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Preface

The International Conference on Nuclear Theory in the Supercomputing Era — 2018
(NTSE-2018) brought together experts in nuclear theory and high-performance com-
puting in the city of Daejeon, Republic of Korea, from October 29th through Novem-
ber 2nd, 2018. This conference series was started in 2012 by the NTSE-2012 and
HITES-2012 conferences which were proceeded later under the common title NTSE.
The NTSE conferences focus on forefront challenges in physics, namely the funda-
mentals of nuclear structure and reactions, the origin of the strong inter-nucleon
interactions from QCD, and computational nuclear physics with leadership class su-
percomputer facilities to provide forefront simulations leading to new discoveries.

The conference welcomed many young scientists, including graduate students in
nuclear physics, computational science and applied mathematics. All participants
together made the conference a great success.

The conference topics,

(1) Ab initio nuclear structure;
(2) Microscopic approaches to nuclear reactions;
(3) Origin and properties of the strong interactions; and
(4) Computational science and applied mathematics,

reflect current world-wide research interests and encompass a broad area of funda-
mental physics and high-performance computing.

We would like to express our appreciation to all participants of the NTSE-2018
conference, to all contributors to these proceedings, to all members of the Scientific
Advisory Committee and to the NTSE-2018 sponsors.

The organizing committee:

Youngman Kim (Chair), Institute for Basic Science, Republic of Korea
Kihyeon Cho, Korea Institute of Science and Technology Information, Republic of

Korea
Kyujin Kwak, Ulsan National Institute of Science and Technology, Republic of

Korea
Alexander Mazur, Pacific National University, Russia
Ik Jae Shin (Scientific secretary), Institute for Basic Science, Republic of Korea
Andrey Shirokov (Vice Chair), Moscow State University, Russia
James Vary (Vice Chair), Iowa State University, USA
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• Furong Xu, Peking University, China

• Xingbo Zhao, Institute if Modern Phesics, China
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Daejeon16 NN Interaction
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Abstract

We have developed a realistic nucleon-nucleon (NN) interaction, dubbed
Daejeon16. We start from a SRG (similarity renormalization group) evolved
chiral N3LO interaction. We then apply PETs (phase-equivalent transforma-
tions) to the SRG-evolved interaction. It turned out that the obtained in such
a way Daejeon16 NN interaction provides a good description of various ob-
servables in light nuclei without NNN forces. In this contribution, we present
our new results for some selected nuclei using the ab initio no-core shell model
(NCSM) with the Daejeon16 interaction. One of the interesting results is that
the ab initio NCSM with Daejeon16 clearly demonstrates the phenomenon of
parity inversion in 11Be, i. e., the ground state in 11Be has the spin-parity 1/2+

in experiments contrary to the expectation from the conventional shell model.

Keywords: No-core shell model; NN interaction; parity inversion

1 Introduction

As the advent of new rare isotope (RI) facilities such as FAIR, FRIB, HIRFL, NICA,
RAON, etc., we have much more opportunities to resolve big questions in science.
Nuclear theory for rare isotopes should be timely developed to face new precise ob-
servables from the forthcoming RI facilities which can produce exotic nuclei near
the nuclear drip line. Thanks to the rapid developments of high performance super-
computers, we have a good chance to conduct a rigorous study of nuclear structures
and reactions using fundamental (or realistic) nuclear interactions based on quantum
chromodynamics (QCD). Several promising ab initio methods have been developed
for nuclear structure and reactions [1–5].

The ab initio theory requires a high-quality realistic inter-nucleon interaction to
provide predictions for binding energies, spectra and other observables in nuclei with

Proceedings of the International Conference ‘Nuclear Theory in the Supercomput-
ing Era — 2018’ (NTSE-2018), Daejeon, South Korea, October 29 – November 2,
2018, eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2019, p. 15.

http://www.ntse.khb.ru/files/uploads/2018/proceedings/Kim.pdf.
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16 Y. Kim et al.

mass up to A ∼ 20 and selected heavier nuclear systems around closed shells. There-
fore, it is important to develop realistic nucleon-nucleon (NN) interactions with bet-
ter convergence that require less computational resources. In Ref. [6], we developed
a realistic NN interaction, dubbed Daejeon16, starting from a chiral N3LO interac-
tion which is SRG (similarity renormalization group) evolved. Then, we apply PETs
(phase-equivalent transformations) to the SRG-evolved interaction. It turned out that
Daejeon16 provides a good description of various observables in light nuclei without
NNN forces and also generates rapid convergence in ab initio calculations.

In this short write-up, after a brief description of Daejeon16, we present some
recent results from ab initio nuclear studies using the Daejeon16 NN interaction,
with an emphasis on the ground-state parity inversion in 11Be.

2 Daejeon16 and applications

Nuclei are composed of nucleons (protons and neutrons) and their properties such
as the binding energy and radius are largely governed by the nuclear force, i. e., the
strong interaction. Therefore, nuclear forces are at the core of the nuclear structure
studies. Meson exchange theory has been successfully applied to obtain realistic
nuclear potentials such as CD-Bonn, Argonne V18, etc. A bit more down to the
mother theory of the nuclear force, i. e., QCD, nuclear interactions from the chiral
effective field have been developed: N2LO, N3LO, etc. For ab initio nuclear studies,
the JISP16 interaction [7], which is phenomenological, has been widely used. Here,
JISP stands for J-matrix Inverse Scattering Potential. Recently, a new nuclear force
dubbed ‘Daejeon16’ has been developed from a N3LO NN interaction. Daejeon is
a city in Korea where a next generation RI facility called RAON will be built and
16 is from 16O which is the heaviest nucleus used in fitting process. In Ref. [6], the
authors start from Idaho N3LO NN interaction and apply to it PETs which preserve
scattering phase shifts and bound state energy of the two-nucleon system (deuteron).
The optimal set of PET parameters is determined to describe the binding energies of
3H, 4He, 6Li, 8He, 10B, 12C and 16O nuclei and excitation energies of a few narrow
excited states: the two lowest excited states with (Jπ, T) =(3+, 0) and (0+, 1) in 6Li
and the first excited states (1+, 0) in 10B and (2+, 0) in 12C. For a sketch about the
procedure to obtain JISP16 and Daejeon16, we refer to Fig. 1.

It turned out that the Daejeon16 works well for light p-shell nuclei compared with
other established interactions such as JISP16, for instance see Fig. 2.

Now, we move on to some recent results using the Daejeon16 interaction.

2.1 Parity inversion in 11Be

11Be shows an interesting feature which is opposite to the expectation from the con-
ventional shell model. Experimentally, the ground state of 11Be is 1/2+ [9], while it
was expected to be a 1/2− state in the conventional shell model. To tackle the issue
of the parity inversion in 11Be, we evaluate the spectrum of 11Be using the ab initio
no-core shell model (NCSM) with the Daejeon16 interaction and extrapolate the re-
sults to the infinite basis space using the method of Ref. [8]. For the two lowest-lying
states, we obtain

1/2+ : − 65.22(7) MeV, 1/2− : − 64.63(2) MeV .
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Figure 1: A sketch of the procedure to obtain Daejeon16 compared with JISP16.

The numbers in parenthesis show the uncertainties of the extrapolations of the en-
ergies. This result is compared with the experiment and with the one from JISP16
in Fig. 3, which shows that the ab initio NCSM with Daejeon16 successfully repro-
duces the parity inversion in 11Be. Note that the JISP16 is unable to reproduce the

Figure 2: The ground state energies of several p-shell nuclei using Daejeon16 and
JISP16 compared with experiment. The calculations were performed within the
NCSM and extrapolated to the infinite basis space using the methods of Ref. [8];
the shaded areas show the uncertainties of the extrapolations. It is noted that all
shown nuclei were used to PET fitting as mentioned in the text.
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Figure 3: Energies of the ground and first-excited states of 11Be calculated within
the ab initio NCSM with Daejeon16 and JISP16. The values are obtained using
extrapolation B [8] for each highest Nmax at the variational minima and the error
bars are given as the differences with the previous Nmax extrapolation. Experimental
values are taken from Refs. [9, 10].

parity inversion (the current evaluation of the uncertainties of the JISP16 results is
yet preliminary).

For an earlier study of the parity inversion in ab initio nuclear theory, we refer to
Ref. [11].

2.2 Deep learning for ab initio nuclear theory

Recently, we proposed a feed-forward artificial neural network (ANN) method as an
extrapolation tool for ab initio nuclear theory [12, 13]. Using the ab initio NCSM
with Daejeon16 and the feed-forward ANN method, we predicted the ground-state
energy and the ground-state point-proton root-mean-square (rms) radius of 6Li. We
observed that our results are nearly converged at Nmax = 70 (ground-state energy)
and Nmax = 90 (ground-state point-proton rms radius). Therefore, we concluded
that the designed ANNs are sufficient to produce results for these two very different
observables utilizing the NCSM results obtained in small basis spaces that exhibit the
independence of basis space parameters in the limit of extremely large matrices [12,13].

Before closing this Section, we refer to Refs. [14, 15], where resonance states such
as tetraneutron and 5He were studied in the framework of the single-state harmonic
oscillator representation of scattering equations and the ab initio NCSM with Dae-
jeon16 and some other modern NN interactions.
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3 Summary

In this contribution, we briefly introduced the Daejeon16 NN interaction. We then
presented some of interesting results from the ab initio NCSM studies with Daejeon16
and some other NN interactions such as JISP16. A remarkable result is that the
parity inversion in 11Be is successfully reproduced in our study with Daejeon16.

We will continue to use Daejeon16 and some other modern NN interactions for
various ab initio nuclear studies to be well-prepared for the forthcoming RI facilities.
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Abstract

I discuss ab initio predictions for light and intermediate-mass nuclei as well
as nuclear matter. Problems and open issues are outlined and an attempt is
made to relate them to specific deficiencies of the chiral two- and many-nucleon
forces currently in use. In particular, I identify the softness of the NN potential
(due to non-locality) as one important factor for the improvement of microscopic
predictions. This finding is very much in tune with the recent investigation by
Lu et al. (arXiv:1812.10928) where — within a simple, but realistic model — it
is shown that proper nuclear matter saturation requires a considerable amount
of non-locality in the NN interaction.

