Ab initio scattering calculation in three-body

 Coulomb systems: $e^{-}-\overline{\mathbf{H}}\left(e^{+}-\mathbf{H}\right)$ and $e^{+}-\mathrm{He}^{+}$V.A. Gradusov, V.A. Roudnev, E.A. Yarevsky, S.L. Yakovlev

Department of Computational Physics, St Petersburg State University, St Petersburg, RUSSIA

International Conference "Nuclear Theory in the Supercomputing Era 2018"
Institute for Basic Science, Daejeon, Korea
October 29 - November 2, 2018

Plan of the talk

(1) Theory of Faddeev-Merkuriev equations
(2) Solution method
(3) Results for $e^{-} e^{+} \bar{p}$
(9) Results for $e^{+} e^{-} \mathrm{He}^{++}$
(6) Summary

Scattering processes

elastic scattering

breakup (ionisation,...)

excitation

resonance
rearrangement

Schrödinger equation

The nonrelativistic Schrödinger equation $(\hbar=1)$
$\left(-\frac{\Delta_{r_{1}}}{2 m_{1}}-\frac{\Delta_{r_{2}}}{2 m_{2}}-\frac{\Delta_{r_{3}}}{2 m_{3}}+V_{1}\left(r_{23}\right)+V_{2}\left(r_{13}\right)+V_{3}\left(r_{12}\right)-E\right) \Psi\left(r_{1}, r_{2}, r_{3}\right)=0$.
In the center of mass coordinate frame and reduced Jacobi coordinates $x_{1} \rightarrow \sqrt{2 m_{23}} x_{1}, y_{1} \rightarrow \sqrt{2 m_{1,23}} y_{1}$:

$$
\left(-\Delta_{x_{1}}-\Delta_{y_{1}}+V_{1}\left(x_{1}\right)+V_{2}\left(x_{2}\right)+V_{3}\left(x_{3}\right)-E\right) \psi\left(x_{1}, y_{1}\right)=0
$$

Figure: Jacobi coordinates

Schrödinger equation

The nonrelativistic Schrödinger equation ($\hbar=1$)
$\left(-\frac{\Delta_{\boldsymbol{r}_{1}}}{2 m_{1}}-\frac{\Delta_{\boldsymbol{r}_{2}}}{2 m_{2}}-\frac{\Delta_{\boldsymbol{r}_{3}}}{2 m_{3}}+V_{1}\left(r_{23}\right)+V_{2}\left(r_{13}\right)+V_{3}\left(r_{12}\right)-E\right) \Psi\left(r_{1}, r_{2}, r_{3}\right)=0$.
In the center of mass coordinate frame and reduced Jacobi coordinates $x_{1} \rightarrow \sqrt{2 m_{23}} x_{1}, y_{1} \rightarrow \sqrt{2 m_{1,23}} y_{1}:$

$$
\left(-\Delta_{\boldsymbol{x}_{1}}-\Delta_{\boldsymbol{y}_{1}}+V_{1}\left(x_{1}\right)+V_{2}\left(x_{2}\right)+V_{3}\left(x_{3}\right)-E\right) \psi\left(x_{1}, \boldsymbol{y}_{1}\right)=0
$$

+ complicated boundary conditions on ψ at infinity, in different parts of the configuration space:
$\left\{\begin{array}{l}y_{\alpha} \rightarrow \infty, \\ x_{\alpha} \text { fixed }\end{array}\right.$ or $\left\{\begin{array}{l}y_{1} \rightarrow \infty, \\ x_{1} \rightarrow \infty\end{array}\right.$
(describe different configurations after collision - e.g. rearrangement, breakup)
Figure: The wave function

Faddeev equations

The system of Faddeev equations

$$
\left\{\begin{array}{l}
\left(-\Delta_{x_{1}}-\Delta_{y_{1}}+V_{1}\left(x_{1}\right)-E\right) \psi_{1}\left(x_{1}, y_{1}\right)=-V_{1}\left(x_{1}\right)\left(\psi_{2}+\psi_{3}\right) \\
\left(-\Delta_{x_{2}}-\Delta_{y_{2}}+V_{2}\left(x_{2}\right)-E\right) \psi_{2}\left(x_{2}, y_{2}\right)=-V_{2}\left(x_{2}\right)\left(\psi_{1}+\psi_{3}\right) \\
\left(-\Delta_{x_{3}}-\Delta_{y_{3}}+V_{3}\left(x_{3}\right)-E\right) \psi_{3}\left(x_{3}, y_{3}\right)=-V_{3}\left(x_{3}\right)\left(\psi_{1}+\psi_{2}\right)
\end{array}\right.
$$

Asymptotic uncoupling of components!
$\psi=\psi_{1}+\psi_{2}+\psi_{3}$
The r.h.s.'s - "sources".
Figure: The ψ_{1} component.
In the case of charged particles $V_{\alpha}\left(x_{\alpha}\right)=\sqrt{2 \mu_{\alpha}} Z_{\beta} Z_{\gamma} / x_{\alpha}$ the square integrability of sources breaks!

