light nuclei

Theoretical difficulties for light nuclei 

✓ W.D. Myers (1976)

▪ Plateau condition in light nuclei

▪ Any other effects in nuclear structure

Microscopic researches of our group

▪ Deformed potential

▪ Weakly-bound

▪ Pairing with BCS

▪ Deformed BCS
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Z=20

Z=28
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Formalism

Main concept of Strutinsky’s method

𝐸TBE = 𝐸LDM + 𝐸osc

▪ The total binding energy (TBE) is calculated by liquid drop model part and shell correction part  

▪ A combination of macroscopic (LDM) and microscopic (SM) approaches

▪ Semi-empirical mass formula

𝐸LDM = 𝑎𝑣𝑜𝑙𝐴 − 𝑎𝑠𝑢𝑟𝑓𝐴
2/3 − 𝑎𝑠𝑦𝑚 𝑁 − 𝑍 2/2𝐴 − 𝑎𝐶𝑍

2/𝐴1/3 − 𝛿(𝐴)

𝑎𝑣𝑜𝑙 [MeV] 𝑎𝑠𝑢𝑟𝑓 [MeV] 𝑎𝑠𝑦𝑚 [MeV] 𝑎𝐶 [MeV]
𝛿 𝐴 [MeV]

even-even odd-even odd-odd

15.74063 17.61628 23.42742 0.71544 +12.59898 ∙ 𝐴−3/4 0 − 12.59898 ∙ 𝐴−3/4

The macroscopic term (𝐸LDM) : spherical Liquid Drop Model 

✓ Bethe-Weizsäcker mass formula are referred by P. Ring and P. Schuck, The Nuclear Many-Body Problem (2004)

✓ National Nuclear Data Center, Chart of Nuclides Description (http://www.nndc.bnl.gov/chart/help/index.jsp) 



Formalism

Single particle energy level with the deformed Woods-Saxon

▪ The deformed Woods-Saxon potential

𝑉𝑊𝑆 𝑟, 𝜃, 𝛽2 = −𝑉0/ 1 + exp[𝑅(𝑟, 𝜃, 𝛽2 )/𝑎]

𝑅 𝑟, 𝜃, 𝛽2 = 𝑟 − 𝑅0 1 + 𝛽2𝑌20 𝜃

▪ Total Hamiltonian for deformed Woods-Saxon

𝐻 = 𝑇 + 𝑉𝑊𝑆 + 𝑉𝑆𝑂 + 𝑉𝐶𝑜𝑢𝑙𝑜𝑚𝑏

𝑉𝑆𝑂 = −𝜆 ℏ/2𝑚𝑐 2 ∇𝑉𝑊𝑆 𝑟, 𝜃, 𝛽2 Ԧ𝜎 × Ԧ𝑝

▪ Nilsson basis for axial-symmetric potential

𝐻 𝜓𝑁,𝑛𝑧,Λ,Ω
𝜋 = 𝐸 𝜓𝑁,𝑛𝑧,Λ,Ω

𝜋

• Ω : 𝑗 projection onto symmetry-axis

• Λ : 𝑙 projection onto symmetry-axis

• Σ : spin

• Ω ≡ Λ + Σ

• 𝑁 = 𝑛⊥ + 𝑛𝑧 , 𝑛⊥ = 𝑛𝑥 + 𝑛𝑦

▪ The equilibrium deformation 𝛽eq

𝜕ℌ

𝜕𝛽
𝛽eq

=
𝜕(σ𝑖𝐻𝑖)

𝜕𝛽
𝛽eq

= 0

▪ Nilsson diagram about 24Mg nucleus



Formalism

The microscopic term : Shell correction energy (Shell oscillation energy)

▪ Shell correction energy is consisted with a discrete shell energy and a smoothed shell energy  

𝐸𝑜𝑠𝑐 = 𝐸𝑠ℎ𝑒𝑙𝑙 − ෫𝐸𝑠ℎ𝑒𝑙𝑙

▪ The discrete level density

A discrete shell energy

𝑔(𝜖) = 2
𝑖
𝛿(𝜖 − 𝜖𝑖)