Keywords: Chiral effective field theory; two-nucleon forces; many-body forces;
nuclear matter saturation

One of the most fundamental aims in theoretical nuclear physics is to understand
nuclear structure and reactions in terms of the basic forces between nucleons. In
spite of intensive efforts for half a century [1], this goal has not been achieved. Why?
Microscopic nuclear structure has essentially two ingredients: quantum many-body
theory (QMBT) and nuclear forces. Thus, the reason for the failure can be that
either our QMBT methods are wrong or our forces are deficient — or both. Over
the past two decades, a large number of many-body approaches have been developed,
refined, and tested [2–5], with the result that all of them generate essentially the
same predictions when applied with the same forces. Hence, QMBT seems to be
under control and the failure is most likely due to persistent problems with nuclear
forces. Therefore, the focus of the rest of this paper is on nuclear interactions.

As discussed in numerous review papers [6–8], chiral effective field theory (EFT)
is presently perceived to be the best approach to nuclear forces since it generates the
forces needed (two- and many-body forces) on an equal footing and in a systematic
way.

Consequently, a large number of applications of chiral two-nucleon forces (2NFs)
together with chiral three-nucleon forces (3NFs) [and in some cases even four-nucleon
forces (4NFs)] have been conducted in recent years. These investigations include
few-nucleon reactions [9–14], the structure of light- and medium-mass nuclei [15–23],
infinite matter at zero temperature [6, 24–33] and finite temperature [34, 35], and
nuclear dynamics and response functions [36–42]. Although satisfactory predictions
have been obtained in many cases, specific problems persist. Among them is the

Proceedings of the International Conference ‘Nuclear Theory in the Supercomput-
ing Era — 2018’ (NTSE-2018), Daejeon, South Korea, October 29 – November 2,
2018, eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2019, p. 21.
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problem of describing the properties of medium-mass nuclei. For these nuclei, typi-
cally, the predicted radii are too small [43], while binding energies turn out to be too
large [44]. This has led some groups to fit the forces directly to the properties of those
medium-mass nuclei [45]. However, the resulting NN potential, which has become
known as NNLOsat [45], reproduces NN data only up to 35 MeV. Thus, the apparent
success of this potential comes, in part, at the expenses of a satisfactory description
of NN scattering above 35 MeV, which is not an acceptable solution of the problem.
The idea of the ab initio approach is that the 2NF is fixed by two-nucleon data and
the 3NF by three-nucleon data, with no further adjustments allowed. Applications in
systems with A > 3 are then true predictions.

A recent study [22] has provided an indication for how to overcome the overbinding
problem: In Ref. [25], a nucleon-nucleon potential denoted by 1.8/2.0(EM) (which
fits the NN data up to 290 MeV laboratory energy) was constructed to be extremely
soft. Together with appropriate 3NFs (fit to the 3H binding energy and the 4He
charge radius) it was used to calculate the ground-state properties of closed shell
nuclei ranging from 4He to 78Ni [22]. The ground-state energies were reproduced
very well, while the radii came out slightly too small. In another investigation [23],
in which the same forces were applied, the structure of the light Tin isotopes were
studied, reproducing both the binding energy and the small splitting between the
lowest Jπ = 7/2+ and 5/2+ states of 100Sn. Moreover, in Ref. [25] it had been
demonstrated that the 2NF + 3NF combination used in the above-cited calculations
of finite nuclei reproduces nuclear matter saturation correctly. Thus, not surprisingly,
there is a firm link between nuclear saturation and the ground-state properties of
medium-mass and heavy nuclei.

Although, for reasons to be discussed below, these calculations do not provide a
true solution to the radius and overbinding problem, they do give us a clue for how
to overcome these problems: The 2NF has to be extremely soft, in fact, the 2NF
should be such that applying it alone leads to substantial overbinding. Then adding
a repulsive density-dependent 3NF contribution makes it possible to bring about the
correct nuclear matter saturation [25].

In theory, one may also think of other ways to explain nuclear saturation. Namely,
opposite to the above scheme, one may start from a relatively repulsive 2NF, leading
to underbinding, and then adding an attractive, density-dependent 3NF contribution.
An example for this scenario is the combination of the Argonne V18 (AV18) 2NF [46]
plus the Urbana IX 3NF [47]. However, the nuclear matter saturation density and
energy could not be reproduced by this combination [48] and medium-mass nuclei
are severely underbound [49]. Similar problems occur, when AV18 is combined with
the Illinois-7 3NF [49, 50]. So, it appears that the combination of repulsive 2NF plus
attractive 3NF does not work in reality.

Thus, overbinding the many-body system by the 2NF and creating saturation
by the 3NF contribution appears to be the only working approach. On a historical
note, we mention that this is also the way how a quantitative explanation of nuclear
saturation was achieved, for the first time, applying the so-called Dirac–Brueckner–
Hartree–Fock approach [51–57], see Fig. 1.

However, the investigations of Refs. [22, 23, 25] can only be perceived as test cal-
culations, because they are not fully consistent. The 2NF used in [22, 23, 25] is very
soft because it is renormalization group (RG) evolved from a harder potential. But,
to preserve the attraction created by the softness of the potential, the induced 3NF
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Figure 1: Ground state energy per particle of symmetric nuclear matter, E/A, as a
function of the Fermi momentum, kF . The dashed lines are the predictions from 2NFs
while the solid lines include the 3NF effects as generated by the Dirac–Brueckner–
Hartree–Fock approach. Symbols denoted the saturation points from a variety of
2NFs. The shaded box represents the approximate empirical saturation energy and
density. Taken from Ref. [52].

is left out. Or, in other words, the RG evolved potential is treated like an original
potential. This was useful and insightful as a test calculation to show the principle,
but it cannot be viewed as a fully consistent procedure. What we need now are fully
consistent calculations, which take into account the above observations. For this,
NN potentials are required that are soft from the outset. Therefore, recently, such
NN potentials have been constructed through all order from leading-order (LO) to
next-to-next-to-next-to-next-to-leading order (N4LO) [58].

There are many ways to quantify the softness of a NN potential. Weinberg eigen-
values have proven to be excellent for this purpose [59]. Other, simpler parameters
are the D-state probability of the deuteron, PD, with low PD being a sign of soft-
ness. The triton binding energy, Bt, as predicted by the 2NF alone, is also a good
indicator for smoothness. Based upon the experiences with the potentials used in
Refs. [22,23,25], PD < 4.5% and Bt > 8.0 MeV is desirable for the necessary softness
of the 2NF. The soft NN potentials of Ref. [58] complemented by suitable 3NFs are
generating promising nuclear matter predictions [60, 61], cf. Fig. 2.

The softness of these potentials can be clearly attributed to their non-local char-
acter. This finding is very much in tune with the recent investigation of Ref. [62]
where — within a simple, but realistic model — it is shown that proper nuclear mat-
ter saturation requires a considerable amount of non-locality in the NN interaction.

It is now of interest to apply these new interactions in systematic studies of
intermediate-mass nuclei to see if the anticipated improvements of the microscopic



24 R. Machleidt

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

E
/A

 (
M

e
V

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

l (fm-3)

    
LO  

NLO 
N2LO

N3LO
N4LO

N2LO

N3LO

N4LO

Figure 2: Ground state energy per particle of symmetric nuclear matter, E/A, as a
function of density, ρ, from chiral 2NFs (dotted lines) and chiral 2NFs + 3NFs (solid
lines) at the denoted orders of chiral EFT. Note that at LO and NLO, the 3NFs
vanish. The grey box represents the approximate empirical saturation energy and
density. Taken from Ref. [61].

predictions do occur.
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Abstract

I discuss the foundations of Nuclear Lattice Effective Field Theory and dis-
cuss a number of applications to nuclear structure and reactions, including α-α
scattering, clustering in nuclei and the first steps towards calculations beyond
next-to-next-to-leading order.

Keywords: Effective field theory, nuclear forces, lattice, Monte Carlo methods

1 Introduction: The big picture

Nuclear physics is an important part of the Standard Model (SM) of the strong,
electromagnetic and weak interactions. While only about 5% of the energy-matter
content of the Universe is a visible matter, this mostly comes in the form of atomic
nuclei and is the stuff we are made off. In a way, the precise understanding of the
formation of strongly interacting composites in forms of hadrons and nuclei can be
seen as the last frontier of the SM. Furthermore, precision calculations in nuclear
physics may open the door to unravel physics beyond the SM, e. g., through the
electric dipole moments of light nuclei or neutrinoless ββ-decay. Last but not least,
as the generation of elements in the Big Bang and in stars exhibits some fine-tunings,
the variation of the fundamental constants of the SM gives access to the multiverse
and thus allows to investigate the anthropic view of the Universe.