Faddeev equations

The system of Faddeev equations

$$
\left\{\begin{array}{l}
\left(-\Delta_{\boldsymbol{x}_{1}}-\Delta_{\boldsymbol{y}_{1}}+V_{1}\left(x_{1}\right)-E\right) \psi_{1}\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1}\right)=-V_{1}\left(x_{1}\right)\left(\psi_{2}+\psi_{3}\right) \\
\left(-\Delta_{\boldsymbol{x}_{2}}-\Delta_{\boldsymbol{y}_{2}}+V_{2}\left(x_{2}\right)-E\right) \psi_{2}\left(x_{2}, \boldsymbol{y}_{2}\right)=-V_{2}\left(x_{2}\right)\left(\psi_{1}+\psi_{3}\right) \\
\left(-\Delta_{\boldsymbol{x}_{3}}-\Delta_{\boldsymbol{y}_{3}}+V_{3}\left(x_{3}\right)-E\right) \psi_{3}\left(\boldsymbol{x}_{3}, \boldsymbol{y}_{3}\right)=-V_{3}\left(x_{3}\right)\left(\psi_{1}+\psi_{2}\right)
\end{array}\right.
$$

Modification in the charged particles case - the system of Faddeev-Merkuriev equations, $V_{\alpha}\left(x_{\alpha}\right)=V_{\alpha}^{(s)}\left(x_{\alpha}, y_{\alpha}\right)+V_{\alpha}^{(l)}\left(x_{\alpha}, y_{\alpha}\right)$:

$$
\begin{aligned}
& \left(-\Delta_{\boldsymbol{x}_{1}}-\Delta_{\boldsymbol{y}_{1}}+V_{1}\left(x_{1}\right)+\sum_{\beta \neq 1} V_{\beta}^{(l)}-E\right) \psi_{1}\left(x_{1}, y_{1}\right)=-V_{1}^{(s)}\left(\psi_{2}+\psi_{3}\right), \\
& \left(-\Delta_{\boldsymbol{x}_{2}}-\Delta_{\boldsymbol{y}_{2}}+V_{2}\left(x_{2}\right)+\sum_{\beta \neq 2} V_{\beta}^{(l)}-E\right) \psi_{2}\left(x_{2}, y_{2}\right)=-V_{2}^{(s)}\left(\psi_{1}+\psi_{3}\right), \\
& \left(-\Delta_{\boldsymbol{x}_{3}}-\Delta_{\boldsymbol{y}_{3}}+V_{3}\left(x_{3}\right)+\sum_{\beta \neq 3} V_{\beta}^{(l)}-E\right) \psi_{3}\left(x_{3}, y_{3}\right)=-V_{3}^{(s)}\left(\psi_{1}+\psi_{2}\right) .
\end{aligned}
$$

The cut-off function

$$
V_{\alpha}\left(x_{\alpha}\right)=V_{\alpha}^{(s)}\left(x_{\alpha}, y_{\alpha}\right)+V_{\alpha}^{(l)}\left(x_{\alpha}, y_{\alpha}\right), \quad V_{\alpha}^{(s)}\left(x_{\alpha}, y_{\alpha}\right)=\chi_{\alpha}\left(x_{\alpha}, y_{\alpha}\right) V_{\alpha}\left(x_{\alpha}\right) .
$$

The Merkuriev cut-off function ($\nu_{\alpha}>2$):

$$
\chi_{\alpha}\left(x_{\alpha}, y_{\alpha}\right)=\frac{2}{1+e^{\left(x_{\alpha} / x_{0}\right)^{\nu_{\alpha} \alpha} /\left(1+y / y_{0}\right)}}
$$

Plotted in the case $\nu_{\alpha}=2.01, x_{0 \alpha}=2.0, y_{0 \alpha}=8.0$:

The cut-off function

We use a cut-off function $\chi_{\alpha}\left(x_{\alpha}\right)$ in the two-body configuration space:

$$
\begin{gathered}
V_{\alpha}\left(x_{\alpha}\right)=V_{\alpha}^{(s)}\left(x_{\alpha}\right)+V_{\alpha}^{(l)}\left(x_{\alpha}\right), \quad V_{\alpha}^{(s)}\left(x_{\alpha}\right)=\chi_{\alpha}\left(x_{\alpha}\right) V_{\alpha}\left(x_{\alpha}\right) \\
\chi_{\alpha}\left(x_{\alpha}\right)=\frac{2}{1+e^{\left(x_{\alpha} / x_{0 \alpha}\right)^{\nu_{\alpha}}}}
\end{gathered}
$$

Plotted in the case $\nu=2.01, x_{0}=5.0$:

Total angular momentum representation

The components expansion in terms of the eigenstates with total angular momentum J, its projection M and parity τ $F_{M M^{\prime}}^{J \tau}=\left(D_{M, M^{\prime}}^{J}+\tau(-1)^{M^{\prime}} D_{M,-M^{\prime}}^{J}\right) / \sqrt{2+2 \delta_{M^{\prime} 0}}$:

$$
\psi_{\alpha}\left(x_{\alpha}, y_{\alpha}\right)=\sum_{J, \tau, M, M^{\prime}} \psi_{\alpha M M^{\prime}}^{J \tau}\left(x_{\alpha}, y_{\alpha}, \theta_{\alpha}\right) F_{M M^{\prime}}^{J \tau}\left(\Omega_{\alpha}\right),
$$

$\Omega_{\alpha}-3$ Euler angles, $x_{\alpha}, y_{\alpha}, \theta_{\alpha}$ - coordinates in a plane containing particles, $D_{M, M^{\prime}}^{J}$ - Wigner D-functions.

J, M, τ are the integrals of motion.
Projecting the equations onto a subspace of given J, M and τ we get a set of independent systems of 3d equations connecting $\psi_{\alpha M M^{\prime}}^{J \tau}$ with different M^{\prime} and α.

The $J=0$ case

We consider the case $J=0: \psi_{\alpha}\left(x_{\alpha}, y_{\alpha}\right)=\psi_{\alpha}\left(X_{\alpha}\right), X_{\alpha}=\left\{x_{\alpha}, y_{\alpha}, \theta_{\alpha}\right\}$.
The Faddeev-Merkuriev equations ($\alpha=1,2,3$):

$$
\left\{T_{\alpha}+V_{\alpha}\left(x_{\alpha}\right)+\sum_{\beta \neq \alpha} V_{\beta}^{(l)}\left(x_{\beta}\right)-E\right\} \psi_{\alpha}\left(X_{\alpha}\right)=-V_{\alpha}^{(s)}\left(x_{\alpha}\right) \sum_{\beta \neq \alpha} \psi_{\beta}\left(X_{\beta}\right)
$$

where the kinetic energy operator:

$$
\begin{aligned}
T_{\alpha}=- & \frac{\partial^{2}}{\partial y_{\alpha}^{2}}-\frac{2}{y_{\alpha}} \frac{\partial}{\partial y_{\alpha}}-\frac{\partial^{2}}{\partial x_{\alpha}^{2}}-\frac{2}{x_{\alpha}} \frac{\partial}{\partial x_{\alpha}} \\
& -\left(\frac{1}{y_{\alpha}^{2}}+\frac{1}{x_{\alpha}^{2}}\right) \frac{\partial}{\partial z_{\alpha}}\left(1-z_{\alpha}^{2}\right) \frac{\partial}{\partial z_{\alpha}}, \quad z_{\alpha} \equiv \cos \left(\theta_{\alpha}\right)
\end{aligned}
$$

The $J=0$ case

We consider the case $J=0: \psi_{\alpha}\left(x_{\alpha}, y_{\alpha}\right)=\psi_{\alpha}\left(X_{\alpha}\right), X_{\alpha}=\left\{x_{\alpha}, y_{\alpha}, \theta_{\alpha}\right\}$.
Boundary conditions:

$$
\begin{aligned}
& \psi_{\alpha}\left(X_{\alpha}\right) \sim-\frac{\phi_{n_{0} \ell_{0}}\left(x_{\alpha}\right)}{x_{\alpha} y_{\alpha}} Y_{\ell_{0} 0}\left(\theta_{\alpha}, 0\right) e^{-i \vartheta_{\ell_{0}}\left(y_{\alpha}, p_{n_{0}}\right)} \delta_{\alpha, \alpha_{0}} \\
& \quad+\sum_{n \ell} \frac{\phi_{n \ell}\left(x_{\alpha}\right)}{x_{\alpha} y_{\alpha}} Y_{\ell 0}\left(\theta_{\alpha}, 0\right) \sqrt{\frac{p_{n_{0}}}{p_{n}}} S_{n \ell, n_{0} \ell_{0}} e^{+i \vartheta_{\ell}\left(y_{\alpha}, p_{n}\right)}
\end{aligned}
$$

where

- The indices $\{n, \ell\}$ and wave functions $\phi_{n \ell}\left(x_{\alpha}\right)$ specify various two-body Coulombic bound states of particles of pairing α with energy $\varepsilon_{n}=E-p_{n}^{2}$ (i.e., binary scattering channels).
- The Coulomb distorted phase $\vartheta_{\ell}\left(y_{\alpha}, p_{n}\right) \equiv p_{n} y_{\alpha}-\eta_{n} \ln \left(2 p_{n} y_{\alpha}\right)-\ell \pi / 2+\sigma_{n}, \sigma_{n}=\arg \Gamma\left(1+i \eta_{n}\right)$, the Sommerfeld parameter $\eta_{n} \equiv Z_{\alpha}\left(\sum_{\beta \neq \alpha} Z_{\beta}\right) \sqrt{2 m_{\alpha(\beta \gamma)}} /\left(2 p_{n}\right)$.
- $S_{n \ell, n_{0} \ell_{0}}$ are the S-matrix elements (\Rightarrow cross sections).

Numerical solution

Few modifications:

- V_{3} repulsive, can be included in the left-hand side of equations by choosing $\chi_{3}=0$ (\Rightarrow two equations).
- the asymptotic particle-atom Coulomb potential $V_{\alpha}^{\text {eff }}\left(y_{\alpha}\right)=2 p_{n} \eta_{n} / y_{\alpha}$ introduced explicitly in equations (\Rightarrow Coulomb singularity can be effectively inverted).
- introduce $\widetilde{\psi_{\alpha}}\left(X_{\alpha}\right)=x_{\alpha} y_{\alpha} \psi_{\alpha}\left(X_{\alpha}\right)$ (\Rightarrow zero boundary conditions on the lines $x_{\alpha}=0, y_{\alpha}=0$).

$$
\begin{aligned}
\left\{\widetilde{T_{\alpha}}+V_{\alpha}\left(x_{\alpha}\right)\right. & \left.+V_{\alpha}^{\mathrm{eff}}\left(y_{\alpha}\right)-E\right\} \widetilde{\psi_{\alpha}}\left(X_{\alpha}\right)=-\frac{x_{\alpha} y_{\alpha}}{x_{\beta} y_{\beta}} V_{\alpha}^{(s)}\left(x_{\alpha}\right) \widetilde{\psi_{\beta}}\left(X_{\beta}\right) \\
& -\left[V_{\beta}^{(l)}\left(x_{\beta}\right)+V_{3}\left(x_{3}\right)-V_{\alpha}^{\mathrm{eff}}\left(y_{\alpha}\right)\right] \widetilde{\psi_{\alpha}}\left(X_{\alpha}\right), \quad \alpha=1,2
\end{aligned}
$$

with $\widetilde{T_{\alpha}}=-\frac{\partial^{2}}{\partial y_{\alpha}^{2}}-\frac{\partial^{2}}{\partial x_{\alpha}^{2}}-\left(\frac{1}{y_{\alpha}^{2}}+\frac{1}{x_{\alpha}^{2}}\right) \frac{\partial}{\partial z_{\alpha}}\left(1-z_{\alpha}^{2}\right) \frac{\partial}{\partial z_{\alpha}}$.

Numerical solution

- real asymptotic boundary conditions (\Rightarrow real solutions $\widetilde{\psi_{\alpha}}$):

$$
\begin{aligned}
& \widetilde{\psi_{\alpha}}\left(X_{\alpha}\right) \sim-\phi_{n_{0} \ell_{0}}\left(x_{\alpha}\right) Y_{\ell_{0} 0}\left(\theta_{\alpha}, 0\right) \sin \left(\vartheta_{\ell 0}\left(y_{\alpha}, p_{n_{0}}\right)\right) \delta_{\alpha, \alpha_{0}} \\
&+\sum_{n \ell} \phi_{n \ell}\left(x_{\alpha}\right) Y_{\ell 0}\left(\theta_{\alpha}, 0\right) \sqrt{\frac{p_{n_{0}}}{p_{n}}} K_{n \ell, n_{0} \ell_{0}} \cos \left(\vartheta_{\ell}\left(y_{\alpha}, p_{n}\right)\right)
\end{aligned}
$$

The matrix relation between the S - and K-matrices:

$$
S=(i I+K)^{-1} \cdot(i I-K)
$$

Numerical solution

Parallel object-oriented program.

