Calculation of ground-state energy for light nuclei with the Strutinsky's method

Seonghyun Kim¹

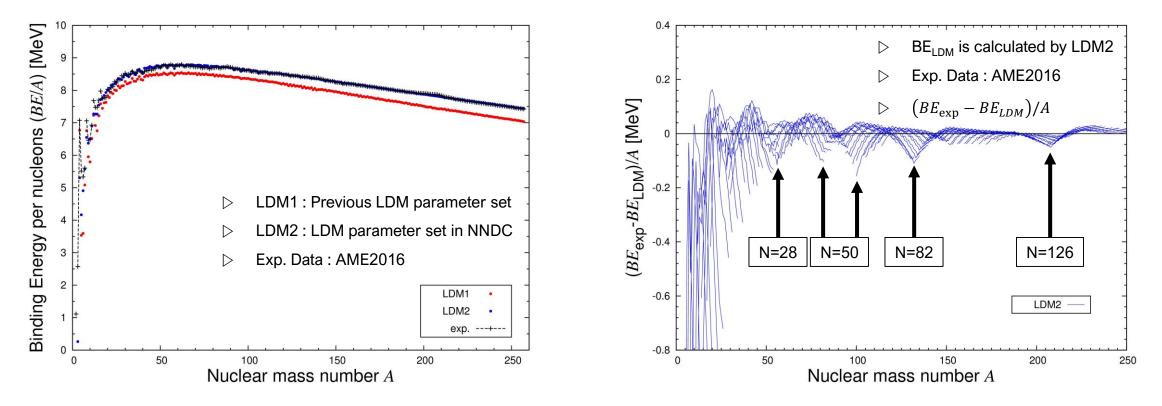
Eunja Ha², Myung-Ki Cheoun^{1,2}

¹Department of Physics, Soongsil University

²Origin of Matter and Evolution of Galaxies (OMEG) Institute, Soongsil University

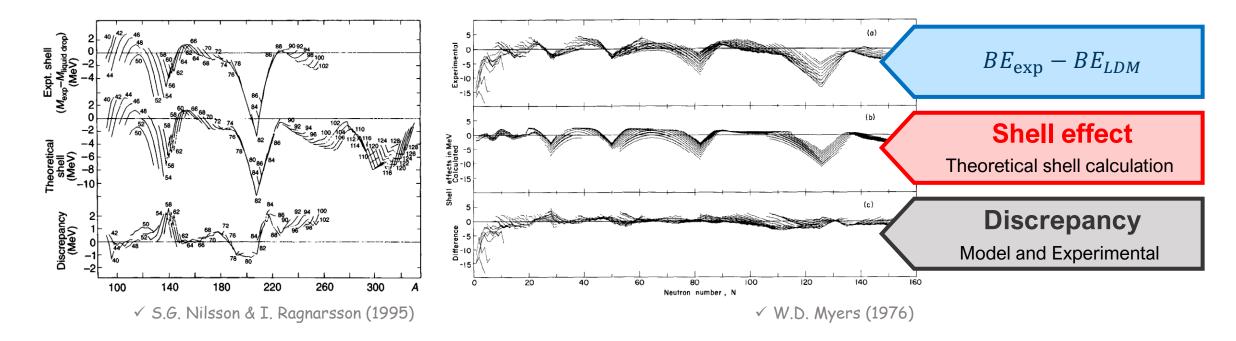
Introduction

- The binding energy per nucleons (BE/A)
 - Tendency of BE/A which is come from experimental data can be reproduced by liquid drop model
 - Many LDMs and parameter sets are existed to explain nuclear mass
 - LDM can't explain shell closure (magic numbers) : Difference value between experimental data and LDM



