Isospin-symmetry breaking correction to superallowed $0^+ \rightarrow 0^+ \beta$ -decay

N. A. Smirnova, L. Xayavong

CENBG (Université de Bordeaux – CNRS/IN2P3), France National University of Laos, Vientiane, Laos

NTSE2018, Daejeon, Rep. of Korea, Oct. 29 - Nov. 2, 2018

* CENBG

・ ロ ト ・ 同 ト ・ 回 ト ・ 回 ト

Nuclear $0^+ \rightarrow 0^+ \beta$ -decay and the Standard Model

Tests of the Standard Model symmetries

• Conserved Vector Current (CVC) hypothesis \Rightarrow vector coupling constant G_V

$${\it ft}^{0^+
ightarrow 0^+} = rac{{\it K}}{|{\it M}_{\it F}^0|^2 G_V^2}$$

 $\mathcal{K} = 2 \pi^3 \ln 2 \hbar^7 c^6 / (m_e c^2)^5$, $|M_F^0| = \sqrt{T(T+1) - T_{zi} T_{zf}}$

 ${\it ft}^{0^+ \rightarrow 0^+}$: Sherr, Gerhart, 1953; CVC : Feynman, Gell-Mann, 1958

 Unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix Cabibbo, 1963; Kobayashi, Maskawa, 1973

$$|V_{ud}| = G_V/G_F$$
, $G_F/(\hbar c)^3 = 1.1663787(6) \times 10^{-4} \text{ GeV}^{-2}$

$$\begin{pmatrix} d'\\ s'\\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\ V_{cd} & V_{cs} & V_{cb}\\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\ s\\ b \end{pmatrix}$$

V_{ud} determination and error budget

Towner, Hardy, RPP73, 2010

→ 3 → 4 3

- $0^+ \rightarrow 0^+$ (nuclear matrix element)
- neutron decay (GT/F branching ratio)
- Mirror decays between T = 1/2 (GT/F branching ratio, nuclear matrix element)
- pion decay (very weak branching ratio 10⁻⁸)

$ft^{0^+ \rightarrow 0^+}$ -values from the experiment ($Q, t_{1/2}, BR$)

14 best known T = 1 emitters ($tt^{0^+ \rightarrow 0^+}$ -value known with a precision $\leq 0.4\%$):

¹⁰C, ¹⁴O, ²²Mg, ^{26m}Al, ³⁴Cl, ³⁴Ar, ^{38m}K, ³⁸Ca, ⁴²Sc, ⁴⁶V, ⁵⁰Mn, ⁵⁴Co, ⁶²Ga, ⁷⁴Rb

J.C. Hardy, I.S. Towner, PRC91, 025501 (2015)

N. A. Smirnova, L. Xayavong Isospin-symmetry breaking correction to superallowed $0^+ \rightarrow 0^+ \beta$ -decay

Absolute Ft value

Theoretical corrections and the Ft value

$$Ft^{0^+ \to 0^+} \equiv ft^{0^+ \to 0^+} (1 + \delta'_R)(1 + \delta_{NS} - \delta_C) = \frac{K}{|M_E^0|^2 G_V^2 (1 + \Delta_R)}$$

Radiative corrections

$$egin{aligned} \Delta^V_R &= (2.361 \pm 0.038)\% \ \delta^\prime_R &\sim (1.50 \pm \sim 0.12)\% \ |\delta_{NS}| \lesssim 0.3\% \end{aligned}$$

- A. Sirlin, W.J. Marciano, R. Zucchini; W. Jaus, G. Rasche
- Nuclear-structure correction

$$|M_{F}|^{2} = |M_{F}^{0}|^{2}(1 - \delta_{C})$$
$$|M_{F}^{0}|^{2} = T(T + 1) - T_{zi}T_{zt}$$
$$\delta_{C} \approx 0.1 - 2.0\%$$

 $\delta_{\it C}$ — large ambiguities from various theoretical models

J.C. Hardy, I.S. Towner, PRC91, 025501 (2015)

Present status of δ_C from various models

- Shell Model + WS (*I.S. Towner, J.C. Hardy*)
- Shell Model + HF (W.E. Ormand, B.A. Brown)
- JT-projected DFT (W. Satula et al)

- RHF-RPA and RH-RPA (H. Liang et al)
- Damgaard Model (J. Damgaard)
- Isovector Monopole Resonance (*N. Auerbach*)