Nuclear Lattice Effective Field Theory (NLEFT) combines the successful descrip-
tion of the forces between two, three and four nucleons in the continuum (see Evgeny
Epelbaum’s contribution to these Proceedings [1]), as initiated by Weinberg [2, 3],
with stochastic methods to numerically exactly solve the nuclear A-body problems.
NLEFT also allows to perform ab initio studies of nuclear reactions. This is an im-
portant feature as nuclear structure and reactions should be considered together. In
the following, I will briefly outline some basic ingredients and a number of results
obtained in this framework. More recent developments will be given in Dean Lee’s
contribution to these Proceedings [4].
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2 Basics of nuclear lattice simulations

Nuclear lattice simulations or NLEFT is a new method to investigate the nuclear few-
and many-body problem. In this approach, the Euclidean space-time is represented
by a discrete hyper-cubic volume, V = L × L × L × Lt, with the spatial (temporal)
length L (Lt) and corresponding lattice spacings a and at, respectively. The nucleons
are considered as the basic constituents and are placed on the lattice sites, see a
schematic pictorial in the left panel of Fig. 1. The interactions between the nucleons
are given by the same chiral EFT potentials as in the continuum, for a review see, e. g.,
Ref. [5] simply adapted to the lattice formulation, see, e. g., Ref. [6]. The Coulomb
interaction between the protons can also straightforwardly be included [7]. The chiral
NN interactions obey a power counting, where the leading order (LO) consists of the
static one-pion exchange and two four-nucleon contact terms. At higher orders, two-
pion exchange, corrections to the one-pion exchange as well as contact interactions
with an even number of derivatives appear. The latter are accompanied by low-
energy constants (LECs) that must be fitted to the nucleon-nucleon scattering data.
At the next-to-next-to-leading order (N2LO), the three-nucleon forces appear that
contain two new LECs, that must be fitted to a three-nucleon system or three-nucleon
scattering data. On the lattice, the finite lattice spacing entails an UV cut-off, as the
maximal momentum is given by pmax = π/a. For the most commonly used value
of the lattice spacing, a ≃ 2 fm, one has pmax = 314 MeV, which corresponds to a
very soft interaction. Monte Carlo (MC) methods can then be used to numerically
exactly solve the A-body problem for a given set of NN and NNN interactions.
A very important ingredient in these simulations is the approximate Wigner SU(4)
symmetry of the nuclear interactions, that is crucial in suppressing the malicious sign
oscillations that plague fermion MC studies at finite baryonic density [8, 9]. The
remaining sign oscillations are caused by SU(4) non-symmetric contact terms as well
as by the one-pion-exchange. For more details, see the review [10] and the upcoming
textbook [11].
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Figure 1: Left panel: Neutrons and protons on a space-time lattice with spatial
length L and lattice spacing a. Right panel: Evolution of a 4He nucleus in Euclidean
time.
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The central object of NLEFT is the A-nucleon correlation function,

ZA(t) = 〈ΨA| exp(−tH)|ΨA〉, (1)

with t being the Euclidean time and ΨA being a Slater determinant of A free nucleons
or a more sophisticated correlated initial/final state. From the transient energy

EA(t) = − d

dt
lnZA(t) (2)

one can infer the ground state energy of the A-nucleon system via

E0
A = lim

t→∞
EA(t). (3)

Similarly, the expectation value of any normal-ordered operator follows from

ZO
A = 〈ΨA| exp(−tH/2)O exp(−tH/2) |ΨA〉 (4)

in the limit of infinite Euclidean time,

lim
t→∞

(ZO
A (t)/ZA(t)) = 〈ΨA|O |ΨA〉. (5)

Excited state properties can also be extracted. In order to compute the low-lying
excited states of a given nucleus, the Euclidean time projection method is generalized
to a multi-channel calculation [12]. The Euclidean time evolution of a 4He nucleus is
depicted in the right panel of Fig. 1. Initial states are either properly antisymmetrized
free standing waves of four particles or more complex correlated configurations. With
the help of auxiliary fields, the multi-nucleon interactions and the pion exchanges can
be mapped onto insertions on a single nucleon world-line, which makes such a compu-
tation most accessible for parallel computing. One major advantage of this approach
is that all possible configurations are sampled, in particular also four nucleons, on one
lattice site. This already lets one suspect that clustering will emerge naturally in this
approach.

3 Results from nuclear lattice simulations

3.1 General remarks

Before discussing results obtained using NLEFT, a few general remarks are in order.
As already stressed, nuclear structure and reactions dynamics should be treated on the
same footing. This has important implications for the simulations. While originally
all LECs have been determined in few-nucleon systems, which has led to a number of
intriguing results, it was realized later that nucleus-nucleus collisions should also be
used for determining some LECs as this appears to be advantageous in pinning down
more precisely the three- and higher-body forces. Furthermore, the framework of
nuclear lattice simulations could only be established as a novel quantum many-body
method since one was able to solve problems that before could not be mastered in
the well established schemes based on the same chiral forces.

Most results in NLEFT have been obtained with an NNLO action that involves a
Gaussian smearing of the two LO contact interactions, with the smearing parameter
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fixed from the average S-wave np effective range. The canonical lattice had a coarse
lattice spacing of a = 1.97 fm and L ≃ 10 ... 16 fm depending on the nucleus or system
under investigation. For such a coarse lattice, the NLO and NNLO corrections can be
treated as perturbations, in particular, the contribution from the two-pion exchange
can be absorbed in the LECs of the 4N operators. At this order, one has 11 LECs
related to np, nn and pp scattering as well as two 3N LECs. The 2N LECs were
determined from fits to the np phase shifts using the spherical wall method [13] and
its refinement [14] as well as to the nn and pp scattering lengths. The 3N LECs were
determined from a fit to the triton binding energy and the spin-doublet neutron-
deuteron scattering phase shift. The first non-trivial prediction is then the 3He–3H
binding energy difference [7,15] which comes out as 0.78(5) MeV close to the empirical
value of 0.76 MeV. Ground state energies up to 28Si can now be calculated with a few
percent accuracy and an error of about 1%, see Refs. [16, 17]. Note, however, that
at this order there is still some residual lattice spacing dependence when a is varied
between 1 and 2 fm, see Refs. [18, 19]. An effective four-nucleon operator has been
utilized to overcome this effect. This residual lattice spacing dependence, however,
disappears at NNNLO as than the np phase shifts are independent on a for a varying
between 1 and 2 fm within uncertainties as recently shown in Ref. [20].

Excited states can be computed with a comparable accuracy. In Fig. 2, the LO
calculation of the first two 0+ states in 12C is shown, starting from various initial
states (plane waves and alpha cluster states) [21]. One set of these initial states
directly gives the ground state (left panel), whereas the other set first traces out
the first excitation with the same quantum numbers as shown by the intermediate
plateau (right panel). This is the famous Hoyle state [22]. The thermalization of
various initial states with growing Euclidean time to almost the same energy gives a

-110

-100

-90

-80

-70

-60

-50

 0  0.02  0.04  0.06  0.08  0.1  0.12

E
(t

) 
(M

eV
)

t (MeV-1)

(I)

LO [A]
LO [B]
LO [∆]

-110

-100

-90

-80

-70

-60

-50

 0  0.02  0.04  0.06  0.08  0.1  0.12

t (MeV-1)

(II)

LO [C]
LO [D]
LO [Λ]

Figure 2: Results for the lowest 0+ states in 12C at LO. The left panel shows the
results using various initial states, each of which approaches the ground state energy
with increasing Euclidean time t. The right panel shows the results using other initial
states. These trace out an intermediate plateau at an energy ∼7 MeV above the
ground state.
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handle on the systematic uncertainties inherent to the simulations. For more details,
see, e. g., Ref. [17].

Using this framework, a number of interesting results has been obtained, such as
the first ab initio calculation of the Hoyle state in 12C [12,21], the study of the triple-
alpha process under variations of some fundamental constants [23,24], the calculation
of the ground state energies of the alpha-cluster nuclei up to 28Si with an accuracy
of about 1% [16], an ab initio calculation of the spectrum and structure of 16O [25],
and the first ever microscopic calculation of alpha-alpha scattering [26]. However,
the employed NNLO action works well for alpha-type nuclei, but is less precise for
other systems. Therefore, new forms of smearing including also the pion-exchange
as well as a non-local distribution of lattice creation and annihilation operators have
been employed to gain further insight. Based on these improved LO actions, it was
found that nuclear physics is near a quantum phase transition from a Bose gas to the
nuclear liquid, where the first alpha-cluster nuclei are formed [27]. Another important
observation in that paper is related to the degree of locality of the contact interactions,
that appears to play a major role when going to larger nuclei and nuclear or neutron
matter, as recently emphasized in Ref. [28]. Furthermore, isotopic chains from H to
O could be calculated and new insights into nuclear clustering was obtained recently,
including also a new algorithm that for the first time allows to calculate density
distributions in nuclei and the corresponding form factors [29]. Some selected topics
from this rich spectrum of results will be discussed in what follows. Most of these
results have been obtained on supercomputers like JUGENE and JUQUEEN at the
Forschungszentrum Jülich. The CPU scaling is approximately quadratic in atomic
number, so nuclei up to A ≃ 40 have been investigated. Going to larger nuclei
requires more fine-tuned actions to suppress the remaining sign oscillations.

3.2 Ab initio calculation of alpha-alpha scattering

Let us now consider the α-α scattering as a prototypical nuclear reaction. This is
related to the facts that processes involving α-type nuclei comprise a major part of
stellar nucleosynthesis, and control the production of certain elements in stars. Also,
ab initio calculations of scattering and reactions suffer from exponential or factorial
scaling with the number of nucleons in the clusters, so therefore it was not possible so
far to perform an ab initio calculation of α-α scattering. It is thus a challenging task
to use the lattice to tackle such type of processes. We note that on the lattice one only
has discrete energy levels, and therefore a direct calculation of scattering processes
appears impossible. This hurdle can be overcome by the so-called adiabatic projection
method, that splits the problem of the calculation of scattering and inelastic reactions
into two parts. First, using the Euclidean time projection method, one constructs a
low-energy cluster Hamiltonian, called the adiabatic Hamiltonian. In the second step,
one then computes scattering phase shifts or reaction amplitudes using this adiabatic
Hamiltonian. The method was developed and refined in Refs. [30–34] and resembles
in the methodology the Hamiltonian matrix approach combining the no-core shell
model with the resonating group method, see, e. g., Refs. [35–37]. In more detail, the
construction of a low-energy effective theory for clusters proceeds as follows: One uses
initial states as a direct product of two clusters located on the lattice, parameterized
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3

RW

L’3

L

Figure 3: Left panel: A two-dimensional picture of the two-cluster initial state |~R〉
separated by the displacement vector ~R. Right panel: A sketch of the lattices for
the cluster-cluster calculations in the overlapping and in the noninteracting regions.
Rin is the largest radial distance where the full adiabatic Hamiltonian is matched to
the effective free cluster Hamiltonian without introducing any systematic errors. RW

indicates the radius of the spherical wall as discussed in the text.

