Optimization Problems in Nuclear Theory

Stefan Wild

Mathematics and Computer Science Division
 Argonne National Laboratory
 Joint work with Jared O'Neal and many physicist collaborators:

A. Ekström, C. Forssén, G. Hagen, M. Hjorth-Jensen, G.R. Jansen, M. Kortelainen, T. Lesinski, A. Lovell, R. Machleidt, J. McDonnell, H. Nam, N. Michel, W. Nazarewicz, F.M. Nunes, E. Olsen, T. Papenbrock, P.-G. Reinhardt, N. Schunck, M. Stoitsov, J. Vary, K. Wendt, and others

October 30, 2018

Acknowledgments and Plan

NUCLEI
 Nuclear Computational Low-Energy Initiative

ISNET-*

1. Optimization background

- Local and global
- Derivatives and no derivatives

2. Typical optimization-based formulations

- Nonlinear least squares
- POUNDERS

3. Optimization and supercomputing
4. Optimization under uncertainty

Mathematical/Numerical Nonlinear Optimization

Find parameters $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ in domain $\boldsymbol{\Omega}$ to improve objective f

$$
\min \left\{f(\mathbf{x}): \mathbf{x} \in \boldsymbol{\Omega} \subseteq \mathbb{R}^{n}\right\}
$$

\diamond (Unless $\boldsymbol{\Omega}$ is very special) Need to evaluate f at many \mathbf{x} to find a good $\hat{\mathbf{x}}_{*}$

Here:
\diamond Assume f is deterministic (and smooth except where noted)
\diamond Assume that uncertainty modeled through constraints and objective(s)
\diamond Assumes sensitivity analysis, uncertainty quantification, and validations

(Computationally Expensive) Simulation-Based Optimization

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}}\{f(\mathbf{x})=F[\mathbf{S}(\mathbf{x})]: \mathbf{c}(\mathbf{S}(\mathbf{x})) \leq 0, \mathbf{x} \in \boldsymbol{\Omega}\}
$$

"parameter estimation", "model calibration", "design optimization", ...
\diamond Evaluating \mathbf{S} means running a simulation modeling some (smooth) process
\diamond Derivatives $\nabla_{x} S$ often unavailable or prohibitively expensive to obtain
$\diamond \mathbf{S}$ (even when parallelized) takes secs/mins/days
Evaluation is a bottleneck for optimization
$\diamond \boldsymbol{\Omega}$ compact, known region (e.g., finite bound constraints)
Functions of complex (numerical/physical) simulations arise everywhere

Computing Advances Drive Research in Simulation-Based Optimization

Argonne's AVIDAC (1953 vacuum tubes)

Argonne's BlueGene/Q (2012 0.79M cores)

Argonne's Theta (2017 0.23M cores)

Sunway TaihuLight (2016 11M cores)

The simulations underlying today's SBO problems were nearly unthinkable a generation ago

Argonne's "A21"
(2021 ??? cores)

Parameter Estimation is NOT a Generic/Blackbox Optimization Problem

Generic:

$$
\min _{\mathbf{x}}\left\{f(\mathbf{x}): \mathbf{x} \in \boldsymbol{\Omega} \subseteq \mathbb{R}^{n}\right\}
$$

$\mathrm{x} n$ decision variables
$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ objective function
Ω feasible region,
$\left\{\mathbf{x}: \mathbf{c}_{E}(\mathbf{x})=0, \mathbf{c}_{I}(\mathbf{x}) \leq 0\right\}$
\mathbf{c}_{E} (vector of) equality constraints
c_{I} (vector of) inequality constraints

Parameter Estimation is NOT a Generic/Blackbox Optimization Problem

Generic:

$$
\min _{\mathbf{x}}\left\{f(\mathbf{x}): \mathbf{x} \in \boldsymbol{\Omega} \subseteq \mathbb{R}^{n}\right\}
$$

x n decision variables
$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ objective function
Ω feasible region,
$\left\{\mathbf{x}: \mathbf{c}_{E}(\mathbf{x})=0, \mathbf{c}_{I}(\mathbf{x}) \leq 0\right\}$
\mathbf{c}_{E} (vector of) equality constraints
c_{I} (vector of) inequality constraints

