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Mathematical/Numerical Nonlinear Optimization
Find parameters x = (x1, . . . , xn) in domain Ω to improve objective f

min {f(x) : x ∈ Ω ⊆ R
n}

⋄ (Unless Ω is very special) Need to evaluate f at many x to find a good x̂∗

Here:

⋄ Assume f is deterministic (and smooth
except where noted)

⋄ Assume that uncertainty modeled
through constraints and objective(s)

⋄ Assumes sensitivity analysis, uncertainty
quantification, and validations
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(Computationally Expensive) Simulation-Based Optimization

min
x∈Rn

{f(x) = F [S(x)] : c(S(x)) ≤ 0,x ∈ Ω}

“parameter estimation”, “model calibration”, “design optimization”, . . .

⋄ Evaluating S means running a simulation modeling some (smooth) process
⋄ Derivatives ∇xS often unavailable or prohibitively expensive to obtain
⋄ S (even when parallelized) takes secs/mins/days

Evaluation is a bottleneck for optimization
⋄ Ω compact, known region (e.g., finite bound constraints)

Functions of complex (numerical/physical) simulations arise everywhere
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Computing Advances Drive Research in Simulation-Based Optimization

Argonne’s AVIDAC

(1953 vacuum tubes)

Argonne’s BlueGene/Q

(2012 0.79M cores)

Argonne’s Theta

(2017 0.23M cores)
Sunway TaihuLight

(2016 11M cores)

The simulations underlying
today’s SBO problems
were nearly unthinkable a
generation ago

Argonne’s “A21”

(2021 ??? cores)
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Parameter Estimation is NOT a Generic/Blackbox Optimization Problem

Generic:

min
x

{f(x) : x ∈ Ω ⊆ R
n}

x n decision variables

f : Rn → R objective function

Ω feasible region,
{x : cE(x) = 0, cI (x) ≤ 0}

cE (vector of) equality
constraints

cI (vector of) inequality
constraints
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Parameter Estimation is NOT a Generic/Blackbox Optimization Problem

Generic:

min
x

{f(x) : x ∈ Ω ⊆ R
n}

x n decision variables

f : Rn → R objective function

Ω feasible region,
{x : cE(x) = 0, cI (x) ≤ 0}

cE (vector of) equality
constraints

cI (vector of) inequality
constraints

Typical calibration problem:

f(x) = ‖R(x)‖22 =
∑p

i=1
Ri(x)

2

x n coupling constants

Ri : Rn → R residual function

Ex.- 1

wi

(S(x; θi)− di)
� S(x; θi): numerical simulation

Ex.- Obtain χ2(x) by 1

p−n
f(x)

Ω = {x : l ≤ x ≤ u}
� Finite bounds (for some xi)
� Often dictated by dom(S)

[Ekström et al, PRL 2013] [Kortelainen et al, PRC 2014]

Taking advantage of structure should reduce expense/improve accuracy
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Careful: Local and Global Solutions
⋄ Local minimizer x̂∗:

f(x̂∗) ≤ f(x) ∀x ∈ N (x̂∗)∩Ω

⋄ Global convergence: Convergence (to a local
solution/stationary point) from anywhere in Ω

⋄ Convergence to a global minimizer: Obtain x∗ with
f(x∗) ≤ f(x) ∀x ∈ Ω −4 −3 −2 −1 0 1 2
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Optimization Tightly Coupled With Derivatives (WRT Parameters)

Typically necessary for optimality: ∇xf(x∗) + λT∇xcE(x∗) = 0, cE(x∗) = 0
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Optimization Tightly Coupled With Derivatives (WRT Parameters)

Typically necessary for optimality: ∇xf(x∗) + λT∇xcE(x∗) = 0, cE(x∗) = 0

Algorithmic/Automatic Differentiation (AD)

“Exact∗ derivatives!”

? No black boxes allowed

? Not always automatic/“cheap”

Finite Differences (FD)

“Nonintrusive”, “Numerical Differentiation”

? Expense grows with n

? Sensitive to stepsize choice/noise
→[Moré & W.; SISC 2011], [Moré & W.; TOMS 2012]

But some derivatives are not always available/do not always exist
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Typical Optimization-Based Formulations

Standard “χ2”-based objective

f(x) =
1

p− n

p
∑

i=1

Ri(x)
2 =

1

p− n

p
∑

i=1

(

S(x;θi)− di

σi

)2

⋄ {(θ1, d1), · · · , (θp, dp)}: the data

⋄ S(x;θi): the ith simulation (modeled/theory) output given parameters x

⋄ σ1, . . . , σp: the (inverse) weights
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Typical Optimization-Based Formulations