Introduction

Shell effects in total binding energy

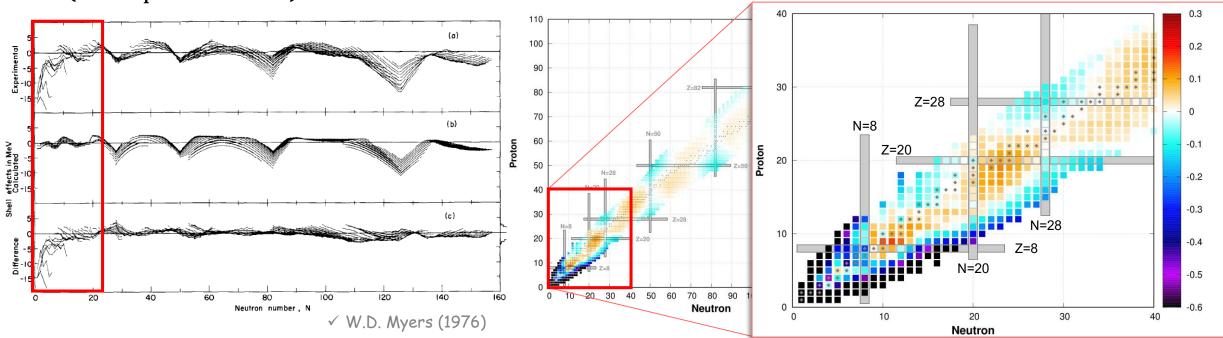


Occurrence of Shell effects due to shell closure (magic number)

- Strutinsky's method : Macroscopic-microscopic approach to shell effect
- Shell correction method for shell effect is developed by V.M. Strutinsky

Motivation

• $(BE_{exp} - BE_{LDM})/A$ value in region of light nuclei



Theoretical difficulties for light nuclei

- Plateau condition in light nuclei
- Any other effects in nuclear structure

Microscopic researches of our group

- Deformed potential
- Pairing with BCS

Weakly-bound

Deformed BCS

- Main concept of Strutinsky's method
 - A combination of macroscopic (LDM) and microscopic (SM) approaches
 - The total binding energy (TBE) is calculated by *liquid drop model* part and *shell correction* part

 $E_{\rm TBE} = E_{\rm LDM} + E_{\rm osc}$

- The macroscopic term (E_{LDM}) : spherical Liquid Drop Model
 - Semi-empirical mass formula

$$E_{\rm LDM} = a_{vol}A - a_{surf}A^{2/3} - a_{sym}(N-Z)^2/2A - a_CZ^2/A^{1/3} - \delta(A)$$

✓ Bethe-Weizsäcker mass formula are referred by P. Ring and P. Schuck, The Nuclear Many-Body Problem (2004)

a _{vol} [MeV]	a _{surf} [MeV]	a _{sym} [MeV]	a_{C} [MeV]	$\delta(A)$ [MeV]			
				even-even	odd-even	odd-odd	
15.74063	17.61628	23.42742	0.71544	$+12.59898 \cdot A^{-3/4}$	0	$-12.59898 \cdot A^{-3/4}$	

✓ National Nuclear Data Center, Chart of Nuclides Description (http://www.nndc.bnl.gov/chart/help/index.jsp)

- Single particle energy level with the deformed Woods-Saxon
 - The deformed Woods-Saxon potential $V_{WS}(r, \theta, \beta_2) = -V_0/\{1 + \exp[R(r, \theta, \beta_2)/a]\}$

 $R(r, \theta, \beta_2) = r - R_0 [1 + \beta_2 Y_{20}(\theta)]$

 $H|\psi_{N,n_{z},\Lambda,\Omega^{\pi}}\rangle = E|\psi_{N,n_{z},\Lambda,\Omega^{\pi}}\rangle$

• Nilsson basis for axial-symmetric potential

• $\Omega: j$ projection onto symmetry-axis • $\Lambda: l$ projection onto symmetry-axis • $\Sigma:$ spin • $\Omega \equiv \Lambda + \Sigma$ • $N = n_{\perp} + n_z$, $n_{\perp} = n_x + n_y$

• The equilibrium deformation β_{eq}

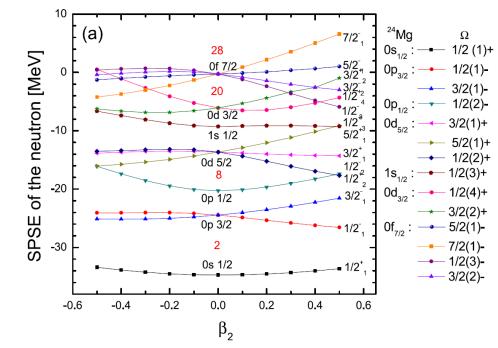
$$\left(\frac{\partial\mathfrak{H}}{\partial\beta}\right)_{\beta_{\mathrm{eq}}} = \left[\frac{\partial(\sum_{i}H_{i})}{\partial\beta}\right]_{\beta_{\mathrm{eq}}} = 0$$

Total Hamiltonian for deformed Woods-Saxon

 $H = T + V_{WS} + V_{SO} + V_{Coulomb}$

 $V_{SO} = -\lambda (\hbar/2mc)^2 [\nabla V_{WS}(r,\theta,\beta_2)] (\vec{\sigma}\times\vec{p})$