Typical calibration problem:

$$
f(\mathbf{x})=\|\mathbf{R}(\mathbf{x})\|_{2}^{2}=\sum_{i=1}^{p} R_{i}(\mathbf{x})^{2}
$$

x n coupling constants
$R_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ residual function
Ex.- $\frac{1}{w_{i}}\left(S\left(\mathbf{x} ; \boldsymbol{\theta}_{i}\right)-d_{i}\right)$

- $S\left(\mathbf{x} ; \boldsymbol{\theta}_{i}\right)$: numerical simulation

Ex.- Obtain $\chi^{2}(\mathbf{x})$ by $\frac{1}{p-n} f(\mathbf{x})$
$\Omega=\{\mathbf{x}: \mathbf{l} \leq \mathbf{x} \leq \mathbf{u}\}$

- Finite bounds (for some x_{i})
- Often dictated by dom(S)
[Ekström et al, PRL 2013] [Kortelainen et al, PRC 2014]
Taking advantage of structure should reduce expense/improve accuracy

Careful: Local and Global Solutions

\diamond Local minimizer $\hat{\mathbf{x}}_{*}$:

$$
f\left(\hat{\mathbf{x}}_{*}\right) \leq f(\mathbf{x}) \quad \forall \mathbf{x} \in \mathcal{N}\left(\hat{\mathbf{x}}_{*}\right) \cap \boldsymbol{\Omega}
$$

\diamond Global convergence: Convergence (to a local solution/stationary point) from anywhere in $\boldsymbol{\Omega}$
\diamond Convergence to a global minimizer: Obtain \mathbf{x}_{*} with $f\left(\mathbf{x}_{*}\right) \leq f(\mathbf{x}) \quad \forall \mathbf{x} \in \boldsymbol{\Omega}$

Optimization Tightly Coupled With Derivatives (WRT Parameters)

Typically necessary for optimality:

$$
\nabla_{\mathbf{x}} f\left(\mathbf{x}_{*}\right)+\lambda^{T} \nabla_{\mathbf{x}} \mathbf{c}_{E}\left(\mathbf{x}_{*}\right)=0, \mathbf{c}_{E}\left(\mathbf{x}_{*}\right)=0
$$

Optimization Tightly Coupled With Derivatives (WRT Parameters)

Typically necessary for optimality:

$$
\nabla_{\mathbf{x}} f\left(\mathbf{x}_{*}\right)+\lambda^{T} \nabla_{\mathbf{x}} \mathbf{c}_{E}\left(\mathbf{x}_{*}\right)=0, \mathbf{c}_{E}\left(\mathbf{x}_{*}\right)=0
$$

Algorithmic/Automatic Differentiation (AD)

"Exact* derivatives!"
? No black boxes allowed
? Not always automatic/"cheap"

Finite Differences (FD)

"Nonintrusive", "Numerical Differentiation"
? Expense grows with n
? Sensitive to stepsize choice/noise
\rightarrow [Moré \& W.; SISC 2011], [Moré \& W.; TOMS 2012]
But some derivatives are not always available/do not always exist

Typical Optimization-Based Formulations

Standard " χ " "-based objective

$$
f(\mathbf{x})=\frac{1}{p-n} \sum_{i=1}^{p} R_{i}(\mathbf{x})^{2}=\frac{1}{p-n} \sum_{i=1}^{p}\left(\frac{S\left(\mathbf{x} ; \boldsymbol{\theta}_{i}\right)-d_{i}}{\sigma_{i}}\right)^{2}
$$