by the relative separation between the clusters, as shown in the left panel of Fig. 3,

|~R〉 =
∑

~r

|~r + ~R〉 ⊗ ~r. (6)

These are projected in Euclidean time with the chiral EFT Hamiltonian H ,
|~R〉τ = exp(−Hτ)|~R〉. These so-called dressed cluster states include all possible in-
teraction effects such as polarizations as well as deformations and, of course, the
Pauli principle. The adiabatic Hamiltonian is then given by [Hτ ]~R~R′

= τ 〈~R|H |~R′〉τ .
In general, this Hamiltonian needs to be normalized, which requires left and right
multiplication with the corresponding norm matrices. What concerns the strong in-
teractions, it can be shown that asymptotically, the adiabatic Hamiltonian is nothing
but the free Hamiltonian for two clusters, eventually supplemented by infinite-range
interactions as the Coulomb one. The underlying simulations can be simplified con-
siderably by employing the so-called radial Hamiltonian based on the lattice version of
angular momentum projection and binning the lattice points in rings of a given width.
Further, the long-range Coulomb interaction can also be included exactly. For that,
one performs first simulations in small box with a volume L′3 ∼ (16 fm)3, with all
interactions switched on. This is the supplemented by a second set of simulations in
a large box with a volume of about L3 ∼ (120 fm)3, where the strong interactions are
turned off and the long-range Coulomb interaction is included by imposing Coulomb
boundary conditions on a spherical wall with radius RW ≃ 40 fm, see the right panel
of Fig. 3. In that way, all effects of the strong and the electromagnetic interactions
are included.

Using the same NNLO Hamiltonian as for the studies of the spectrum and struc-
ture of 12C and 16O, the S- and D-wave phase shifts have been computed in Ref. [26],
as shown in Fig. 4. At LO in the employed counting, the Coulomb interaction is not
included, so both the S- and D-wave phase shifts are off the data. This is visibly
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Figure 4: Upper panel: S-
wave α-α phase shifts δ0.
Bottom panel: D-wave α-α
phase shifts δ2. Shown are
the NLEFT LO (green tri-
angles), NLO (blue circles)
and NNLO (red squares) re-
sults. The data (black tri-
angles with error bars) are
from Ref. [38].

improved at NLO and further at NNLO for the D-wave. The small NNLO correc-
tions in the S-wave are due to the coarse lattice spacing. Overall, one finds a good
description of the scattering data. In the S-wave, we find a bound state corresponding
to 8Be that is bound by −0.11(1) MeV, whereas in nature this nucleus is unbound
by +0.09 MeV. This deviation of about 200 keV reflects the precision of the calcula-
tion. In the D-wave at NNLO, the resonance parameters are ENNLO

R = 3.27(12) MeV

and ΓNNLO
R = 2.09(16) MeV, not far off the empirical data of 2.92(18) MeV

and 1.35(50) MeV, respectively. Maybe the most significant result of this study is the
fact that the computational time scales quadratically with the number of nucleons in
the two clusters, tCPU ∼ (A1 + A2)2, with Ai being the number of nucleons in the
cluster i (i = 1, 2). This means that the computational time for the so-called holy
grail of nuclear astrophysics, the radiative alpha capture on 12C at stellar energies
(given by the Gamow peak), α + 12C → 16O + γ, is in reach, requiring only 8 times
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as much CPU time as the computation of elastic α-α scattering (twice the number of
nucleons and two channels). Before doing that, however, the chiral forces should be
worked out to N3LO so as to reach the required accuracy.

3.3 New insights into nuclear clustering

Clustering in nuclei is an old but ever fascinating topic, introduced by Wheeler in 1937
in this seminal paper on “Molecular Viewpoints in Nuclear Structure” [39]. The most
prominent type of clustering is the observation of α-particle substructures in light and
medium-mass nuclei, and its eventual disappearance as the atomic number increases.
There have been many works on alpha clustering, here I just mention recent work on
alpha clustering employing density functional methods by the Peking group [40] as
well as work by the Paris–Zagreb group [41]. For a recent review, see, e. g., Ref. [42].

As already mentioned above, alpha clustering emerges naturally in NLEFT and
a number of intriguing results on alpha-type nuclei and clustering have already been
obtained, such as the first ab initio calculation of the Hoyle state or the observation
that nuclear physics is close to a quantum phase transition from a Bose gas of α’s
to a nuclear liquid for α-type nuclei. However, when adding extra neutrons and/or
protons, the precision of the calculations quickly deteriorates due to the remaining
sign oscillations. To overcome this, a new LO action with smeared SU(4) local and
non-local symmetric contact interactions as well as smeared one-pion exchange was
constructed in Ref. [29]. The non-local smearing distributes any nucleon creation
and/or annihilation operator over the six neighboring lattice sites as depicted in the
left panel of Fig. 5,

a
(†)
NL(n) = a(†)(n) + sNL

∑

〈n′
n〉
a(†)(n′), (7)

where sNL is a real parameter, and the notation
∑

〈n′
n〉 represents the summation

over nearest-neighbor lattice sites of the site n. While this smearing was originally
designed to just suppress the remaining sign oscillations when extra neutrons and/or
protons are added to alpha-type nuclei, it turned out to work much better. For that,
consider a LO action that is SU(4) symmetric with local and non-local smearing as
well as smeared one-pion exchange. This action has three LECs, the strength of the
SU(4)-symmetric contact term, the parameter related to the degree of locality of the
interaction and the above-mentioned sNL. Fitting these to the average np S-wave
scattering lengths and effective ranges and also to the α-α S-wave scattering length,
one can predict the isotope chains from hydrogen to oxygen as shown in the right
panel of Fig. 5. These have an accuracy of 0.7 MeV per nucleon or better. This is
quite amazing given this highly simplified LO action. Clearly, NLO effects (and higher
orders) need to be accounted for to achieve, e. g., a better description of the 1S0 np
phase.

Using this action, one can also obtain deeper insight into nuclear clustering. For
that, define as probes of alpha clusters the quantities

ρ4 =
∑

n

: ρ4(n)/4! : and ρ3 =
∑

n

: ρ3(n)/3! : . (8)

Here, ρ4 couples to the center of the α-cluster while ρ3 gets contributions from a
wider portion of the alpha-particle wave function and thus these can be used for
“measuring” cluster properties. Note that ρ3 and ρ4 depend on the regulator, the
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Figure 5: Left panel: Two-dimensional illustration of the non-local smearing of
a nucleon creation/annihilation operator over the neighboring lattice sites. Right
panel: The ground state energies versus the number of nucleons A for the hydrogen,
helium, beryllium, carbon, and oxygen isotopes (NLEFT: squares with error bars,
experiment: circles). The errors are one-standard deviation error bars associated
with the stochastic errors and the extrapolation to an infinite number of time steps.

lattice spacing a, but not on the nucleus. However, the ratios ρ3/ρ3,α and ρ4/ρ4,α
are free from short-distance ambiguities. If properly defined, the effective number of
alpha clusters should be greater than or equal to Nα. A value equal to Nα indicates
that the alpha clusters are behaving as indivisible objects, and the nucleus can be
regarded as a compound fluid of alpha particles and neutrons. If the effective number
is significantly greater than Nα, then the description in terms of individual alpha
clusters breaks down and the system behaves more as a nuclear liquid of protons
and neutrons. The behavior is shown in the left panel of Fig. 6, where it is seen
that, for the oxygen isotope chain, the entanglement between the clusters leads to
the expectation values of ρ3/ρ3,α and ρ4/ρ4,α much larger than 4. This shows that
the transition from cluster-like states in light systems to nuclear liquid-like states
in heavier systems should not be viewed as a simple suppression of multi-nucleon
short-distance correlations, but rather as an increasing entanglement of the nucleons
involved in the multi-nucleon correlations.

Another important development of Ref. [29] was the formulation of the so-called
pinhole algorithm, see the right panel of Fig. 6. In general, auxiliary field quantum
MC calculations involve states that are superpositions of many different center-of-
mass (cm) positions, so a direct calculation of density distributions of nucleons in a
nucleus is not possible. This can be overcome by inserting a screen with pinholes with
spin and isospin labels that allows nucleons with corresponding spin and isospin to
pass. In that way, one measures the A-body density operator

ρi1,j1, ... ,iA,jA(n1, ... ,nA) = : ρi1,j1(n1) ...ρiA ,jA(nA) : . (9)

MC sampling of the amplitude

Ai1,j1, ... ,iA,jA(n1, ... ,nA, Lt) = 〈ψ(τ/2)|ρi1,j1, ... ,iA,jA(n1, ... ,nA)|ψ(τ/2)〉 (10)

then allows to measure the proton and neutron densities as well as more complicated
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two-, three- or higher-body correlations of nucleons within a given nucleus. This is
because the pinhole sheet allows one to determine the cm of a given nucleus given
simply by the minimal distance to all nucleons. Further, the resolution of this method
is a/A because the cm position rcm is an integer ncm times a/A. Results for the proton
and neutron distributions in the isotopes 12,14,16C are shown in the upper panel of
Fig. 7. The proton size of rpE = 0.84 fm [43, 44] is accounted for and asymptotic
properties for the volume dependence of N -body bound states [45] have been used.
Upon the Fourier-transformation of these densities, one can obtain the corresponding
elastic form factor. This is shown in the bottom panel of Fig. 7 for 12C. Given the
simplicity of the underlying Hamiltonian, the agreement is quite satisfactory. This
paves the way for detailed nuclear structure studies.

