

<u>Alexander Volya</u>

Florida State University

NTSE2018

Clustering in light nuclei

Connecting bound state calculations with scattering and reactions

 ${}^{20}_{10}\text{Ne}_{10}$

Clustering and continuum

Configuration interaction approach and clustering

Traditional shell model configuration m-scheme

Cluster configuration SU(3)-symmetry basis

 $|\Psi
angle$ + $\Phi^{\dagger}|\Psi_D
angle$

Translational invariance and Center of Mass (CM)

Shell model, Glockner-Lawson procedure

Center-of-Mass boosts

$$\begin{split} \Psi_{n\ell m} &= \phi_{n\ell m}(\mathbf{R}) \, \Psi' \\ \mathcal{B}^{\dagger}_{ ext{and}} \, \mathcal{B}^{ ext{CM}} ext{ quanta creation and} \\ &= \min (ext{vectors}) \\ \Psi_{n+1\ell m} &\propto \mathcal{B}^{\dagger} \cdot \mathcal{B}^{\dagger} \Psi_{n\ell m} \\ \mathcal{B}^{\dagger} &\times \mathcal{B} \quad \text{CM} ext{ angular momentum operator} \end{split}$$

$$R_{\mu} = \sqrt{\frac{\hbar}{2Am\omega}} (\mathcal{B}^{\dagger}_{\mu} + \mathcal{B}_{\mu})$$

K Kravvaris and A. Volya, Journal of Phys, Conf. Proc. 863, 012016 (2017)

Center-of-Mass boosts

Clustering reaction basis channel

(basis states for clustering)

Cluster Spectroscopic Characteristics

Traditional spectroscopic factor

$$S_{n,\ell} \equiv \left| \langle \Psi^{(A)} | \Phi_{n\ell} \rangle \right|^2 =$$

 $\mathcal{N}_{nn'}^{(l)} = \langle \Phi_{nl} | \Phi_{n'l} \rangle$

Norm kernel

$$|\Psi_{\nu}^{(\ell,\text{ocm})}\rangle = \sum_{n} \left(\frac{1}{\sqrt{\mathcal{N}^{(\ell)}}}\right)_{\nu n} |\Phi_{n\ell}\rangle$$

Orthonormalized basis channels

$$S_{\ell}^{(\text{ocm})} \equiv \sum_{\nu} \left| \langle \Psi^{(A)} | \Psi_{\nu}^{(\ell,\text{ocm})} \rangle \right|^2$$

Sum of all new SF from all parent states to a given final state equals to the number of channels

R. Id Betan and W. Nazarewicz Phys. Rev. C 86, 034338 (2012)

- S. G. Kadmenskya, S. D. Kurgalina, and Yu. M. Tchuvil'sky Phys. Part. Nucl., 38, 699-742 (2007).
- R. Lovas et al. Phys. Rep. 294, No. 5 (1998) 265 362.
- T. Fliessbach and H. J. Mang, Nucl. Phys. A 263, 75-85 (1976).
- H. Feschbach et al. Ann. Phys. 41 (1967) 230 286
- A. Volya and Y. M. Tchuvil'sky, Phys.Rev.C 91, 044319 (2015);

Resonating Group Method (RGM) Spectroscopic Factors

$$|\Psi^{(\ell,\mathrm{rgm})}\rangle = \sum_{n} \chi_{n} |\Phi_{n\ell}\rangle$$

$$\sum_{n'} \mathcal{H}_{nn'} \chi_{n'} = E \sum_{n'} \mathcal{N}_{nn'} \chi_{n'}$$

$$\mathcal{H}_{nn'} = \langle \Psi_{n\ell} | H | \Psi_{n'\ell} \rangle, \, \mathcal{N}_{nn'} = \langle \Psi_{n\ell} | \Psi_{n'\ell} \rangle$$

$$S_{\beta,\ell}^{(\mathrm{rgm})} \equiv \left| \langle \Psi^{(A)} | \Psi_{\beta}^{(\ell,\mathrm{rgm})} \rangle \right|^2$$

SD nuclei, cluster spectroscopic characteristics

T.A. Carey, P.G. Roos, N.S. Chant, A. Nadsen, H.L. Chen, Phys. Rev. C 23,576(R) (1981)
 N. Anantaraman et al. Phys. Rev. Lett. 35, 1131 (1975)

D.K. Nauruzbayev et al., (2017)

 $^{20}_{10}$ Ne $_{10}$

Searching for dustering states

Searching for clustering strength

Distribution of dynamic spectroscopic factors for ²⁰ Ne \rightarrow ¹⁶ O(g.s.) + α . The dashed lines correspond to the RGM energies for each decay channel.