Nilsson diagram about ²⁴Mg nucleus



- The microscopic term : Shell correction energy (Shell oscillation energy)
 - Shell correction energy is consisted with a discrete shell energy and a smoothed shell energy

$$E_{osc} = E_{shell} - \widetilde{E_{shell}}$$

- A discrete shell energy
 - The discrete level density

$$g(\epsilon) = 2\sum_i \delta(\epsilon-\epsilon_i)$$

Nuclear mass number with the level density

$$A = \int_{-\infty}^{\lambda} g(\epsilon) \, d\epsilon$$

Calculation of discrete shell energy

$$E_{shell} = \int_{-\infty}^{\lambda} \epsilon g(\epsilon) d\epsilon = 2 \sum_{i}^{N/2, Z/2} \epsilon_{i}$$

- An Example of level density
 - The deformed Woods-Saxon potential, $\beta_2 = 0.0$
 - The neutron level density for ⁴⁰Ca 12 10 1 f 7/2 8 1 d 5/2 $g(\epsilon)$ 1 p 3/2 1 d 3/2 1 s 1/2 1 p 1/2 2 s 1/2 2 0 **⊢** -50 -30 Enerav level [MeV] -10 -40 0 10

- The smoothed shell energy for deformed Woods-Saxon potential
 - The smoothed level density

$$\tilde{g}(\epsilon) = \frac{2}{\gamma} \int_{-\infty}^{+\infty} \left[\sum_{i} \delta(\epsilon - \epsilon_{i}) \right] w \left(\frac{\epsilon - \epsilon_{i}}{\gamma} \right) L_{M}^{1/2} \left(\frac{\epsilon - \epsilon_{i}}{\gamma} \right) d\epsilon$$

• A weight function : Gaussian

$$w\left(\frac{\epsilon-\epsilon_i}{\gamma}\right) = \frac{1}{\sqrt{\pi}} e^{-\left(\frac{\epsilon-\epsilon_i}{\gamma}\right)^2}$$

A generalized Laguerre polynomial

$$L_M^{1/2}\left(\frac{\epsilon-\epsilon_i}{\gamma}\right) = \sum_{n=0}^M \frac{H_{2n}\left(\frac{\epsilon-\epsilon_i}{\gamma}\right)H_{2n}(0)}{2^{2n}\cdot(2n)!}$$

• Number of mass and the chemical potential $\tilde{\lambda}$

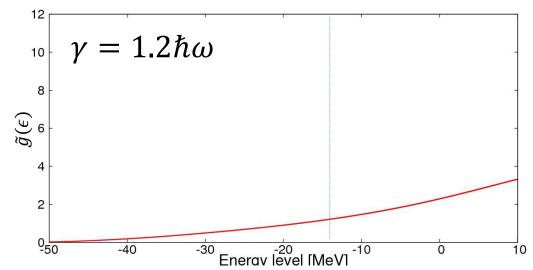
$$A = \int_{-\infty}^{\widetilde{\lambda}} \widetilde{g}(\epsilon) \, d\epsilon$$

 $\tilde{\lambda}$ is determined by iteration procedure for γ

Calculation of smoothed shell energy

$$\widetilde{E_{shell}} = \int_{-\infty}^{\widetilde{\lambda}} \epsilon \widetilde{g}(\epsilon) d\epsilon$$

- An Example of smoothed level density
 - The deformed Woods-Saxon potential, $\beta_2 = 0.0$
 - The smoothed level density for ⁴⁰Ca with γ



- The smoothed shell energy for deformed Woods-Saxon potential
 - The smoothed level density

$$\tilde{g}(\epsilon) = \frac{2}{\gamma} \int_{-\infty}^{+\infty} \left[\sum_{i} \delta(\epsilon - \epsilon_{i}) \right] w \left(\frac{\epsilon - \epsilon_{i}}{\gamma} \right) L_{M}^{1/2} \left(\frac{\epsilon - \epsilon_{i}}{\gamma} \right) d\epsilon$$

• A weight function : Gaussian

$$w\left(\frac{\epsilon-\epsilon_i}{\gamma}\right) = \frac{1}{\sqrt{\pi}} e^{-\left(\frac{\epsilon-\epsilon_i}{\gamma}\right)^2}$$

• A generalized Laguerre polynomial

$$L_M^{1/2}\left(\frac{\epsilon-\epsilon_i}{\gamma}\right) = \sum_{n=0}^M \frac{H_{2n}\left(\frac{\epsilon-\epsilon_i}{\gamma}\right)H_{2n}(0)}{2^{2n}\cdot(2n)!}$$