$\diamond\left\{\left(\boldsymbol{\theta}_{1}, d_{1}\right), \cdots,\left(\boldsymbol{\theta}_{p}, d_{p}\right)\right\}:$ the data
$\diamond S\left(\mathbf{x} ; \boldsymbol{\theta}_{i}\right)$: the i th simulation (modeled/theory) output given parameters \mathbf{x}
$\diamond \sigma_{1}, \ldots, \sigma_{p}$: the (inverse) weights

Typical Optimization-Based Formulations

Standard " χ " -based objective

$$
f(\mathbf{x})=\frac{1}{p-n} \sum_{i=1}^{p} R_{i}(\mathbf{x})^{2}=\frac{1}{p-n} \sum_{i=1}^{p}\left(\frac{S\left(\mathbf{x} ; \boldsymbol{\theta}_{i}\right)-d_{i}}{\sigma_{i}}\right)^{2}
$$

$\diamond\left\{\left(\boldsymbol{\theta}_{1}, d_{1}\right), \cdots,\left(\boldsymbol{\theta}_{p}, d_{p}\right)\right\}:$ the data
$\diamond S\left(\mathbf{x} ; \boldsymbol{\theta}_{i}\right)$: the i th simulation (modeled/theory) output given parameters \mathbf{x}
$\diamond \sigma_{1}, \ldots, \sigma_{p}$: the (inverse) weights
NB-

- Multiplying f by positive constant does not affect the solution of $\min _{\mathbf{x}} f(\mathbf{x})$
- \Rightarrow all σ_{i} could be multiplied by a common constant
- \Rightarrow interpretation of $f(\mathbf{x})$ values comes from something other than the optimization

Relationship to Covariance Matrices

\diamond Errors independent and normally distributed: $\mathbf{d} \sim N(\mu, \boldsymbol{\Sigma})$,

$$
d_{i}=\mu\left(\boldsymbol{\theta}_{i} ; \mathbf{x}_{*}\right)+\varepsilon_{i}, \quad \varepsilon_{i} \sim N\left(0, \sigma_{i}^{2}\right) \quad i=1, \ldots, p
$$

$\boldsymbol{\Sigma}$ is a $p \times p$ diagonal matrix, with i th diagonal entry σ_{i}^{2}
\diamond Model, $S(\boldsymbol{\theta} ; \mathbf{x})$ with Gaussian errors:

$$
\left[S\left(\boldsymbol{\theta}_{1} ; \mathbf{x}\right), \cdots, S\left(\boldsymbol{\theta}_{p} ; \mathbf{x}\right)\right]^{T} \sim N(\mu(\cdot ; \mathbf{x}), \mathbf{C})
$$

$\diamond \mathbf{C}$ a ($p \times p$ symmetric positive definite) covariance matrix accounting for correlation between model outputs (i.e., $\left.\operatorname{Cov}\left(S\left(\boldsymbol{\theta}_{i} ; \mathbf{x}\right), S\left(\boldsymbol{\theta}_{j} ; \mathbf{x}\right)\right)=C_{i, j}\right)$

Relationship to Covariance Matrices

\diamond Errors independent and normally distributed: $\mathbf{d} \sim N(\mu, \boldsymbol{\Sigma})$,

$$
d_{i}=\mu\left(\boldsymbol{\theta}_{i} ; \mathbf{x}_{*}\right)+\varepsilon_{i}, \quad \varepsilon_{i} \sim N\left(0, \sigma_{i}^{2}\right) \quad i=1, \ldots, p
$$

$\boldsymbol{\Sigma}$ is a $p \times p$ diagonal matrix, with i th diagonal entry σ_{i}^{2}
\diamond Model, $S(\boldsymbol{\theta} ; \mathbf{x})$ with Gaussian errors:

$$
\left[S\left(\boldsymbol{\theta}_{1} ; \mathbf{x}\right), \cdots, S\left(\boldsymbol{\theta}_{p} ; \mathbf{x}\right)\right]^{T} \sim N(\mu(\cdot ; \mathbf{x}), \mathbf{C})
$$