Standard “χ2”-based objective

f(x) =
1

p− n

p
∑

i=1

Ri(x)
2 =

1

p− n

p
∑

i=1

(

S(x;θi)− di

σi

)2

⋄ {(θ1, d1), · · · , (θp, dp)}: the data

⋄ S(x;θi): the ith simulation (modeled/theory) output given parameters x

⋄ σ1, . . . , σp: the (inverse) weights
NB-

� Multiplying f by positive constant does not affect the solution of minx f(x)
� ⇒ all σi could be multiplied by a common constant
� ⇒ interpretation of f(x) values comes from something other than the optimization
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Relationship to Covariance Matrices
⋄ Errors independent and normally distributed: d ∼ N(µ,Σ),

di = µ(θi;x∗) + εi, εi ∼ N(0, σ2
i ) i = 1, . . . , p

Σ is a p× p diagonal matrix, with ith diagonal entry σ2
i

⋄ Model, S(θ;x) with Gaussian errors:

[S(θ1;x), · · · , S(θp;x)]
T ∼ N (µ(·;x),C)

⋄ C a (p× p symmetric positive definite) covariance matrix accounting for
correlation between model outputs (i.e., Cov(S(θi;x), S(θj;x)) = Ci,j)
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⋄ Errors independent and normally distributed: d ∼ N(µ,Σ),

di = µ(θi;x∗) + εi, εi ∼ N(0, σ2
i ) i = 1, . . . , p

Σ is a p× p diagonal matrix, with ith diagonal entry σ2
i

⋄ Model, S(θ;x) with Gaussian errors:

[S(θ1;x), · · · , S(θp;x)]
T ∼ N (µ(·;x),C)

⋄ C a (p× p symmetric positive definite) covariance matrix accounting for
correlation between model outputs (i.e., Cov(S(θi;x), S(θj;x)) = Ci,j)

⋄ Assuming model errors are independent of data errors,

[m(x̂;θ1)− d1, · · · , m(x̂;θp)− dp]
T ∼ N(0,C+Σ)

⋄ Joint likelihood l(x;θ;d) ∝ exp

[

−
1

2
R(x;θ)T (C+Σ)−1

R(x;θ)

]

Warning: C,Σ can no longer hide behind constants of proportionality

.
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Incorporating Covariances Cov(S(x; θi), S(x; θj)) in W

Elastic
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Ex.- optical potentials
[Lovell et al, PRC 2017]
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Exploiting Structure Allows One to Solve Difficult Problems
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[Kortelainen et al, PRC 2010], [Bertolli et al, PRC 2012], [Kortelainen et al, PRC 2012], [Ekström et

al, PRL 2013], [Kortelainen et al, PRC 2014], . . .
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The POUNDERS Method & Open-Source Software

Practical Optimization Using No DERivatives for sums of Squares

⋄ a local, model-based, full Newton-like, trust-region
algorithm

⋄ for unconstrained and bound-constrained

⋄ nonlinear-least squares problems

⋄ in the absence of some derivatives (derivative-free)

that
⋄ is a misnomer (uses some derivatives)

⋄ is robust to noise/poor local minima

⋄ has a simple interface (provide routine for S)

⋄ allows for parallel evaluation of S

⋄ has asymptotic convergence guarantees

⋄ performs well in practice

⋄ is available in PETSc/TAO [http://mcs.anl.gov/tao]
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Exploiting Nonlinear Least Squares Structure

Obtain a vector of output R1(x), . . . , Rp(x)

⋄ (Locally) Model each Ri by a surrogate q
(i)
k

Ri(x) ≈ q
(i)
k (x) = Ri(xk) + (x− xk)

⊤g
(i)
k +

1

2
(x− xk)

⊤H
(i)
k (x− xk)

⋄ Employ models in the approximation
∇f(x) =

∑
i
∇Ri(x)Ri(x) →

∑
i
g
(i)
k

(x)Ri(x)

∇2f(x) =
∑

i
∇Ri(x)∇Ri(x)

T +Ri(x)∇2Ri(x) →
∑

i
g
(i)
k

(x)g
(i)
k

(x)T +Ri(x)H
(i)
k

(x)
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All Together: Model-Based Trust-Region Algorithms

Basic trust region iteration:

⋄ Build surrogate model m
(POUNDERS: for each residual
Ri)

⋄ Trust approximation of m within
region
B = {x ∈ R

n : ‖x− xk‖ ≤ ∆k}

⋄ Use m to obtain next point within
B for evaluation

Incorporate prior knowledge through scaling, norm selection, initial ∆0, etc.
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Other Deterministic Objective/Loss/Training Function Forms

Standard “χ2”: Assumes independence

f(x) =
1

p− n

p
∑

i=1

Ri(x)
2 =

1

p− n

p
∑

i=1

(

S(x; θi)− di

σi

)2

Correlated: For W symmetric positive definite:

f(x) =
∑

i

∑

j

Wi,jRi(x)Rj(x) = ‖R(x)‖2W

Gaussian priors: f(x) = ‖R(x)‖2W + ‖x− x̂‖2C

(Censored) L1 loss: (LAD)

f(x) =
∑

i

wi |di − Si(x)| or f(x) =
∑

i

wi |di −max {Si(x), ci}|

Solvers exist for many forms of objective; objective form matters!
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Nonsmooth Compositions Require Additional Care