• Number of mass and the chemical potential $\tilde{\lambda}$

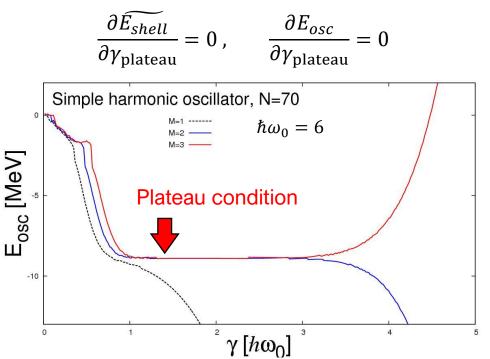
$$A = \int_{-\infty}^{\widetilde{\lambda}} \widetilde{g}(\epsilon) \, d\epsilon$$

 $\tilde{\lambda}$ is determined by iteration procedure for γ

Calculation of smoothed shell energy

$$\widetilde{E_{shell}} = \int_{-\infty}^{\widetilde{\lambda}} \epsilon \widetilde{g}(\epsilon) d\epsilon$$

Plateau condition

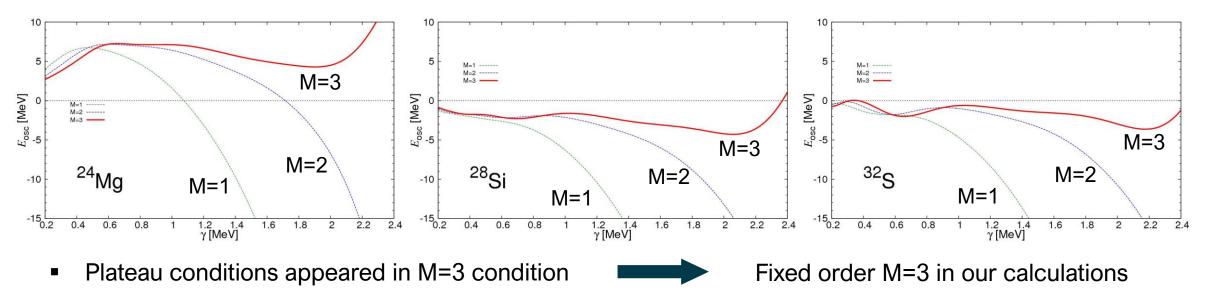


Caculation

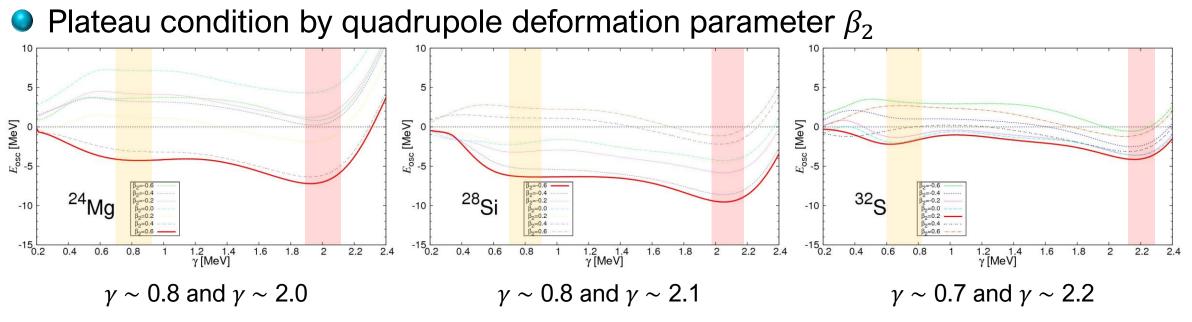
Calculated nuclei : ²⁴Mg, ²⁸Si and ³²S

- Light and stable nuclei
- Observed quadrupole deformation β_2
- N=Z nuclei

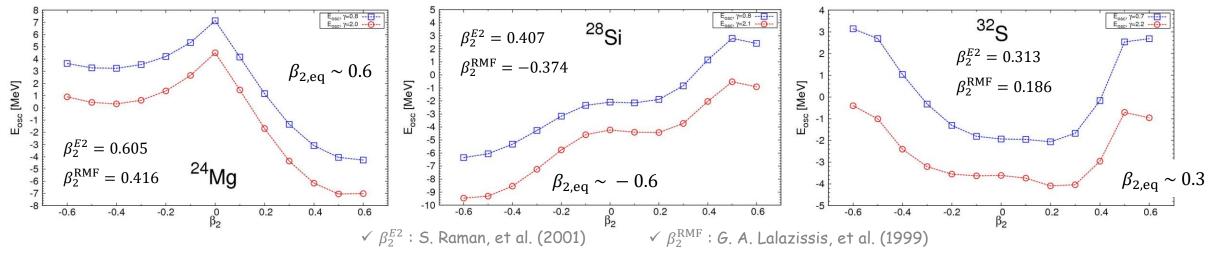
Plateau condition by polynomial order M



Calculation

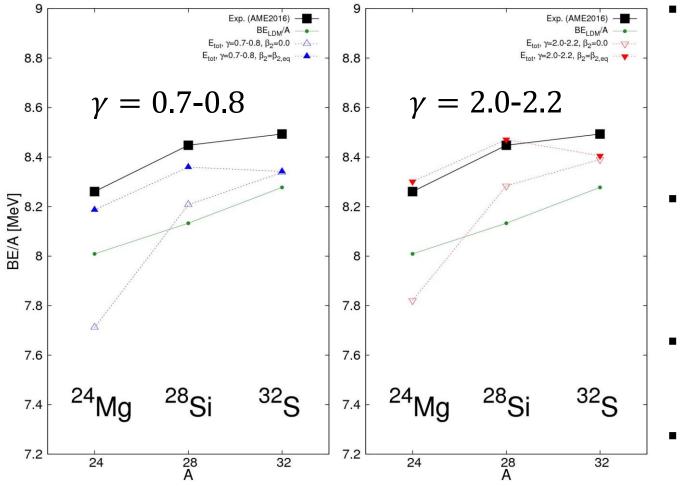


• Calculation results of shell correction energy E_{osc} by quadrupole deformation



Result

Binding energy per nucleons



- To consider deformation
 - Improved shell oscillation energy
 - Exact deformation parameter is necessary
 - $\beta_4, \beta_6 \cdots$
- Weight parameter γ
 - $\gamma = 2.0-2.2$ is more predictable than 0.7-0.8
 - $\gamma = 2.0-2.2$ relate with continuum states
- Discussion
 - More iterative procedure and polynomial order
- Next step : to add pairing effects
 - $E_{tot} = E_{LDM} + E_{shell} + E_{nn} + E_{pp} + E_{np}$

Summary

- Strutinsky's method is macroscopic-macroscopic approach
- Total binding energy can be explained by Strutinsky's method