$\diamond \mathbf{C}$ a ($p \times p$ symmetric positive definite) covariance matrix accounting for correlation between model outputs (i.e., $\left.\operatorname{Cov}\left(S\left(\boldsymbol{\theta}_{i} ; \mathbf{x}\right), S\left(\boldsymbol{\theta}_{j} ; \mathbf{x}\right)\right)=C_{i, j}\right)$
\diamond Assuming model errors are independent of data errors,

$$
\left[m\left(\hat{\mathbf{x}} ; \boldsymbol{\theta}_{1}\right)-d_{1}, \cdots, m\left(\hat{\mathbf{x}} ; \boldsymbol{\theta}_{p}\right)-d_{p}\right]^{T} \sim N(0, \mathbf{C}+\boldsymbol{\Sigma})
$$

\diamond Joint likelihood $l(\mathbf{x} ; \boldsymbol{\theta} ; \mathbf{d}) \propto \exp \left[-\frac{1}{2} \mathbf{R}(\mathbf{x} ; \boldsymbol{\theta})^{T}(\mathbf{C}+\boldsymbol{\Sigma})^{-1} \mathbf{R}(\mathbf{x} ; \boldsymbol{\theta})\right]$
Warning: C, $\boldsymbol{\Sigma}$ can no longer hide behind constants of proportionality

Incorporating Covariances $\operatorname{Cov}\left(S\left(\mathbf{x} ; \theta_{i}\right), S\left(\mathbf{x} ; \theta_{j}\right)\right)$ in W

Ex.- optical potentials
[Lovell et al, PRC 2017]

Exploiting Structure Allows One to Solve Difficult Problems

[Kortelainen et al, PRC 2010], [Bertolli et al, PRC 2012], [Kortelainen et al, PRC 2012], [Ekström et al, PRL 2013], [Kortelainen et al, PRC 2014], ...

The POUNDERS Method \& Open-Source Software

Practical Optimization Using No DERivatives for sums of Squares
\diamond a local, model-based, full Newton-like, trust-region algorithm
\diamond for unconstrained and bound-constrained
\diamond nonlinear-least squares problems
\diamond in the absence of some derivatives (derivative-free)
that
\diamond is a misnomer (uses some derivatives)
\diamond is robust to noise/poor local minima
\diamond has a simple interface (provide routine for \mathbf{S})
\diamond allows for parallel evaluation of \mathbf{S}
\diamond has asymptotic convergence guarantees
\diamond performs well in practice
is available in PETSc/TAO [http://mcs.anl.gov/tao]

Exploiting Nonlinear Least Squares Structure

Obtain a vector of output $R_{1}(\mathrm{x}), \ldots, R_{p}(\mathrm{x})$

\diamond (Locally) Model each R_{i} by a surrogate $q_{k}^{(i)}$

$$
R_{i}(\mathbf{x}) \approx q_{k}^{(i)}(\mathbf{x})=R_{i}\left(\mathbf{x}_{k}\right)+\left(\mathbf{x}-\mathbf{x}_{k}\right)^{\top} \mathbf{g}_{k}^{(i)}+\frac{1}{2}\left(\mathbf{x}-\mathbf{x}_{k}\right)^{\top} \mathbf{H}_{k}^{(i)}\left(\mathbf{x}-\mathbf{x}_{k}\right)
$$

\diamond Employ models in the approximation

$$
\begin{array}{rll}
\nabla f(\mathbf{x}) & =\sum_{i} \nabla \mathbf{R}_{\mathbf{i}}(\mathbf{x}) R_{i}(\mathbf{x}) & \\
\nabla^{2} f(\mathbf{x}) & =\sum_{i} \nabla \mathbf{R}_{\mathbf{i}}(\mathbf{x}) \nabla \mathbf{R}_{\mathbf{i}}(\mathbf{x})^{T}+R_{i}^{(i)}(\mathbf{x}) \nabla^{2} \mathbf{R}_{\mathbf{i}}(\mathbf{x}) & \\
\left.\rightarrow \sum_{i} \mathbf{g}_{k}^{(i)}(\mathbf{x}) \mathbf{g}_{k}^{(i)}(\mathbf{x})\right)^{T}+R_{i}(\mathbf{x}) \mathbf{H}_{k}^{(i)}(\mathbf{x})
\end{array}
$$