Nuclear $0^+ \rightarrow 0^+ \beta$ -decay and the Standard Model

The CVC test

To test the ability of a model to produce a mutually consistent set of *Ft* values *Towner, Hardy, PRC82 (2010)*

$$\delta_{C} = 1 + \delta_{NS} - \frac{\overline{Ft}}{ft(1 + \delta_{R}')}$$

Only SM-WS calculation of Towner, Hardy (2015) has a non-zero (17%) CL

 $\overline{Ft} = 3027.72 \pm 0.72 \,\mathrm{s}$

$|V_{ud}|$ and CKM

 $|V_{ud}| = 0.97417(21)$ $|V_{us}| = 0.2253(14) \quad (PDG14)$ $|V_{ub}| = (4.15 \pm 0.49) \times 10^{-3} \quad (PDG14)$ $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.99978(55)$

(日)

Nuclear $0^+ \rightarrow 0^+ \beta$ -decay and the Standard Model

Remarks

- Consistency with the CVC does not contrain the absolute Ft value !
- New experimental measuremants or theoretical calculations may arrive.

New calculation of Δ_R^V

 $\Delta_R^V = 0.02467(22)$

C.-Y. Seng, M. Gorchtein, H.H. Patel, M. Ramsey-Musolf, arXiv:1807.10197

(Current value: $\Delta_R^V = 0.02368(38)$ from W.J. Marciano, A. Sirlin, PRL96, 2006)

 $|V_{ud}| = 0.97366(15)$

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9985(5)$$

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Existing work within the shell model

 Shell-model + WS from I.S. Towner, J.C. Hardy (2002, 2008 with update in 2015)

Phys. Rev. C91, 025501 (2015) and refs. therein

• Shell-model + HF from W.E. Ormand, B.A. Brown (1995)

PRL62 (1989); PRC52, 2455 (1995)

The aim of the present work:

- Larger model spaces
- New effective interactions
- Revision of constraints on single-particle potentials
- WS & HF radial wave functions

Shell-model calculation of δ_C

Fermi *β*-decay matrix element

$$H|\Psi_{
ho}
angle=E_{
ho}|\Psi_{
ho}
angle\,,\quad|\Psi_{
ho}
angle=\sum_{k}c_{k
ho}|\Phi_{k}
angle$$

$$M_{F}=\sum_{lpha}\langle\Psi_{f}|a_{lpha_{n}}^{\dagger}a_{lpha_{
ho}}|\Psi_{i}
angle\langlelpha_{n}|t_{+}|lpha_{
ho}
angle$$

$$\langle \Psi_f | a_{\alpha_n}^{\dagger} a_{\alpha_p} | \Psi_i \rangle = \frac{\langle \omega_f J_f | a_{\alpha_n}^{\dagger} a_{\alpha_p} | \omega_i J_i \rangle}{\sqrt{2J_f + 1}} \equiv \rho_{\alpha}$$

$$\langle \alpha_n | t_+ | \alpha_p \rangle = \int_0^\infty R_{\alpha_n}(r) R_{\alpha_p}(r) r^2 dr \equiv \Omega_{\alpha}$$

Exact isospin operator: $n_{\alpha_n} \neq n_{\alpha_p}$ G.A. Miller, A. Schwenk, PRC78 (2008); PRC80 (2009)

A (10) A (10)

Nuclear-structure correction δ_C

Isospin-symmetry limit

$$M_F^0 = \sum_{\alpha} \rho_{\alpha}^T \Omega_{\alpha}^T = \sqrt{T(T+1) - T_{zi}T_{zf}}, \qquad \Omega_{\alpha}^T = 1$$

Realistic model (Coulomb and charge-symmetry breaking effective nuclear forces)

$$|M_F|^2 \approx |M_F^0|^2 \Big[1 - \underbrace{\frac{2}{M_F^0} \sum_{\alpha} \left(\rho_{\alpha}^T - \rho_{\alpha} \right)}_{\delta_{IM}} - \underbrace{\frac{2}{M_F^0} \sum_{\alpha} \rho_{\alpha}^T \left(1 - \Omega_{\alpha} \right)}_{\delta_{RO}} \Big],$$

$$\delta_C = \delta_{IM} + \delta_{RO}$$

- δ_{IM} is the *isospin-mixing* part
- δ_{RO} is the *radial-overlap* part

< 6 b

日本本語

²²Mg, ^{26m}Al, ²⁶Si, ³⁰S, ³⁴Cl, ³⁴Ar, ^{38m}K, ³⁸Ca, ⁴⁶V, ⁵⁰Mn, ⁵⁴Co, ⁶²Ga, ⁶⁶As

Model spaces and effective interactions (+ charge-dependence)

- sd-shell: USD (Wildenthal, 1984) and USDA/USDB (B.A.Brown, W.A. Richter, 2006)
- pf-shell: KB3G (A. Poves et al, 2004) and GXPF1A (M. Honma et al, 2004).
- pf_{5/2}g_{9/2}: JUN45 (M. Honma et al, 2009) and RG (F. Nowacki et al, 1996).