▪ Nuclear mass number with the level density

𝐴 = න
−∞

𝜆

𝑔(𝜖) 𝑑𝜖

▪ Calculation of discrete shell energy

𝐸𝑠ℎ𝑒𝑙𝑙 = න
−∞

𝜆

𝜖𝑔 𝜖 𝑑𝜖 = 2 

𝑖

𝑁/2, 𝑍/2

𝜖𝑖

An Example of level density 

▪ The deformed Woods-Saxon potential, 𝛽2 = 0.0

▪ The neutron level density for 40Ca

1 s 1/2 

1 p 3/2 

1 p 1/2 

1 d 5/2 

2 s 1/2 

1 d 3/2 

1 f 7/2 

𝑔
(𝜖
)



Formalism

The smoothed shell energy for deformed Woods-Saxon potential 

▪ The smoothed level density

𝑔 𝜖 =
2

𝛾
න
−∞

+∞


𝑖
𝛿 𝜖 − 𝜖𝑖 𝑤

𝜖 − 𝜖𝑖
𝛾

𝐿𝑀
1/2 𝜖 − 𝜖𝑖

𝛾
𝑑𝜖

𝑤
𝜖 − 𝜖𝑖
𝛾

=
1

𝜋
𝑒
−

𝜖−𝜖𝑖
𝛾

2

𝐿𝑀
1/2 𝜖 − 𝜖𝑖

𝛾
= 

𝑛=0

𝑀 𝐻2𝑛
𝜖 − 𝜖𝑖
𝛾

𝐻2𝑛 0

22𝑛 ∙ 2𝑛 !

▪ Number of mass and the chemical potential ሚ𝜆

▪ Calculation of smoothed shell energy

𝐴 = න
−∞

෩𝜆

𝑔(𝜖) 𝑑𝜖

▪ A weight function : Gaussian

▪ A generalized Laguerre polynomial

ሚ𝜆 is determined by iteration procedure for 𝛾

෫𝐸𝑠ℎ𝑒𝑙𝑙 = න
−∞

෩𝜆

𝜖 𝑔 𝜖 𝑑𝜖

An Example of smoothed level density 

▪ The deformed Woods-Saxon potential, 𝛽2 = 0.0

▪ The smoothed level density for 40Ca with 𝛾

𝛾 = 0.05ℏ𝜔

𝑔
(𝜖
)

𝛾 = 0.1ℏ𝜔

𝑔
(𝜖
)

𝛾 = 0.5ℏ𝜔

𝑔
(𝜖
)

𝛾 = 1.0ℏ𝜔

𝑔
(𝜖
)

𝛾 = 1.2ℏ𝜔

𝑔
(𝜖
)



Formalism

The smoothed shell energy for deformed Woods-Saxon potential 

▪ The smoothed level density

𝑔 𝜖 =
2

𝛾
න
−∞

+∞


𝑖
𝛿 𝜖 − 𝜖𝑖 𝑤

𝜖 − 𝜖𝑖
𝛾

𝐿𝑀
1/2 𝜖 − 𝜖𝑖

𝛾
𝑑𝜖

𝑤
𝜖 − 𝜖𝑖
𝛾

=
1

𝜋
𝑒
−

𝜖−𝜖𝑖
𝛾

2

𝐿𝑀
1/2 𝜖 − 𝜖𝑖

𝛾
= 

𝑛=0

𝑀 𝐻2𝑛
𝜖 − 𝜖𝑖
𝛾

𝐻2𝑛 0

22𝑛 ∙ 2𝑛 !

▪ Plateau condition

▪ Calculation of smoothed shell energy

𝐴 = න
−∞

෩𝜆

𝑔(𝜖) 𝑑𝜖

▪ A weight function : Gaussian

▪ A generalized Laguerre polynomial

ሚ𝜆 is determined by iteration procedure for 𝛾

෫𝐸𝑠ℎ𝑒𝑙𝑙 = න
−∞

෩𝜆

𝜖 𝑔 𝜖 𝑑𝜖

𝜕 ෫𝐸𝑠ℎ𝑒𝑙𝑙
𝜕𝛾plateau

= 0 ,
𝜕𝐸𝑜𝑠𝑐

𝜕𝛾plateau
= 0

ℏ𝜔0 = 6

Plateau condition

▪ Number of mass and the chemical potential ሚ𝜆



Caculation

Calculated nuclei : 24Mg, 28Si and 32S

M=3

M=2
M=1

M=3

M=2
M=1

M=3

M=2
M=1

Plateau condition by polynomial order M

▪ Observed quadrupole deformation 𝛽2

▪ Light and stable nuclei

▪ N=Z nuclei

▪ Plateau conditions appeared in M=3 condition Fixed order M=3 in our calculations