Energy Residual [MeV], Nucleus \#10

Energy Residual [MeV], Nucleus \#22

Energy Residual [MeV], Nucleus \#9

All Together: Model-Based Trust-Region Algorithms

Basic trust region iteration:

\diamond Build surrogate model m (POUNDERS: for each residual R_{i})
\diamond Trust approximation of m within region
$\mathcal{B}=\left\{\mathbf{x} \in \mathbb{R}^{n}:\left\|\mathbf{x}-\mathbf{x}_{k}\right\| \leq \Delta_{k}\right\}$
\diamond Use m to obtain next point within \mathcal{B} for evaluation

Incorporate prior knowledge through scaling, norm selection, initial Δ_{0}, etc.

All Together: Model-Based Trust-Region Algorithms

Basic trust region iteration:

\diamond Build surrogate model m (POUNDERS: for each residual R_{i})
\diamond Trust approximation of m within region
$\mathcal{B}=\left\{\mathbf{x} \in \mathbb{R}^{n}:\left\|\mathbf{x}-\mathbf{x}_{k}\right\| \leq \Delta_{k}\right\}$
\diamond Use m to obtain next point within \mathcal{B} for evaluation

Incorporate prior knowledge through scaling, norm selection, initial Δ_{0}, etc.

All Together: Model-Based Trust-Region Algorithms

Basic trust region iteration:

\diamond Build surrogate model m (POUNDERS: for each residual R_{i})
\diamond Trust approximation of m within region
$\mathcal{B}=\left\{\mathbf{x} \in \mathbb{R}^{n}:\left\|\mathbf{x}-\mathbf{x}_{k}\right\| \leq \Delta_{k}\right\}$
\diamond Use m to obtain next point within \mathcal{B} for evaluation

Incorporate prior knowledge through scaling, norm selection, initial Δ_{0}, etc.

All Together: Model-Based Trust-Region Algorithms

Basic trust region iteration:

\diamond Build surrogate model m (POUNDERS: for each residual R_{i})
\diamond Trust approximation of m within region
$\mathcal{B}=\left\{\mathrm{x} \in \mathbb{R}^{n}:\left\|\mathrm{x}-\mathrm{x}_{k}\right\| \leq \Delta_{k}\right\}$
\diamond Use m to obtain next point within \mathcal{B} for evaluation

Incorporate prior knowledge through scaling, norm selection, initial Δ_{0}, etc.

Other Deterministic Objective/Loss/Training Function Forms

Standard " χ ". : Assumes independence

$$
f(\mathbf{x})=\frac{1}{p-n} \sum_{i=1}^{p} R_{i}(\mathbf{x})^{2}=\frac{1}{p-n} \sum_{i=1}^{p}\left(\frac{S\left(\mathbf{x} ; \theta_{i}\right)-d_{i}}{\sigma_{i}}\right)^{2}
$$

Correlated: For \mathbf{W} symmetric positive definite:

$$
f(\mathbf{x})=\sum_{i} \sum_{j} W_{i, j} R_{i}(\mathbf{x}) R_{j}(\mathbf{x})=\|\mathbf{R}(\mathbf{x})\|_{\mathbf{W}}^{2}
$$

Gaussian priors: $f(\mathbf{x})=\|\mathbf{R}(\mathbf{x})\|_{\mathbf{W}}^{2}+\|\mathbf{x}-\hat{\mathbf{x}}\|_{\mathbf{C}}^{2}$
(Censored) L1 loss: (LAD)

$$
f(\mathbf{x})=\sum_{i} w_{i}\left|d_{i}-S_{i}(\mathbf{x})\right| \quad \text { or } \quad f(\mathbf{x})=\sum_{i} w_{i}\left|d_{i}-\max \left\{S_{i}(\mathbf{x}), c_{i}\right\}\right|
$$

Solvers exist for many forms of objective; objective form matters!