Effective sd-space operator

- sd-valence space optimal hw=14 MeV (common for all).
- alpha JISP16, N_{max}=8. (only 70% s⁴).
- Example I=0, only 4 possible J=L=S=T=0 operators possible.
- Basis reaction channels with n=0,1..4 are contributing

n	X^2	$(8,\!0)$	$(4,\!2)$	$(0,\!4)$	$(2,\!0)$
4	0.02848	1.0	0.0	0.0	0.0
3	0.00697	0.561658	0.438338	0.0	0.0
2	0.00169	0.549804	0.0451847	0.3363	0.0636439
1	0.00018	0.0693304	0.735878	0.0134005	0.147418
0	0.00011	0.0693304	0.261291	0.0990471	0.0384533

Molecular orbits ²¹Ne

 $(16O+\alpha)+n$

Weak-Coupling Behavior

${\cal S}^{(\exp)}$	$3/2^{+}$	$5/2^{+}$	$7/2^{+}$	$9/2^+, 1/2^+$
$\ell = 0$		1.04 ± 0.41		
$\ell = 2$	1.0 ± 0.05		0.91 ± 0.08	0.9 ± 0.05
$\ell = 4$	0.42 ± 0.04	0.32 ± 0.18	0.23 ± 0.04	0.29 ± 0.03
$\mathcal{S}^{(\mathrm{rgm})}$				
$\ell = 0$		0.78		
$\ell = 2$	1.0	0.02	0.9	0.81
$\ell = 4$	0.18	0.44	0.14	0.33

N. Anantaraman, J. P. Draayer, H. E. Gove, J. Toke, and H. T. Fortune. Alpha-particle stripping to ²¹Ne. Phys.Rev. C18, 815 (1978); Phys.Lett. 74B, 199 (1978)

Clustering in ¹³C

Clustering in ¹³C

	Exp. Energy	Exp. Width	SM. Width	CSM Width	SM alpha SF	CSM alpha SF
3/2+ (1)	7.686(6)	0.070(5)	0.858	0.098	0.0256	0.0534
3/2+ (2)	8.2(1)	1.1(3)	0.342	1.031	0.0577	0.0366

Resonating group method ⁸Be results

K Kravvaris and A. Volya, Phys.Rev.Lett, 119(6), 062501 (2017)

RGM effects of truncation, ⁸Be

Coupling with continuum

Asymptotic solution with phase shift

J-matrix (or HORSE) method: J. M. Bang, Annals of Physics 280, 299 (2000) Experimental data: Phys. Rev. 168, 1114 (1968); Nucl. Phys. A287, 317 (1977)

nucleon+alpha scattering phase shifts

J-matrix (or HORSE) method: J. M. Bang, Annals of Physics 280, 299 (2000) Experimental data: Phys. Rev. 168, 1114 (1968); Nucl. Phys. A287, 317 (1977)

Experiment: Rev. Mod. Phys. 41, 247 (1969)

Acknowledgements:

K. Kravvaris.

Yu. Tchuvil'sky, T Dytrych, A. Shirokov, J. Vary, G. V. Rogachev, V. Z. Goldberg.

Funding: U.S. DOE contract DE-SC0009883.

Publications:

K Kravvaris and A. Volya, Phys.Rev.Lett, 119(6), 062501 (2017); Journal of Phys 863, 012016 (2017)

K Kravvaris Doctoral dissertation, Florida State University (2018)

D. K. Nauruzbayev, V. Z. Goldberg, A. K. Nurmukhanbetova, M. S. Golovkov, A. Volya, G. V. Rogachev, and R. E. Tribble, Phys. Rev. C **96**, 014322 (2017)

A. Volya and Y. M. Tchuvil'sky, Phys.Rev.C 91, 044319 (2015); J. Phys. Conf. Ser. 569, 012054 (2014); (World Scientific, 2014), p. 215.

M. L. Avila, G. V. Rogachev, V. Z. Goldberg, E. D. Johnson, K. W. Kemper, Y. M. Tchuvil'sky, and A. Volya, Phys. Rev. C 90, 024327 (2014).

A. M. Long, T. Adachi, M. Beard, G. P. A. Berg, Z. Buthelezi, J. Carter, M. Couder, R. J. deBoer, R. W. Fearick, S. V. Förtsch, J. Görres, J. P. Mira, S. H. T. Murray, R. Neveling, P. Papka, F. D. Smit, E. Sideras-Haddad, J. A. Swartz, R. Talwar, I. T. Usman, M. Wiescher, J. J. Van Zyl, and A. Volya Phys. Rev. C 95, 055803

Resources: https://www.volya.net/ (see research, clustering) © 2018 Alexander Volya, terms of use <u>Creative Commons BY-NC-SA</u>