NuShellX@MSU shell-model code (W.D.M. Rae, B.A. Brown).

Isospin-symmetry breaking corrections

- δ_{IM} : isospin-nonconserving Hamiltonian
- δ_{RO} : spherical WS or HF radial wave functions

Y.H. Lam, N. S., E. Caurier, PRC87 (2013).

• We start with an isospin-symmetry invariant shell-model Hamiltonian

$$\hat{H}\Psi_{TT_z} \equiv (\hat{H}_0 + \hat{V})\Psi_{TT_z} = E_T \Psi_{TT_z}, \quad \Psi_{TT_z} = \sum_k a_{T_k} \Phi_{TT_z k}$$

Y.H. Lam, N. S., E. Caurier, PRC87 (2013).

• We start with an isospin-symmetry invariant shell-model Hamiltonian

$$\hat{H}\Psi_{TT_z} \equiv (\hat{H}_0 + \hat{V})\Psi_{TT_z} = E_T \Psi_{TT_z}, \quad \Psi_{TT_z} = \sum_k a_{T_k} \Phi_{TT_z k}$$

• We consider an isospin-symmetry non-conserving term

$$\hat{V}_{INC} = \underbrace{\lambda_{C} \hat{V}_{C}}_{Coulomb} + \underbrace{\lambda_{1} \hat{V}^{(1)}}_{CSB} + \underbrace{\lambda_{2} \hat{V}^{(2)}}_{CIB} + \underbrace{\hat{H}_{0}^{IV}}_{\sum_{\alpha} (\varepsilon_{\alpha}^{P} - \varepsilon_{\alpha}^{n})}$$

Y.H. Lam, N. S., E. Caurier, PRC87 (2013).

< ロ > < 同 > < 回 > < 回 > < 回 > <

• We start with an isospin-symmetry invariant shell-model Hamiltonian

$$\hat{H}\Psi_{TT_z} \equiv (\hat{H}_0 + \hat{V})\Psi_{TT_z} = E_T \Psi_{TT_z}, \quad \Psi_{TT_z} = \sum_k a_{T_k} \Phi_{TT_z k}$$

• We consider an isospin-symmetry non-conserving term

$$\hat{V}_{INC} = \underbrace{\lambda_{C}\hat{V}_{C}}_{Coulomb} + \underbrace{\lambda_{1}\hat{V}^{(1)}}_{CSB} + \underbrace{\lambda_{2}\hat{V}^{(2)}}_{CIB} + \underbrace{\hat{H}_{0}^{IV}}_{\sum_{\alpha}(\varepsilon_{\alpha}^{F} - \varepsilon_{\alpha}^{n})}$$

• Within perturbation theory:

$$\langle \Psi_{TT_z} | \hat{V}_{INC} | \Psi_{TT_z} \rangle = E^{(0)}(\alpha, T) + E^{(1)}(\alpha, T)T_z + E^{(2)}(\alpha, T) \left[3T_z^2 - T(T+1) \right]$$

Y.H. Lam, N. S., E. Caurier, PRC87 (2013).

イロト イヨト イヨト イヨト

• We start with an isospin-symmetry invariant shell-model Hamiltonian

$$\hat{H}\Psi_{TT_z} \equiv (\hat{H}_0 + \hat{V})\Psi_{TT_z} = E_T \Psi_{TT_z}, \quad \Psi_{TT_z} = \sum_k a_{T_k} \Phi_{TT_z k}$$

• We consider an isospin-symmetry non-conserving term

$$\hat{V}_{INC} = \underbrace{\lambda_{C}\hat{V}_{C}}_{Coulomb} + \underbrace{\lambda_{1}\hat{V}^{(1)}}_{CSB} + \underbrace{\lambda_{2}\hat{V}^{(2)}}_{CIB} + \underbrace{\hat{H}_{0}^{IV}}_{\sum_{\alpha}(\varepsilon_{\alpha}^{P} - \varepsilon_{\alpha}^{n})}$$

• Within perturbation theory:

$$\langle \Psi_{TT_z} | \hat{V}_{INC} | \Psi_{TT_z} \rangle = E^{(0)}(\alpha, T) + E^{(1)}(\alpha, T)T_z + E^{(2)}(\alpha, T) \left[3T_z^2 - T(T+1) \right]$$

Fit to experimental coefficients of the Isobaric Mass Multiplet Equation (IMME):

$$M(\alpha, T, T_z) = a(\alpha, T) + b(\alpha, T)T_z + c(\alpha, T)T_z^2,$$

Y.H. Lam, N. S., E. Caurier, PRC87 (2013).