Figure: Hermite basis S_{5}^{3} splines

Basic ideas:

- Products of Hermite basis S_{5}^{3} splines (local!) in each coordinate for expanding the components $\widetilde{\psi}_{\alpha}$; collocation method \Rightarrow sparse discretized version of operators of the r.h.s of the system of equations.
- The left-hand side matrix is used for preconditioning in the GMRES variant of Arnoldi iterations.
- The left-hand side matrix is (almost) a sum of tensor products of "one-dimensional" matrices of splines and their second derivatives values \Rightarrow inverted using the "tensor trick".
$e^{+} e^{-} \overline{\mathrm{p}}$ system

$\overline{\mathrm{H}}(\mathrm{n}=1)$	$\operatorname{Ps}(\mathrm{n}=1)$	$\overline{\mathrm{H}}(\mathrm{n}=2)$ s, p	$\operatorname{Ps}(\mathrm{n}=2)$ s, p	$\overline{\mathrm{H}}(\mathrm{n}=3)$ $\mathrm{s}, \mathrm{p}, \mathrm{d}$	
waves			-0.1249	-0.0625	-0.0555
$\mathrm{a} . \mathrm{u}$.	-0.4997	-0.250	-1.45		

Table: Energy thresholds of $e^{+} e^{-\bar{p}}$ binary channels

6 open channels between $\operatorname{Ps}(\mathrm{n}=2)$ and $\overline{\mathrm{H}}(\mathrm{n}=3)$ thresholds.
All K-matrix elements calculation for one value of E :
(r.h.s.) matrix linear size $3,241,020$ with 432 nonzero elements in a row
($\approx 20 \mathrm{~Gb}$) , ≈ 3 hours (32 cores).

Cross sections $e^{+} e^{-} \overline{\mathrm{p}}$

Ramsauer effect

Figure: $\operatorname{Ps}(1, s) \rightarrow \mathrm{Ps}(1, \mathrm{~s})$ cross section Figure: $\overline{\mathrm{H}}(2, \mathrm{~s}) \rightarrow \overline{\mathrm{H}}(2, \mathrm{p})$ cross section

Antihydrogen formation

Gravitational Behaviour of Antihydrogen at Rest (experiment on antimatter at CERN).
© M. Valdes, M. Dufour, R. Lazauskas, and P.-A. Hervieux. Phys. Rev. A, 97:012709, 2018.

Gailitis-Damburg oscillations

Predicted: $\quad \log \left(E_{n}-E_{\text {th }}\right)=A n+B$
where E_{n} - the energy of the position cross section's nth maximum, $E_{\text {th }}$ — the threshold energy,
A and B - constants.
M. Gailitis and R. Damburg. Proc. Phys. Soc., 82:192-200, 1963.

Gailitis-Damburg oscillations

Figure: Maxima of $\mathrm{Ps}(1) \rightarrow \overline{\mathrm{H}}(1)$ cross section positions

Figure: Maxima of $\operatorname{Ps}(1) \rightarrow \overline{\mathrm{H}}(2, s)$ cross section positions

Predicted: $\quad \log \left(E_{n}-E_{\text {th }}\right)=A n+B$
where E_{n} - the energy of the position cross section's nth maximum, $E_{\text {th }}$ - the threshold energy,
A and B - constants.
M. Gailitis and R. Damburg. Proc. Phys. Soc., 82:192-200, 1963.

Gailitis-Damburg oscillations

Figure: Maxima of $\mathrm{Ps}(1) \rightarrow \overline{\mathrm{H}}(1)$ cross section positions

Figure: Maxima of $\operatorname{Ps}(1) \rightarrow \overline{\mathrm{H}}(2, p)$ cross section positions

Predicted: $\quad \log \left(E_{n}-E_{\text {th }}\right)=A n+B$
where E_{n} - the energy of the position cross section's nth maximum, $E_{\text {th }}$ - the threshold energy,
A and B - constants.
M. Gailitis and R. Damburg. Proc. Phys. Soc., 82:192-200, 1963.