L1 Loss:

p
∑

i=1

|di − Si(x)|
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Censored L1 loss:

p
∑

i=1

|di −max {Si(x), ci}|

NB- Can truncate some
multimodality

→ Manifold sampling: [Larson, Menickelly, W.; SIOPT 2016], [Khan, Larson, W.; SIOPT 2018]
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Exploiting Concurrency is Vital in the Supercomputing Era

Considerations:

⋄ Load balancing

⋄ Variability in run times
for a particular nuclei or
observable

⋄ Variability in run times
across observables

⋄ Degree to which you can
predict the run time of
an observables
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Exploiting Concurrency is Vital in the Supercomputing Era

Considerations:

⋄ Load balancing

⋄ Variability in run times
for a particular nuclei or
observable

⋄ Variability in run times
across observables

⋄ Degree to which you can
predict the run time of
an observables

Median: UNEDF2 nuclei, Broadwell 9 threads/nuclei
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Exploiting Concurrency is Vital in the Supercomputing Era

Considerations:

⋄ Load balancing

⋄ Variability in run times
for a particular nuclei or
observable

⋄ Variability in run times
across observables

⋄ Degree to which you can
predict the run time of
an observables

Extrema: UNEDF2 nuclei, Broadwell 9 threads/nuclei
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LibEnsemble: Managing Tightly Coupled Ensembles of Calculations

Moving beyond local optimization requires (many) more forward model evaluations

⋄ python based, available via Spack

⋄ Tackles higher-level problems
(optimization, UQ, Sensitivity analysis,
machine learning, stochastic sampling,
. . .

⋄ Graceful exit of libEnsemble when time
has expired or when
persistent/nonpersistent worker(s) are
unresponsive/busy

⋄ Simulations can be PETSc-based or use
their own communicator
objective
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Related: Training in Supervised Learning

Obtain model prediction S(·,x) by solving

min
x

N
∑

i=1

l
(

S(θi,x), yi
)

⋄ T = {(θi, yi)}Ni=1 ⊂ R
d × R — Training data

⋄ yi ∈ R — label associated with input θi

⋄ x ∈ R
n — weights

⋄ S : Rd × R
n → R — trained model

⋄ l : R2 → R — loss function
e.g., l(a, b) = (a− b)2
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Related: Optimization Under Uncertainty

→ u denotes vector of uncertain variables

Examples

⋄ Stochastic optimization: u ∼ P

min
x

Eu [F (x,u)]

⋄ Robust optimization: Guard against worst-case uncertainty in the problem data
min
x

max
u∈U

f(x,u) or min
x

{f(x) : |Ri(x;u)| ≤ κ∀u ∈ U ,∀i}

⋄ Trimmed/quantile loss: determine outliers on the fly (as x changes)

f(x) =

q
∑

i=1

∣

∣R(i)(x)
∣

∣ where
∣

∣R(i)(x)
∣

∣ ≤
∣

∣R(i+1)(x)
∣

∣, i = 1, . . . , p− 1
(

≥ q
)
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Robust Optimization: Deterministic Incorporation of Robustness Desires

0 1 2 3 4 5 6 7 8
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Training

Testing

NTSE18 21



Robust Optimization: Deterministic Incorporation of Robustness Desires
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Game: You choose x to minimize
Ψ(x), opponent chooses u to
maximize f(x+ u)
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Robust Optimization: Deterministic Incorporation of Robustness Desires
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Robust Optimization: Deterministic Incorporation of Robustness Desires
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Robust Optimization: Deterministic Incorporation of Robustness Desires
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Robust Optimization: Deterministic Incorporation of Robustness Desires

0 1 2 3 4 5 6 7 8
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

0.7

Ψ(x) = maxu {f(x+ u) : ‖u‖ ≤ α}

Game: You choose x to minimize
Ψ(x), opponent chooses u to
maximize f(x+ u)

Possible challenges

? Ability to compute Ψ(x)
. . . ∂Ψ(x)

? Determination of α > 0
. . . uncertainty set

Ex.- U = {u : ‖u‖ ≤ α}
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Optimization, UQ, Supercomputing, and Nuclear Theory

⋄ Exploiting structure yields better solutions, in fewer simulations

⋄ Optimization problem formulation matters

⋄ Supercomputing is opening algorithmic frontiers for calibration under uncertainty

⋄ Expanded opportunity for scalable parallelism through optimization, sensitivity
analysis, UQ
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Optimization, UQ, Supercomputing, and Nuclear Theory

⋄ Exploiting structure yields better solutions, in fewer simulations

⋄ Optimization problem formulation matters

⋄ Supercomputing is opening algorithmic frontiers for calibration under uncertainty

⋄ Expanded opportunity for scalable parallelism through optimization, sensitivity
analysis, UQ

http://www.mcs.anl.gov/~wild

(Get in touch!)

Thank you!
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