• We start with an isospin-symmetry invariant shell-model Hamiltonian

$$\hat{H}\Psi_{TT_z} \equiv (\hat{H}_0 + \hat{V})\Psi_{TT_z} = E_T \Psi_{TT_z}, \quad \Psi_{TT_z} = \sum_k a_{T_k} \Phi_{TT_z k}$$

• We consider an isospin-symmetry non-conserving term

$$\hat{V}_{INC} = \underbrace{\lambda_{C} \hat{V}_{C}}_{Coulomb} + \underbrace{\lambda_{1} \hat{V}^{(1)}}_{CSB} + \underbrace{\lambda_{2} \hat{V}^{(2)}}_{CIB} + \underbrace{\hat{H}_{0}^{IV}}_{\sum_{\alpha} (\varepsilon_{\alpha}^{P} - \varepsilon_{\alpha}^{n})}$$

• Within perturbation theory:

$$\langle \Psi_{TT_z} | \hat{V}_{INC} | \Psi_{TT_z} \rangle = E^{(0)}(\alpha, T) + E^{(1)}(\alpha, T)T_z + E^{(2)}(\alpha, T) \left[3T_z^2 - T(T+1) \right]$$

Fit to experimental coefficients of the Isobaric Mass Multiplet Equation (IMME):

$$M(\alpha, T, T_z) = a(\alpha, T) + b(\alpha, T)T_z + c(\alpha, T)T_z^2,$$

• Diagonalization of the INC Hamiltonian $\hat{H}_{INC} = \hat{H} + \hat{V}_{INC}$

$$\hat{H}_{INC}\Psi = E\Psi$$

Y.H. Lam, N. S., E. Caurier, PRC87 (2013).

< ロ > < 同 > < 回 > < 回 > < 回 > <

b and c-coefficients in sd and pf shell

For sd-shell:

- *b* coefficients $(v_{pp} v_{nn})$; 81 data points (T = 1/2, 1, 3/2, 2); rms \approx 32 keV
- c coefficients ($v_{pp} + v_{nn} 2v_{pn}^{T=1}$); 51 data points ($T_z = 1, 3/2, 2$); rms ≈ 10 keV

Staggering of *b*-coefficients of *sd*-shell nuclei

Y. H. Lam, N. S., E.Caurier, PRC87, 2013

э.

$$\delta_{IM} \sim \frac{\langle 0_1^+ | V_{INC} | 0_2^+ \rangle^2}{\Delta E^2}$$
$$\delta_{IM} = \delta_{IM}^{th} \left(\frac{\Delta E^{th}}{\Delta E^{exp}} \right)^2$$

Strong dependence on VINC

L. Xayavong, Ph.D. thesis, U. de Bordeaux (2016)

II. Radial overlap correction

Beyond the closure approximation

Two ingredients:

• Spectroscopic amplitudes (from the shell-model):

$$\langle \Psi_f | a^{\dagger}_{\alpha_n} | \pi
angle = rac{\langle \Psi_f || a^{\dagger}_{\alpha_n} || \pi
angle}{\sqrt{2J_f + 1}}$$

• Radial-overlap integrals (from a realistic single-particle potential)

$$\Omega^{\pi}_{\alpha} = \int_0^{\infty} R^{\pi}_{\alpha_n}(r) R^{\pi}_{\alpha_p}(r) r^2 dr$$

Woods-Saxon potential

Parameterization

$$V_{WS}(r) = -V_0 f(r, r_0, a) - V_{so} \frac{1}{r} \frac{d}{dr} f(r, r_s, a_s) \vec{l} \cdot \vec{\sigma} + V_C(r)$$

- A. Bohr, B.R. Mottelson modified (BM_m) from Nuclear Structure, Vol. I.
- N. Schwierz, I. Wiedenhöver, A. Volya (SWV) from nucl-th:0709.3525

Adjustment of V₀, r₀, a

- *a* = 0.662 ± 0.010 fm
- V₀ and r₀ are adjusted to reproduce experimental nucleon separation energies and charge radii

$$\psi(r)
ightarrow \exp\left(-rac{\sqrt{2m|\epsilon|}r}{\hbar}
ight)$$

•
$$\langle r^2 \rangle_{ch} = \frac{1}{Z} \sum_{\pi \alpha} \langle \alpha | r^2 | \alpha \rangle^{\pi} | \langle \Psi_i | | a^{\dagger}_{\alpha} | | \pi \rangle |^2 + \frac{3}{2} \left(a_p^2 - b^2 / A \right)$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Convergence of M_F and δ_{RO}

• Convergence of δ_{RO} is faster than that of M_F .