	$\mathrm{He}^{+}(\mathrm{n}=1)$	$\mathrm{He}^{+}(\mathrm{n}=2)$ s, p	$\mathrm{Ps}(\mathrm{n}=1)$	$\mathrm{He}^{+}(\mathrm{n}=3)$ $\mathrm{s}, \mathrm{p}, \mathrm{d}$	$\mathrm{He}^{+}(\mathrm{n}=4)$ $\mathrm{s}, \mathrm{p}, \mathrm{d}, \mathrm{f}$
waves		-1.9997	-0.4999	-0.25	-0.2222

Table: Energy thresholds of $e^{+} e^{-} \mathrm{He}^{++}$binary channels

7 open channels between $\mathrm{He}^{+}(\mathrm{n}=3)$ and $\mathrm{He}^{+}(\mathrm{n}=4)$ thresholds.

Cross sections $e^{+} e^{-} \mathrm{He}^{++}$

S.L. Yakovlev (SPbU)
$e^{-}-\overrightarrow{\mathrm{H}}\left(e^{+}-\mathrm{H}\right)$ and $e^{+}-\mathrm{He}^{+}$
01 November 2018
$e^{+} e^{-} \mathrm{He}^{++}$resonances

$$
\begin{array}{l|l|l|}
\hline(-0.3705,0.1294) & \left(-0.250014,7.4 \cdot 10^{-6}\right) & (-0.1856,0.0393) \\
\hline
\end{array}
$$

Table: Known resonance energies $\left(E_{r}, \Gamma\right)$ (in a.u.)
A. Igarashi and I. Shimamura. Phys. Rev. A, 70:012706, 2004

$e^{+} e^{-} \mathrm{He}^{++}$resonances

Process:	not charged	charged	
elastic	const	$1 / p^{2}$	$p \equiv \sqrt{E-E_{\text {th }}}$
slow \rightarrow fast rearrangement fast \rightarrow slow rearrangement	$\begin{gathered} 1 / p \\ p \end{gathered}$	$\begin{aligned} & 1 / p^{2} \\ & \text { const } \end{aligned}$	

Complex rotation method applied to the Schrödinger equation: broad resonances exist!

Present work	$(-0.3704,0.1297)$	$(-0.1857,0.0395)$
$*$	$(-0.3705,0.1294)$	$(-0.1856,0.0393)$

Table: Broad resonance in the $e^{+} e^{-} \mathrm{He}^{++}$system energies $\left(E_{r}, \Gamma\right)$ (in a.u.)

* A. Igarashi and I. Shimamura. Phys. Rev. A, 70:012706, 2004

SUMMARY

(1) High precision method of solving three-body Coulomb scattering problem for $J=0$ on the base of 3D FM equations without partial waves decomposition is developed.
(2) All 36 cross sections of scattering in $e^{-} e^{+} \bar{p}$ below the $\overline{\mathrm{H}}(n=3)$ threshold are calculated with high resolution in energy, reproducing all known Feshbach resonances.

- The Ramsauer minima in cross sections are reproduced.
- The just above the $\overline{\mathrm{H}}(2)$ threshold Gailitis-Damburg oscillations of 2 rearrangement cross sections are discovered for the first time.
(3) All 49 cross sections of scattering in $e^{+} e^{-} \mathrm{He}^{++}$systems are calculated below the $\mathrm{He}^{+}(\mathrm{n}=4)$ threshold.
- Two known resonances are confirmed by complex rotation approach. Broad resonances do not contribute in cross section profiles.
- The narrow resonance at the $\mathrm{Ps}(1)$ threshold leads to the threshold anomaly in $\mathrm{He}^{+}(1)-\mathrm{Ps}(1)$ rearrangement cross section.
(9) The extension of current approach for $J>0$ case is in progress.

Publications

- Algorithm
V. Roudnev, S. Yakovlev Improved tensor-trick: application to helium trimer/ Computer Physics Communications, V. 126, (2000), 162-164
- Cut-off function

Vitaly A. Gradusov, Vladimir A. Roudnev and Sergey L. Yakovlev Merkuriev cut-off in $e^{+}-\mathrm{H}$ multichannel scattering calculations/ Atoms 2016, 4(1), 9

- Results
V. A. Gradusov, V. A. Roudnev, E. A. Yarevsky and S. L.

Yakovlev High resolution calculation of low energy scattering in $e^{-} e^{+} \bar{p}$ and $e^{+} e^{-} \mathrm{He}^{++}$systems via Faddeev-Merkuriev equations/ arXiv:1810.11123

Thank you for your attention!