3.4 Fine-tunings and the multiverse

In nuclear physics, we observe a number of so-called fine-tunings, for some reviews and
recent works, see, e. g., Refs. [47–51]. A prominent example is the lightest nucleus,
the deuteron. It is bound by a mere 2 MeV, just one tenth of percent of its total mass.
Also, the aforementioned Hoyle state must be very closely placed to the triple-alpha
threshold, in nature the energy difference is just 380 keV, much less than typical
nuclear excitation energies of a few MeV. This close proximity is required so that
in hot, old stars a sufficient amount of carbon and also oxygen is generated [22].
It is therefore natural to ask how much the SM fundamental parameters can be
detuned so that this resonance condition is no longer viable? First, however, we must
find out what the relevant parameters are. Nuclear binding is a delicate balance
between the attractive strong and the repulsive electromagnetic interactions. The
latter are given in terms of Sommerfeld’s fine-structure constant, αEM ≃ 1/137. As
concerns the strong interaction, the strong coupling constant αS is intimately tied to
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the nucleon mass because of dimensional transmutation, and therefore the small light
quark masses mu, md are the relevant parameters that control nuclear binding. This
appears at first counter-intuitive, as the major part of the nucleon mass is given by
gluon field energy by means of the trace anomaly, while the light quark contribution to
the nucleon mass is given by the so-called pion-nucleon σ-term, σπN = 59(3) MeV [52].
However, the quark mass values of a few MeV (which are, of course, scale- and scheme-
dependent) are of the same size as the nuclear binding energy per nucleon, E/A, so
that these are the pertinent strong interaction parameters. To be more precise, the
rate of the triple-alpha process is given by r3α ∼ Γγ exp (−∆E/kT ), with k being
the Boltzmann constant, T is the temperature, Γγ is the width of the Hoyle state
and ∆E = E⋆

12 − 3Eα = 379.47(18) keV, where E⋆ is the energy of the Hoyle state.
The question now is how much can the ∆E be changed so that there is still enough
12C and 16O produced in the stars? This was answered in a calculation of the element
generation in stars by varying ∆E but no other parameter. It turned out that the
allowed variation is δ|∆E| . 100 keV [53, 54], which does not appear to be any
form of fine-tuning. Note that very recent stellar simulations appear to soften this
envelope [55]. However, one still has to make the connection to the fundamental
parameters of the SM. While this can be done for the electromagnetic interactions
in cluster-type models as used, e. g., in Ref. [53], the variation of the quark masses
requires a more microscopic framework as provided by chiral EFT. This is depicted
for the quark mass dependence of the LO NN force in the upper panel of Fig. 8.
Here, the quark mass and pion mass dependences can be used synonymously, as
the Gell-Mann–Oakes–Renner relation, M2

π ∼ mu + md, is fulfilled to better than
94% in QCD [56]. As can be seen from this figure, there are explicit (through the
pion propagator) and implicit (through the pion-nucleon coupling, the nucleon mass
and the four-nucleon couplings) pion mass dependences. All this can be accounted
for systematically and precisely using chiral EFT. Coming back to the triple alpha-
process, nuclear lattice simulations are the appropriate tool to study its dependence
on the fundamental parameters, for details see Refs. [23, 24]. For that, one has to
translate the condition δ|∆E| . 100 keV into a constraint for the quark masses
(and similarly for the fine-structure constant). For the quark masses, it reads (for
fixed αEM)

∣∣∣∣
(

0.571(14)Ās + 0.934(11)Āt − 0.069(6)
)δmq

mq

∣∣∣∣ < 0.0015, (11)

with the average light quark mass (as the strong isospin breaking plays no role here)
mq = (mu +md)/2, Ās,t ≡ ∂a−1

s,t /∂Mπ

∣∣
Mphys

π
, where as and at denote the singlet and

the triplet NN scattering length, respectively. Independently of the precise values
of these two quantities, it can be shown that the various fine-tunings in the triple-
alpha process (the closeness of the 8Be binding energy to the 2α threshold and the
closeness of the Hoyle state to the 3α threshold) are indeed correlated. This had been
speculated before [58] but could only be worked out precisely using NLEFT. Bounds
on Ās,t had been obtained earlier based on resonance saturation of 4N operators [59]
in Ref. [57] (see also Ref. [60]) as shown by the black cross in the bottom panel of
Fig. 8. The fairly large uncertainty can eventually be overcome using lattice QCD
to calculate these quantities. In the plane of Ās-Āt, varying the quark mass leads to
diagonal bands whose widths depends on the assumed variations. This is shown for
variations of δmq/mq of 0.5, 1 and 5% by the three different bands. Clearly, a smaller
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Figure 8: Upper panel:
Schematic drawing
of the quark mass
dependence in the two-
nucleon force. Bottom
panel: “Survivability
bands” for carbon-
oxygen based life due
to 0.5% (broad outer
band), 1% (medium
band) and 5% (narrow
inner band) changes
in mq in terms of the
input parameters Ās

and Āt. The black
cross denotes the
results of the N2LO
analysis from [57].

variation leads to a broader band. If one focuses on the central value of Ās,t, one finds
that the mq variations of 2−3% are allowed so that the abovementioned condition is
fulfilled. The large uncertainties in Ās,t do not allow for a more precise statement.
For αEM, no such uncertainties are present and it can be stated with certainty that
it can be varied by at most 2.5%. Also, no other bounds are found if one varies both
the quark masses and the fine-structure constant at the same time. This is clearly a
stronger fine-tuning as for |∆E| and its consequences for our anthropic view of the
Universe are discussed in Ref. [61]. Lattice QCD can be used to tighten the bounds
on Ās,t, for the state-of-the-art see Ref. [62].

4 Summary and outlook

Let me briefly summarize the main messages of this talk:

• Chiral EFT for nuclear forces provides a precise framework for 2N and 3N
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forces with small uncertainties, as discussed by Evgeny Epelbaum [1] in these
Proceedings. The nuclear forces from chiral EFT can also be formulated for
varying strong and electromagnetic forces, which is a necessary requirement to
study various fine-tunings in nuclear physics.

• Nuclear lattice simulations are a new quantum many-body approach that is
based on the successful continuum nuclear chiral EFT. Already a number of
intriguing results have been obtained based on NLEFT. In particular, the clus-
tering emerges naturally and α-cluster nuclei are well described. Further, with
an improved chiral action based on non-local smearing, neutron- and proton-rich
nuclei can also be studied. With the invention of the pinhole algorithm, the cal-
culation of charge densities and form factors has become possible. Furthermore,
a fine-tuning in nuclear reactions can be studied.

• Various bridges to the lattice QCD studies need to be explored, in particular,
in pinning down some of the LECs related to multi-nucleon forces or the quark
mass dependence of multi-nucleon operators.

• Finally, it must be said that many open issues in nuclear structure and reaction
physics can now be addressed in a truly quantitative manner. For example, the
“holy grail” of nuclear astrophysics [63], the ab initio calculation of the reaction
4He + 12C → 16O + γ, is in reach.

More recent developments in NLEFT will be covered in Dean Lee’s contribu-
tion [4].

Acknowledgements

I thank the organizers for giving me an opportunity to present these thoughts at this
interesting workshop. I am grateful to all my collaborators, who have contributed
to my understanding of the issues discussed here. Partial financial support by the
CAS (2018DM0034), DFG (TRR 110), and VolkswagenStiftung (grant no. 93562) is
gratefully acknowledged.

References

[1] E. Epelbaum, see these Proceedings, p. 150,
http://www.ntse.khb.ru/files/uploads/2018/proceedings/Epelbaum.pdf.

[2] S. Weinberg, Phys. Lett. B 251, 288 (1990).

[3] S. Weinberg, Nucl. Phys. B 363, 3 (1991).

[4] D. Lee, see these Proceedings, p. 45,
http://www.ntse.khb.ru/files/uploads/2018/proceedings/Lee.pdf.

[5] E. Epelbaum, H.-W. Hammer and U.-G. Meißner, Rev. Mod. Phys. 81, 1773
(2009).

[6] B. Borasoy, E. Epelbaum, H. Krebs, D. Lee and U.-G. Meißner, Eur. Phys. J. A
31, 105 (2007).



42 Ulf-G. Meißner

[7] E. Epelbaum, H. Krebs, D. Lee and U.-G. Meißner, Eur. Phys. J. A 45, 335
(2010).

[8] E. Wigner, Phys. Rev. 51, 106 (1937).
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Recent Advances in Nuclear Lattice Simulations

Dean Lee

Facility for Rare Isotope Beams and Department of Physics and Astronomy, Michigan State
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Abstract

We review several recent results in the area of nuclear lattice simulations
based on chiral effective field theory by the Nuclear Lattice EFT Collaboration.
The topics we cover are lattice interactions with improved rotational properties
and a computational method called eigenvector continuation.

Keywords: Lattice simulations; effective field theory; nuclear forces; nuclear
theory

1 Introduction

Chiral effective field theory (EFT) describes the low-energy interactions of nucleons.
It consists of an expansion in powers of momenta and factors of the pion mass near the
chiral limit where the light quarks are massless; see Ref. [1] for a review of chiral EFT.
Terms with a total of n powers of nucleon momenta or factors of the pion masses are
labelled as order Qn. The leading order (LO) interactions are at order Q0, the next-
to-leading order (NLO) interactions correspond to order Q2, next-to-next-to-leading
order (N2LO) terms areQ3, and next-to-next-to-next-to-leading order (N3LO) areQ4.
In this Proceedings article we review two recent results using chiral EFT by the
Nuclear Lattice EFT Collaboration. See also the contribution by Ulf-G. Meißner in
the same Proceedings volume [2] for other recent results.

2 Improved lattice interactions

Nuclear lattice simulations using chiral EFT have been used to describe the structure
and scattering of atomic nuclei [3–5]. However the treatment of nuclear forces at
higher orders in the chiral expansion are difficult on the lattice due to the breaking
of rotational invariance produced by the nonzero lattice spacing [6, 7].