Calculation

𝛾 ~ 0.8 and 𝛾 ~ 2.0 𝛾 ~ 0.8 and 𝛾 ~ 2.1 𝛾 ~ 0.7 and 𝛾 ~ 2.2

Calculation results of shell correction energy 𝐸osc by quadrupole deformation 

Plateau condition by quadrupole deformation parameter 𝛽2

𝛽2
𝐸2 = 0.605

𝛽2
RMF = 0.416

𝛽2
𝐸2 = 0.407

𝛽2
RMF = −0.374

𝛽2
𝐸2 = 0.313

𝛽2
RMF = 0.186

𝛽2,eq ~ 0.6

𝛽2,eq ~ 0.3𝛽2,eq ~ − 0.6

✓ 𝛽2
𝐸2 : S. Raman, et al. (2001) ✓ 𝛽2

RMF : G. A. Lalazissis, et al. (1999) 



Result

Binding energy per nucleons

▪ To consider deformation

• Improved shell oscillation energy

• Exact deformation parameter is necessary

• 𝛽4, 𝛽6 ···

▪ Weight parameter 𝛾

• 𝛾 = 2.0-2.2 is more predictable than 0.7-0.8

• 𝛾 = 2.0-2.2 relate with continuum states

▪ Discussion 

• More iterative procedure and polynomial order

▪ Next step : to add pairing effects

• 𝐸𝑡𝑜𝑡 = 𝐸LDM + 𝐸𝑠ℎ𝑒𝑙𝑙 + 𝐸nn + 𝐸pp + 𝐸np

𝛾 = 0.7-0.8 𝛾 = 2.0-2.2



Summary

Strutinsky’s method is macroscopic-macroscopic approach

Total binding energy can be explained by Strutinsky’s method

To calculate shell correction energy accurately is important

▪ Deformation for nuclear shape and considering equilibrium deformation 

▪ Plateau condition in the calculation of shell correction energy  

▪ We found more reasonable weight parameter for light nuclei (𝛾~2.0)

Future planes

▪ Improvement our Strutinsky’s method : Iterative process by 𝛾 and 𝛽

▪ Pairing effects from microscopic calculation with Deformed BCS (nn, pp, np pairing)



Introduction

Nuclear masses and binding energy (BE)

▪ Definition between nuclear mass and total binding energy (TBE) 

▪ The semi-empirical mass formula (SEMF,  Bethe-Weizsäcker formula, Liquid Drop Modle) for TBE

𝑚 𝑁, 𝑍 = 𝑁𝑀n + 𝑍𝑀H − 𝐵(𝑁, 𝑍)/𝑐2

𝐵LDM 𝑁, 𝑍 = 𝑎𝑣𝑜𝑙𝐴 − 𝑎𝑠𝑢𝑟𝑓𝐴
2/3 −

1

2
𝑎𝑠𝑦𝑚 𝑁 − 𝑍 2/𝐴 − 𝑎𝐶𝑍

2/𝐴1/3 − 𝛿(𝐴)

▪ Experimental binding energy per nucleons : 𝐵𝐸exp/𝐴 = 𝐵(𝑁, 𝑍)/𝐴

▪ Theoretical binding energy per nucleons : 𝐵𝐸LDM/𝐴 = 𝐵LDM(𝑁, 𝑍)/𝐴

𝐵(𝑁, 𝑍)/(𝑁 + 𝑍) = 𝑁𝑀𝑛 + 𝑍𝑀𝐻 −𝑚 𝑁, 𝑍 𝑐2/(𝑁 + 𝑍)

Parameter set 𝑎𝑣𝑜𝑙 [MeV] 𝑎𝑠𝑢𝑟𝑓 [MeV] 𝑎𝑠𝑦𝑚 [MeV] 𝑎𝐶 [MeV]
𝛿 𝐴 [MeV]

even-even odd-even odd-odd

P. Ring & P. Schuck (2004) 15.68 18.56 28.1 0.717 +34 ∙ 𝐴−3/4 0 −34 ∙ 𝐴−3/4

NNDC 15.74063 17.61628 23.42742 0.71544 +12.59898 ∙ 𝐴−3/4 0 − 12.59898 ∙ 𝐴−3/4

✓ Bethe-Weizsäcker mass formula are referred by P. Ring and P. Schuck, The Nuclear Many-Body Problem (2004)