• $N_{\pi} = 100.$

Sensitivity to WS potential parameters: $^{26}AI \rightarrow ^{26}Mg$

Systematic errors (from radii and a) and statistical errors (use of various interactions)

→ ∃ →

Results δ_{RO} from adjustement of V_0

- δ_{RO} increases when intermediate states are taken into account.
- Dependence of parameterization is removed.
- Uncertainty on δ_{BO} comes mainly from the experimental uncertainty on the charge radii.
- L. Xayavong, Ph.D. thesis, U. of Bordeaux (2016); L. Xayavong, N. S., PRC97 (2018).

Results δ_{RO} from adjustment of V_g

- Dependence of parameterization is observed.
- TH2002: average from the fits with V₀, V_g and V_h
- L. Xayavong, Ph.D. thesis, University of Bordeaux (2016).

N. A. Smirnova, L. Xayavong Isospin-symmetry breaking correction to superallowed $0^+ \rightarrow 0^+ \beta$ -decay

Test of the separation ansatz for $\delta_{C} = \delta_{IM} + \delta_{RO}$

$\delta_{\rm RO}$ from the shell model with Skyrme-HF wave functions

- SGII (N. Van Giai, H. Sagawa, NPA371 (1981))
- SkM* (J. Bartel et al, NPA386 (1982))
- Sly5 (P. Chabanat et al, NPA635 (1998))

Slater approximation for the Coulomb exchange term is used. Spherical HF code Lenteur (K. Bennaceur, IPN Lyon).

δ_{RO} from the shell model with Skyrme-HF wave functions

Optimization

• Energy-dependent local equivalent potential

C.B.Dover, N. Van Giai, NPA190 (1972):

$$V^{LE}(r,\epsilon_{lpha}) = V^{0}(r,\epsilon_{lpha}) + V^{so}(r) \langle ec{l} \cdot ec{s}
angle + V_{\mathcal{C}}(r)$$

for

$$R_{\alpha}(r) = \sqrt{rac{m^*(r)}{m}} R_{\alpha}^{LE}(r).$$

 Adjustment of the central term V⁰(r, ε_α) by a scaling factor to match the experimental proton and neutron separation energies

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

δ_{RO} from an adjusted HF potential

 δ_{BO} from different forces are consistent

L. Xayavong, N.S., M. Bender, K. Bennaceur, Acta Phys. Pol. B10, 285 (2017).

- Test of the Slater approximation for the exchange Coulomb term: valid
- Center-of-mass correction (two-body terms): not important
- Non-physical isospin symmetry breaking in $N \neq Z$ nuclei: negligible
- Difference between WS and HF results: from the interior region of the potential

Gogny-HF code Ghost, K. Bennaceur.

< 回 > < 三 > < 三 >

Ft values for 10 *sd* and *pf*-shell emitters ($\nu = 9$): preliminary results

$$\chi^2/\nu = \frac{1}{N-1} \sum_{i=1}^{N} \frac{\left(Ft_i - \overline{Ft}\right)^2}{\sigma_i^2}$$

If $\chi^2/\nu >$ 1, then define a scaling factor ${\cal S}=\sqrt{\chi^2/
u}$ for σ

Model	Ft	χ^2/ν
WS	3074.4(10)	2.7
WS-surf	3076.8(10)	2.3
HF	3078.8(11)	3.3
TH2002	3075.3(10)	2.4
TH2008	3073.0(8)	0.5

メ 伺 ト メ ヨ ト メ ヨ ト 二 ヨ

Summary and Perspectives

- New shell-model study of δ_C for some *sd* and *pf* shell $0^+ \rightarrow 0^+$ emitters.
- Calculations are under experimental constraints, the proposed procedure for δ_{RO} removes uncertainties due to different parameterizations. Results are consistent with previous studies and may lead to reconsideration of the average *Ft* and larger uncertainties.
- Open problems to be addressed :
 - Exact isospin operator
 - Large model spaces
 - Inclusion of core orbitals
 - Extension of the studies to other emitters
- More work on the implementation of the HF wave functions.

A > + = + + =