In Ref. [8] we solve these problems with a new set of short-range chiral EFT
interactions on the lattice that decomposes more easily into spin channels. The key
idea is to define smeared annihilation and creation operators. This procedure gives
us better rotational symmetry properties when taking spatial derivatives as finite
differences. We start with ai,j(n), the nucleonic annihilation operator on lattice site n

Proceedings of the International Conference ‘Nuclear Theory in the Supercomput-
ing Era — 2018’ (NTSE-2018), Daejeon, South Korea, October 29 – November 2,
2018, eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2019, p. 45.

http://www.ntse.khb.ru/files/uploads/2018/proceedings/Lee.pdf.
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with spin i and isospin j. To this we add neighboring lattice operator with relative
weight, sNL, to define the smeared annihilation operator

asNL

i,j (n) = ai,j(n) + sNL

∑

|n′|=1

ai,j(n + n′). (1)

Next we form bilinear functions of the annihilation operators with various spin and
isospin quantum numbers, S, Sz, I, Iz ,

[a(n) a(n′)]sNL

S,Sz,I,Iz
=

∑

i,j,i′,j′

asNL

i,j (n)Mii′ (S, Sz)Mjj′ (I, Iz) asNL

i′,j′(n
′). (2)

We introduce orbital angular momentum using solid spherical harmonics,

RL,Lz(r) =

√
4π

2L+ 1
rL YL,Lz(θ, φ), (3)

that are written as functions of the lattice derivatives of one of the annihilation
operators,

P 2M,sNL

S,Sz,L,Lz,I,Iz
(n) = [a(n)∇2M

1/2R
∗
L,Lz

(∇)a(n)]sNL

S,Sz,I,Iz
. (4)

We then project onto the selected spin and orbital angular momentum using Clebsch–
Gordan coefficients,

O2M,sNL

S,L,J,Jz,I,Iz
(n) =

∑

Sz,Lz

〈SSzLLz|JJz〉P 2M,sNL

S,Sz,L,Lz,I,Iz
(n). (5)

We present in Ref. [8] results for the neutron-proton system up to next-to-next-to-
next-to-leading order for lattice spacings of 1.97, 1.64, 1.32, and 0.99 fm. In Fig. 1
we show results for the neutron-proton scattering phase shifts and mixing angles
versus the relative momenta for the lattice spacing a = 1.32 fm, and in Fig. 2 we
show neutron-proton scattering phase shifts and mixing angles for the lattice spac-
ing a = 0.99 fm. The blue, green and red bands signify the estimated uncertainties at
NLO, N2LO and N3LO respectively. The black solid line and diamonds denote phase
shift or mixing angle from the Nijmegen partial wave analysis and lattice calculation
at N3LO, respectively. These results show marked improvement over previous studies
of chiral EFT interactions on the lattice.

3 Eigenvector continuation

In nuclear theory and other fields of quantum theory we often would like to find
the extremal eigenvalues and eigenvectors of a Hamiltonian matrix in a vector space
that is extremely large, so large that linear algebra operations on general vectors
cannot be done. Monte Carlo methods are well suited to overcome this problem,
however stochastic methods fail when severe sign oscillations appear and there is
strong cancellation between positive and negative amplitudes.

We present in Ref. [9] a new technique called eigenvector continuation (EC) that
can improve the reach of Monte Carlo methods. The main idea is that while an eigen-
vector inhabits a linear space with very many dimensions, the eigenvector trajectory
generated by smooth changes of the Hamiltonian matrix can be well approximated
by a low-dimensional manifold. This statement is proven using analytic continuation.
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Figure 1: Results for the neutron-proton scattering phase shifts and mixing angles versus the relative momenta for the lattice spac-
ing a = 1.32 fm. The blue, green and red bands signify the estimated uncertainties at NLO, N2LO and N3LO respectively. The black
solid line and diamonds denote phase shifts or mixing angles from the Nijmegen partial wave analysis and lattice calculation at N3LO,
respectively.
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Figure 2: Results for the neutron-proton scattering phase shifts and mixing angles versus the relative momenta for the lattice spac-
ing a = 0.99 fm. The blue, green and red bands signify the estimated uncertainties at NLO, N2LO and N3LO respectively. The black
solid line and diamonds denote phase shifts or mixing angles from the Nijmegen partial wave analysis and lattice calculation at N3LO,
respectively.
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Suppose that the Hamiltonian H(c) depends smoothly on some control parame-
ter c. Let c⊙ be the target value of the parameter where we wish to compute the
ground state wave function |Ψ0(c⊙)〉. The EC method is variational calculations
where the variational subspace consists of eigenvectors |Ψ0(c)〉 for different values
of c. The computational advantage is clear when the direct calculation of |Ψ0(c⊙)〉
is not possible but we can use values of c where the Monte Carlo simulations are
accurate and reliable.

We assume that H(c) is Hermitian for real c and thus diagonalizable. Hence
we can define |Ψ0(c)〉 so that it also has no singularities on the real axis. We now
expand |Ψ0(c)〉 as a power series about the point c = 0. The coefficients for cn

are |Ψ(n)
0 (0)〉/n!, where the superscript (n) indicates the nth derivative. An analogous

series expansion can be applied to the eigenvalue E0(c). These series converge for
all |c| < |z|, where z and its complex conjugate z̄ are the closest singularities to c = 0
in the complex plane. Although the series expansion about c = 0 fails to converge
for |c| > |z|, we can define an analytic extension by constructing a new series about
another point c = w, where w is real and |w| < |z|.

For this new series the coefficients of (c − w)n are |Ψ(n)
0 (w)〉/n!. We can use

the original series to express each |Ψ(n)
0 (w)〉 in terms of |Ψ(m)

0 (0)〉. In this way we
can approximate |Ψ0(c)〉 to arbitrary accuracy as a linear combination of the vec-

tors |Ψ(n)
0 (0)〉 in the region |c− w| < |z − w| centered at w. This process of analytic

continuation is illustrated in Fig. 3. By applying this analytic continuation repeat-
edly, we can reach any value of c and express any |Ψ0(c)〉 to any desired accuracy as

a linear combination of a finite number of vectors |Ψ(n)
0 (0)〉. The number of required

vectors is determined by the number of different expansion centers needed in the ana-
lytic continuation and the rate of convergence of each series expansion. This explains

Figure 3: Analytic continuation of the wave function |Ψ0(c)〉 beyond the nearest
singularity at z and z̄.
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Table 1: EC results for the ground state energy for six and fourteen neutrons using
sampling data g2A = c1, c2, c3, where c1 = 0.25, c2 = 0.60, and c3 = 0.95. For
comparison we also show the direct calculation results.

g2A values E0, 6 neutrons (MeV) E0, 14 neutrons (MeV)

c1 14.0(4) 48.8(6)
c2 13.7(4) 48.5(7)
c3 13.8(6) 48.8(8)

c2, c3 13.7(4) 48.4(7)
c3, c1 13.8(4) 48.8(6)
c1, c2 13.7(4) 48.4(7)

c1, c2, c3 13.7(4) 48.4(7)

direct calculation 12(+3
−4) 42(+7

−15)

why the trajectory traced out by |Ψ0(c)〉 can be approximated by a manifold with a
small number of linearly-independent directions.

In Ref. [9] we consider simulations of the neutron matter at the leading order using
the leading order interaction described in Ref. [10]. This particular lattice action is
plagued by large sign oscillations due to the one-pion exchange interaction, which is
parameterized by the coupling g2A. The systems we calculate are the ground state en-
ergies of 6 and 14 neutrons on a 4×4×4 lattice with spatial lattice spacing 1.97 fm and
time lattice spacing 1.32 fm. We first attempt to compute the ground state energies by
direct calculation. The errors are quite large due to sign oscillations. For 6 neutrons
the ground state energy is E0 = 12(+3

−4) MeV, and for 14 neutrons E0 = 42(+7
−15) MeV.

Next we use the EC for the values g2A = c1, c2, c3, where c1 = 0.25, c2 = 0.60, and
c3 = 0.95. We use Monte Carlo simulations to calculate the ground state eigenvectors
for c1, c2, c3. In Table 1 we show the EC results using just one of the three vectors,
two of the vectors, or all three vectors. The error bars are estimates of the stochastic
error and extrapolation error in the projection time. For comparison we also show the
direct calculation results. The EC results are consistent with the direct calculation
results, though with an error bar that is smaller by an order of magnitude. The EC
approach is now being developed for all interactions that produce sign oscillations in
the nuclear lattice simulations.
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Abstract

We give a review of our research work on the equation of state and sin-
gle particle properties of nuclear matter within the framework of the extended
Brueckner–Hartree–Fock approach. We discuss especially the three-body force
(TBF) effect. The TBF effect has been shown to be necessary for describing the
saturation properties of nuclear matter in nonrelativistic microscopic framework.
As for asymmetric nuclear matter, the TBF turns out to result in a strong stiffen-
ing of the density dependence of symmetry energy at supra-saturation densities.
Within the framework of the Brueckner theory, the TBF may lead to a rear-
rangement contribution to the single-particle (s.p.) potentials, which enhances
significantly the repulsion and momentum-dependence of the s.p. potentials at
high densities and high momenta.

Keywords: Nuclear matter; equation of state; symmetry energy; Brueckner–
Hartree–Fock approach; three-body force

1 Introduction

One of the most important issues in nuclear physics is to constrain experimentally and
theoretically the equation of state (EOS) and single-particle (s.p.) properties of nu-
clear matter [1–3], especially the density dependence of symmetry energy, which not
only plays an essential role in predicting the properties of heavy nuclei and neutron-
rich nuclei [4–7], but is also crucial for understanding many phenomena in nuclear
astrophysics [8–11]. For instance, it has been shown by theoretical investigations [5, 6]
that the neutron-skin thickness of heavy nuclei is correlated strongly with the den-
sity dependence of symmetry energy around the saturation density. In Ref. [7], the
effect of symmetry energy on the α-decay energies of superheavy nuclei has been ex-
plored and the symmetry energy turns out to play a decisive role in explaining the
experimentally observed enhancement of the stability against α-decay with increasing
the mass number along an isotope chain for the synthesized superheavy nuclei not
around shell closures. Concerning nuclear astrophysics, the EOS of nuclear matter
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ing Era — 2018’ (NTSE-2018), Daejeon, South Korea, October 29 – November 2,
2018, eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2019, p. 52.
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is the basic input for the Tolman–Oppenheimer–Volkov (TOV) equation, and plays
an extremely important role in modeling structure of neutron stars [12, 13]. The
high-density behavior of symmetry energy determines the proton fraction in β-stable
(n, p, e, µ) neutron star matter [14], and thus is crucial for understanding the cooling
mechanism via neutrino emission in the inner part of neutron stars [15].