Nonsmooth Compositions Require Additional Care

L1 Loss:

$$
\sum_{i=1}^{p}\left|d_{i}-S_{i}(\mathbf{x})\right|
$$

Censored L1 loss:

$$
\sum_{i=1}^{p}\left|d_{i}-\max \left\{S_{i}(\mathbf{x}), c_{i}\right\}\right|
$$

NB- Can truncate some multimodality

\rightarrow Manifold sampling: [Larson, Menickelly, W.; SIOPT 2016], [Khan, Larson, W.; SIOPT 2018]

Exploiting Concurrency is Vital in the Supercomputing Era

Considerations:

\diamond Load balancing
\diamond Variability in run times for a particular nuclei or observable
\diamond Variability in run times across observables
\diamond Degree to which you can predict the run time of an observables

Exploiting Concurrency is Vital in the Supercomputing Era

Median: UNEDF2 nuclei, Broadwell 9 threads/nuclei
\diamond Load balancing
\diamond Variability in run times for a particular nuclei or observable
\diamond Variability in run times across observables
\diamond Degree to which you can predict the run time of an observables

Exploiting Concurrency is Vital in the Supercomputing Era

Extrema: UNEDF2 nuclei, Broadwell 9 threads/nuclei
\diamond Load balancing
\diamond Variability in run times
for a particular nuclei or
\diamond Variability in run times
for a particular nuclei or observable
\diamond Variability in run times across observables
\diamond Degree to which you can predict the run time of an observables

Considerations:

LibEnsemble: Managing Tightly Coupled Ensembles of Calculations

Moving beyond local optimization requires (many) more forward model evaluations
\diamond python based, available via Spack
\diamond Tackles higher-level problems (optimization, UQ, Sensitivity analysis, machine learning, stochastic sampling,
\diamond Graceful exit of libEnsemble when time has expired or when persistent/nonpersistent worker(s) are unresponsive/busy
\diamond Simulations can be PETSc-based or use their own communicator
 objective

Related: Training in Supervised Learning

Obtain model prediction $S(\cdot, \mathbf{x})$ by solving

$$
\min _{\mathbf{x}} \sum_{i=1}^{N} l\left(S\left(\boldsymbol{\theta}^{i}, \mathbf{x}\right), y^{i}\right)
$$

$\diamond \mathbb{T}=\left\{\left(\boldsymbol{\theta}^{i}, y^{i}\right)\right\}_{i=1}^{N} \subset \mathbb{R}^{d} \times \mathbb{R} —$ Training data
$\diamond y^{i} \in \mathbb{R}$ — label associated with input $\boldsymbol{\theta}^{i}$
$\diamond \mathrm{x} \in \mathbb{R}^{n}$ - weights
$\diamond S: \mathbb{R}^{d} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ - trained model
$\diamond l: \mathbb{R}^{2} \rightarrow \mathbb{R}$ — loss function