- To calculate shell correction energy accurately is important
 - Deformation for nuclear shape and considering equilibrium deformation
 - Plateau condition in the calculation of shell correction energy
 - We found more reasonable weight parameter for light nuclei ($\gamma \sim 2.0$)
- Future planes
 - Improvement our Strutinsky's method : Iterative process by γ and β
 - Pairing effects from microscopic calculation with Deformed BCS (nn, pp, np pairing)

Introduction

Nuclear masses and binding energy (BE)

Definition between nuclear mass and total binding energy (TBE)

 $m(N,Z) = NM_{\rm n} + ZM_{\rm H} - B(N,Z)/c^2$

• Experimental binding energy per nucleons : $BE_{exp}/A = B(N,Z)/A$

 $B(N,Z)/(N+Z) = [NM_n + ZM_H - m(N,Z)]c^2/(N+Z)$

• The semi-empirical mass formula (SEMF, Bethe-Weizsäcker formula, Liquid Drop Modle) for TBE

$$B_{\rm LDM}(N,Z) = a_{vol}A - a_{surf}A^{2/3} - \frac{1}{2}a_{sym}(N-Z)^2/A - a_CZ^2/A^{1/3} - \delta(A)$$

Parameter set	a_{vol} [MeV]	a _{surf} [MeV]	a_{sym} [MeV]	a _C [MeV]	$\delta(A)$ [MeV]		
Tarameter Set					even-even	odd-even	odd-odd
P. Ring & P. Schuck (2004)	15.68	18.56	28.1	0.717	$+34 \cdot A^{-3/4}$	0	$-34 \cdot A^{-3/4}$
NNDC	15.74063	17.61628	23.42742	0.71544	$+12.59898 \cdot A^{-3/4}$	0	$-12.59898 \cdot A^{-3/4}$

✓ Bethe-Weizsäcker mass formula are referred by P. Ring and P. Schuck, The Nuclear Many-Body Problem (2004)

• Theoretical binding energy per nucleons : $BE_{LDM}/A = B_{LDM}(N,Z)/A$