In recent years, the properties of asymmetric nuclear matter have been investigated
extensively within various many-body approaches, including both ab initio and phe-
nomenological methods. In a phenomenological many-body framework such as the
Skyrme–Hartree–Fock approach, the nucleon-nucleon (NN) correlations in nuclear
medium have been incorporated implicitly in the parameters of the adopted effec-
tive interactions, and the predicted high-density behavior of symmetry energy using
different parameter sets may differ essentially and even may appear opposite [5]. In
the ab initio approaches based on realistic NN interactions which are determined by
experimental NN phase shifts, the nuclear correlations are taken into account using
various approximation schemes for the exact nuclear many-body problem. Almost all
ab initio approaches are able to reproduce more or less the empirical value of symme-
try energy at the empirical saturation density and predict a monotonically increasing
symmetry energy as a function of density, however, the stiffness of the density depen-
dence of symmetry energy obtained by adopting different approaches and/or different
NN interactions may become significantly different at high densities [16–18].

We have studied the the EOS and s.p. properties of asymmetric nuclear matter
within the framework of the Brueckner–Hartree–Fock (BHF) approach extended to
include a microscopic three-body force (TBF). In the present paper, we shall give a
review of our research work concerning the properties of nuclear matter, and we shall
discuss especially the TBF effect on the properties of asymmetric nuclear matter.

2 Theoretical approaches

The EOS and s.p. properties of nuclear matter can be predicted within the frame-
works of various ab initio approaches. In our investigation, the BHF approach has
been adopted, which is based on the Brueckner–Bethe–Goldstone (BBG) theory [19].
The extensions of the BBG scheme to the asymmetric nuclear matter and to include
a microscopic TBF can be found in Refs. [14, 20] and Refs. [21, 22], respectively.
Here we simply give a brief review for completeness. The key point of the BHF
approach is the reaction G-matrix, which satisfies the following isospin-dependent
Bethe–Goldstone (BG) equation,

G(ρ, β, ω) = υ + υ
∑

k1k2

|k1k2〉Q(k1, k2)〈k1k2|
ω − ǫ(k1) − ǫ(k2)

G(ρ, β, ω), (1)

where ki ≡ (~ki, σi, τi) denotes the momentum and the z-components of spin and
isospin of a nucleon, respectively; υ is a realistic NN interaction; ω is the starting
energy; Q(k1, k2) is the Pauli operator. The isospin asymmetry parameter is defined
as β = (ρn − ρp)/ρ, where ρ, ρn, and ρp denote the total, the neutron and the proton
densities, respectively. For the interaction υ in our calculation, we adopt some realistic
two-body interaction (i. e., the Argonne V18 interaction [23] or the Bonn potential [24])
plus the corresponding microscopic TBF [22,25] constructed in a consistent way with
the adopted two-body interaction by using the meson-exchange current approach [21].
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The s.p. energy is given by ǫ(k) = ~2k2/(2m)+UBHF (k). In solving the BG equation,
the continuous choice [26] is adopted for the auxiliary potential UBHF since it has been
shown to provide a much faster convergence of the hole-line expansion than the gap
choice [27]. Under the continuous choice, the s.p. potential describes physically at the
lowest BHF level the nuclear mean field felt by a nucleon in nuclear medium, and it
can be obtained from the real part of the on-shell G-matrix,

UBHF(k) =
∑

k′

n(k′)Re〈kk′|G
(
ǫ(k) + ǫ(k′)

)
|kk′〉A. (2)

In the BHF approximation, the EOS of asymmetric nuclear matter (i. e., the energy
per nucleon of asymmetric nuclear matter as a function of density ρ and isospin
asymmetry β) is given by

EA(ρ, β) =
3

5

~2

2m

[(1 − β

2

)5/3
+
(1 + β

2

)5/3](
3π2ρ

)2/3

+
1

2ρ
Re
∑

τ,τ ′

∑

k≤kτ
F ,k′≤kτ′

F

〈kk′|G
(
ρ, β; ǫ(k) + ǫ(k′)

)
|kk′〉A, (3)

where the first term is the contribution of the kinetic part and the second term is the
potential part.

As is well known, a nonrelativistic ab initio model of rigid nucleons interacting via
realistic two-body forces fitting in-vacuum NN scattering data is not able to repro-
duce the empirical saturation properties of nuclear matter. Within the framework of
the BHF approach, the saturation points predicted by various NN interactions are
shown to locate in a narrow band (Coester band) which is far away from the empirical
point [17, 28]. There are two different ways to introduce the medium effects and to
solve the above problem. One is to adopt a relativistic theory, such as the Dirac-BHF
method [24], suggesting that nucleons propagate in nuclear medium as dressed Dirac
spinors which may incorporate a special class of TBF (i. e., the TBF involving the
virtual excitations of nucleon-antinucleon pairs) and respond for the main relativis-
tic contribution to the nuclear matter EOS [22, 29, 30]. The other is to introduce
TBFs in nonrelativistic approaches. Up to now, several different kinds of TBF mod-
els have been applied in the BHF calculations. One is the semi-phenomenological
TBF model, such as the Urbana TBF [31], in which few adjustable parameters are
usually determined by fitting the observed triton binding energies and/or the empiri-
cal saturation properties of symmetric nuclear matter. Another kind of TBF models
adopted in the BHF calculations is the microscopic one [21, 22, 25] based on the me-
son exchange theory for NN interactions. In the microscopic TBF model, there is no
adjustable parameter in the sense that the meson parameters are essentially deter-
mined self-consistently by the corresponding two-body force. The classical parts of
the microscopic TBF model associated with the π and ρ meson exchanges have been
developed during a long period by several authors [32–34]. The extension to include
the σ and ω exchanges as well as the associated virtual nucleon-antinucleon pair exci-
tations have been done by Grangé et al. [21]. Further improvement and development
of the model have been achieved in Refs. [22, 25]. In recent years, nuclear TBF has
also been developed systematically within the framework of the chiral effective field
theory [35].



Three-body force effect on the properties of nuclear matter 55

In order to include the TBF contribution into the two-body BG equation and to
avoid the in-medium three-body Faddeev problem, we have reduced the TBF to an
effectively equivalent two-body interaction according to a standard and extensively
adopted scheme [21]. In the r-space, the equivalent two-body force V eff

3 reads:

〈~r ′
1~r

′
2|V eff

3 |~r1~r2〉 =
1

4
Tr
∑

n

∫
d~r3 d~r ′

3 φ
∗
n(~r ′

3)
(
1 − η(r′13)

)(
1 − η(r′23)

)

×W3(~r ′
1~r

′
2~r

′
3|~r1~r2~r3)φn(~r3)

(
1 − η(r13)

)(
1 − η(r23)

)
. (4)

The justification of the above approximation can be found in Refs. [21, 33]. In this
averaging scheme, the direct and most important single-exchange TBF contributions
are taken into account.

As well known, at the lowest mean field approximation, the BHF approach has two
problems in predicting nuclear s.p. properties. First, the predicted optical potential at
the saturation density is shown to be too deep as compared to its empirical value [26],
and the Hugenholtz–Van Hove (HVH) theorem is destroyed seriously. The solution of
this problem is to go beyond the lowest order approximation by taking into account
the effect of ground state (g.s.) correlations [26, 36]. The contribution of the g.s.
correlations can be obtained according to the hole-line expansion of the mass operator,

M(k, ω) = M1(k, ω) +M2(k, ω) +M3(k, ω) + ... , (5)

where M1(k, ω) corresponds to the lowest-order BHF contribution and its on-shell
value describes the nuclear mean field UBHF at the lowest-order BHF approximation.
The second-order contribution M2 is called Pauli rearrangement term and it gives the
dominant contribution of the g.s. correlations.

Second, at the lowest-order BHF approximation, the predicted potential at high
densities and high momenta is too attractive and its momentum dependence turns
out to be too weak for describing the experimental elliptic flow data [37]. In order
to solve these two problems, we have improved the Brueckner calculation of the s.p.
properties in two aspects. The first is to extend the calculation of the effect of g.s.
correlations to asymmetric nuclear matter [20]. The second is to take into account the
TBF-induced rearrangement contribution in calculating the s.p. properties as shown
in Ref. [38] where the TBF rearrangement term has been derived,

UTBF(k) ≈ 1

2

∑

k1k2

nk1nk2

〈
k1k2

∣∣∣∣
δV eff

3

δnk

∣∣∣∣ k1k2
〉

A

. (6)

3 EOS of symmetric nuclear matter

We display in Fig. 1 the EOS of symmetric nuclear matter predicted within different
ab initio theoretical frameworks including the BHF approach [22,25], the many-body
variational method [39], and the relativistic Dirac–Brueckner–Hartree–Fock (DBHF)
theory [24]. In the figure, the box indicates the location of the empirical saturation
point; other symbols indicate the predicted saturation points. It is clear that without
TBF, the saturation points obtained within the two nonrelativistic frameworks (i. e.,
the BHF and variational approaches) are far away from the empirical one. At low
densities well below the saturation density, the TBF effect is reasonably small. At
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Figure 1: EOS of symmetric nu-
clear matter predicted by differ-
ent microscopic approaches. The
results of the BHF approach are
taken from Refs. [22] and [25].
The DBHF prediction is taken
from Ref. [24]. The results of
the variational approach are from
Ref. [39]. The dashed curves are
obtained by purely two-body in-
teractions; the solid ones are the
results by the two-body interac-
tions plus various TBFs.

supra-saturation densities, the TBF provides a repulsive contribution to the nuclear
EOS, and its repulsion increases monotonically as a function of density. It is worth
stressing that inclusion of the TBF contribution improves remarkably the saturation
points predicted by the two nonrelativistic ab initio approaches, indicating that the
TBF is necessary for reproducing the empirical saturation properties of nuclear matter
in a non-relativistic microscopic framework.