$$
\text { e.g., } l(a, b)=(a-b)^{2}
$$

Related: Optimization Under Uncertainty

$\rightarrow \mathbf{u}$ denotes vector of uncertain variables

Examples

\diamond Stochastic optimization: $\mathbf{u} \sim P$ $\min _{\mathbf{x}} \mathbb{E}_{\mathbf{u}}[F(\mathbf{x}, \mathbf{u})]$
\diamond Robust optimization: Guard against worst-case uncertainty in the problem data $\min _{\mathbf{x}} \max _{\mathbf{u} \in \mathcal{U}} f(\mathbf{x}, \mathbf{u}) \quad$ or $\quad \min _{\mathbf{x}}\left\{f(\mathbf{x}):\left|R_{i}(\mathbf{x} ; \mathbf{u})\right| \leq \kappa \forall \mathbf{u} \in \mathcal{U}, \forall i\right\}$
\diamond Trimmed/quantile loss: determine outliers on the fly (as \mathbf{x} changes)
$f(\mathbf{x})=\sum_{i=1}^{q}\left|R_{(i)}(\mathbf{x})\right| \quad$ where $\left|R_{(i)}(\mathbf{x})\right| \leq\left|R_{(i+1)}(\mathbf{x})\right|, i=1, \ldots, p-1(\geq q)$

Robust Optimization: Deterministic Incorporation of Robustness Desires

Robust Optimization: Deterministic Incorporation of Robustness Desires

$$
\Psi(\mathrm{x})=\max _{\mathbf{u}}\{f(\mathbf{x}+\mathbf{u}):\|\mathbf{u}\| \leq \alpha\}
$$

Game: You choose x to minimize $\Psi(\mathbf{x})$, opponent chooses \mathbf{u} to maximize $f(\mathbf{x}+\mathbf{u})$

Robust Optimization: Deterministic Incorporation of Robustness Desires

$$
\Psi(\mathrm{x})=\max _{\mathbf{u}}\{f(\mathbf{x}+\mathbf{u}):\|\mathbf{u}\| \leq \alpha\}
$$

Game: You choose x to minimize $\Psi(\mathbf{x})$, opponent chooses \mathbf{u} to maximize $f(\mathbf{x}+\mathbf{u})$

Robust Optimization: Deterministic Incorporation of Robustness Desires

$$
\Psi(\mathbf{x})=\max _{\mathbf{u}}\{f(\mathbf{x}+\mathbf{u}):\|\mathbf{u}\| \leq \alpha\}
$$

Game: You choose x to minimize $\Psi(\mathbf{x})$, opponent chooses \mathbf{u} to maximize $f(\mathbf{x}+\mathbf{u})$

Robust Optimization: Deterministic Incorporation of Robustness Desires

$$
\Psi(\mathbf{x})=\max _{\mathbf{u}}\{f(\mathbf{x}+\mathbf{u}):\|\mathbf{u}\| \leq \alpha\}
$$

Game: You choose x to minimize $\Psi(\mathbf{x})$, opponent chooses \mathbf{u} to maximize $f(\mathbf{x}+\mathbf{u})$

Robust Optimization: Deterministic Incorporation of Robustness Desires

$$
\Psi(\mathrm{x})=\max _{\mathbf{u}}\{f(\mathbf{x}+\mathbf{u}):\|\mathbf{u}\| \leq \alpha\}
$$

Game: You choose x to minimize $\Psi(\mathbf{x})$, opponent chooses \mathbf{u} to maximize $f(\mathbf{x}+\mathbf{u})$

Possible challenges

? Ability to compute $\Psi(\mathbf{x})$

$$
\ldots \partial \Psi(\mathbf{x})
$$

? Determination of $\alpha>0$

$$
\text { Ex.- } \mathcal{U}=\{\mathbf{u}:\|\mathbf{u}\| \leq \alpha\}
$$

Optimization, UQ, Supercomputing, and Nuclear Theory

\diamond Exploiting structure yields better solutions, in fewer simulations
\diamond Optimization problem formulation matters
\diamond Supercomputing is opening algorithmic frontiers for calibration under uncertainty
\diamond Expanded opportunity for scalable parallelism through optimization, sensitivity analysis, UQ

Optimization, UQ, Supercomputing, and Nuclear Theory

\diamond Exploiting structure yields better solutions, in fewer simulations
\diamond Optimization problem formulation matters
\diamond Supercomputing is opening algorithmic frontiers for calibration under uncertainty
\diamond Expanded opportunity for scalable parallelism through optimization, sensitivity analysis, UQ
http://www.mcs.anl.gov/~wild (Get in touch!)

Thank you!