Within the BHF framework, by including the TBFs, the calculated saturation
density may be improved significantly from 0.265fm−3 and 0.33fm−3 to 0.167fm−3

and 0.19fm−3, respectively when the AV18 and BonnB interactions are adopted as
the two-body interaction. The latter two values are compatible with the empirical
value and the DBHF prediction of roughly 0.18fm−3. Concerning the relativistic
effect in the DBHF approach, it has been shown quantitatively in Refs. [22, 25] that
the main relativistic correction to the EOS of nuclear matter can be reproduced by
the TBF component involving the virtual excitations of nucleon-antinucleon pairs due
to the 2σ-meson exchange.

4 EOS of asymmetric nuclear matter

The isovector part of the EOS of nuclear matter (i. e., the difference between the en-
ergy per nucleon of asymmetric nuclear matter and that of symmetric nuclear matter)
as a function of β2 at four typical densities, ρ = 0.085, 0.17, 0.34 and 0.45 fm−3, is
reported in Fig. 2. It is clearly seen that the isovector part of the EOS fulfills satis-
factorily a linear dependence on β2 in the whole asymmetry range of 0 ≤ β ≤ 1, i. e.,

EA(ρ, β) − EA(ρ, 0) = Esym(ρ)β2. (7)
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Figure 2: Isovector part of EOS of
asymmetric nuclear matter. Dif-
ferent symbols show predictions
by the BHF approach for four
different densities, and the lines
are the corresponding linear fits.
Taken from Ref. [22].

Both the TBF effect and the thermal effect do not destroy the linear dependence
of EA(ρ, β) on β2 [22, 40]. The symmetry energy Esym(ρ) is defined generally as

Esym(ρ) =
1

2

[
∂2EA/∂β

2
]
β=0

. (8)

The linear β2 dependence of EA(ρ, β) predicted within the framework of differ-
ent ab initio many-body approaches and by using various NN interactions provides
a microscopic support for the empirical β2 law extracted from the nuclear mass ta-
ble, and extends its validity up to the highest asymmetry and to high densities well
above the saturation density. The above simple β2 law of EA(ρ, β) may lead to sev-
eral important consequences. First, it implies that the isovector part of the EOS
of asymmetric nuclear matter at a given density is determined essentially by the
symmetry energy. Second, the symmetry energy can be calculated directly as the
difference between the EOS of pure neutron matter and that of symmetric nuclear
matter, i. e., Esym(ρ) = EA(ρ, 1) − EA(ρ, 0). Third, due to the linear β2 dependence
of EA(ρ, β), the difference of the neutron and proton chemical potentials in neutron
star matter can be explicitly related to the symmetry energy: µn − µp = 4βEsym.

5 High-density behavior of symmetry energy

We show in Fig. 3 the density dependence of symmetry energy predicted within three
different ab initio theoretical frameworks, including the BHF approach [22, 25], the
variational method [39], and the DBHF theory [41]. It is worthy of notice that the
predicted symmetry energy increases monotonically as a function of density regardless
of the adopted ab initio approach and/or the realistic NN interaction. At subsatura-
tion densities, the difference between different predictions has been shown to be quite
small [3], and the TBF effect is seen to be reasonably weak; whereas the high-density
behaviors of symmetry energy predicted by three different ab initio approaches may
become significantly different. In the BHF calculations, the inclusion of the TBF
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Figure 3: Symmetry energy vs density predicted within three different ab initio
theoretical frameworks: the BHF [22, 25], the variational approach [39], and the
DBHF [41].

results in that the predicted symmetry energy almost completely coincides with the
DBHF prediction up to ρ = 0.5fm−3. Within the two nonrelativistic ab initio frame-
works, the TBF effect on the symmetry energy is repulsive, and the inclusion of the
TBFs leads to a stiffening of the density dependence of symmetry energy at supra-
saturation densities. It is worth noting that the TBF symmetry energy repulsion
at high densities within the BHF framework is much stronger than that within the
variational framework. At high densities well above the saturation density, the TBF
effect may even enlarge remarkably the discrepancy between the BHF and variational
predictions. To clarify this problem, further investigation is necessary.

6 Single particle potential in nuclear matter

In our calculation of the s.p. potential, we take into account three different contri-
butions, i. e., the leading-order contribution UBHF corresponding to the lowest-order
BHF s.p. potential, the Pauli rearrangement contribution U2 due to the effect of g.s.
correlations in nuclear medium, and the rearrangement contribution UTBF induced
by the TBF. The full s.p. potential is the sum of these contributions,

U(k) = UBHF(k) + U2(k) + UTBF(k). (9)

We show in Fig. 4 these three contributions to the symmetric nuclear matter at three
typical densities of ρ = 0.085, 0.17, and 0.34 fm−3. The lowest-order BHF s.p. poten-
tial UBHF is seen to be strongly attractive at low momenta, and its attraction increases
as a function of density. The g.s. correlations lead to a repulsive contribution U2 which
is much smaller in magnitude than the lowest-order BHF contribution UBHF. It is
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clearly seen that the contribution of g.s. correlations modifies the s.p. potential mainly
at low momenta around and below the Fermi surface, and it decreases rapidly around
the Fermi momentum and vanishes at high momenta well above the Fermi momen-
tum. As discussed in Ref. [38], the inclusion of the effect of g.s. correlations cannot
provide any appreciable improvement of the high-momentum behavior of the BHF s.p.
potential at high densities. The TBF-induced rearrangement contribution UTBF is re-
pulsive, and it turns out to be completely different from the Pauli rearrangement con-
tribution U2. At low densities and/or low momenta well below the Fermi momentum,
the TBF rearrangement potential UTBF is fairly small. However, the UTBF increases
monotonically and rapidly as a function of density and momentum. At high densities
and high momenta, it becomes strongly repulsive and momentum-dependent. Such
a strongly repulsive and momentum-dependent rearrangement potential induced by
the TBF is necessary for improving the high-momentum behavior of the lowest-order
BHF s.p. potential which has been shown to be too attractive at high densities and
whose momentum dependence turns out to be too weak to describe the experimental
elliptic flow data in heavy-ion collisions at high energies [37].

Now let us discuss briefly the isospin dependence of the nucleon s.p. potentials
in asymmetric nuclear matter. In asymmetric nuclear matter (β > 0), the neutron
potential Un becomes different from the proton one Up. At relatively low momenta,
the neutron s.p. potential Un

BHF at the lowest-order BHF approximation becomes
less attractive while the proton one becomes more attractive as the asymmetry β
increases. The different β-dependence of the neutron and proton potentials stems
essentially from the isospin T = 0 neutron-proton short-range correlations in the SD
channel [14,20]. As discussed in Ref. [20], the contribution of the g.s. correlations may
destroy the linear β-dependence fulfilled at the lowest-order BHF approximation by
the neutron and proton potentials at a fixed momentum. The isospin dependence of
the TBF rearrangement potentials has been shown to be relatively weak in magnitude
as compared to the lowest-order BHF potentials [38].
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metric nuclear matter vs isospin asymmetry β for two densities, 0.17 fm−3 (left panel)
and 0.34 fm−3 (right panel). Taken from Ref. [43].

7 Nucleon momentum distribution

Nucleon momentum distribution measures the strength of the dynamical NN corre-
lations in a nuclear many-body system. Its information not only plays a significant
role in understanding the nature of NN interactions, but is also crucial for testing the
validity of the physical picture of independent particle motion in the mean field theory
or in the standard shell model. In order to discuss the isospin dependence and the
TBF effect clearly, we report in Fig. 5 the predicted proton and neutron momentum
distributions at zero momentum k = 0 as functions of asymmetry β in two cases with
and without considering the TBF [43]. It is clearly seen that the neutron and proton
momentum distributions become different in asymmetric nuclear matter at β > 0.
At a higher asymmetry, the neutron Fermi sea tends to be more occupied while the
proton Fermi sea becomes less occupied. One may notice that the neutron (proton)
occupation probability at zero momentum increases (decreases) almost linearly as a
function of asymmetry β, which indicates that the short-range tensor correlations
between neutrons and protons become stronger (weaker) for proton (neutron) at a
higher asymmetry. At low densities around and below the saturation densities, the
TBF effect is negligibly small. However, at high densities well above the saturation
density, the TBF may lead to an overall enhancement of the depletion of the neutron
and proton hole states, which is expected since the TBF induces extra short-range
correlations in dense nuclear medium.

8 Summary

In summary, we have reviewed part of our research work on the EOS and the s.p.
properties of nuclear matter within the framework of the Brueckner approach ex-
tended to include a microscopic TBF. We have discussed especially the TBF effects
and compared our results with the predictions of different ab initio approaches. TBF
provides a repulsive contribution to the EOS of nuclear matter, and is shown to be
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necessary for reproducing the empirical saturation properties of nuclear matter within
the framework of a nonrelativistic ab initio approach. The EOS of asymmetric nu-
clear matter turns out to fulfill satisfactorily a linear dependence on β2 in the whole
asymmetry range of 0 ≤ β ≤ 1. Both the TBF and the thermal effect do not destroy
the β2 law fulfilled by the EOS of asymmetric nuclear matter. The symmetry en-
ergy predicted by three different ab initio approaches and/or different realistic NN
interactions is shown to increase monotonically as a function of density. In the non-
relativistic approaches, the TBF may lead to a strong enhancement of the stiffness of
symmetry energy at high densities. The TBF symmetry energy repulsion at high den-
sities is found to be much stronger within the BHF than that within the variational
framework.

In predicting the s.p. properties, we have improved the Brueckner calculation in
two aspects. The first one is to extend the calculation of the g.s. correlation effect
to the asymmetric nuclear matter. Second, we include the TBF-induced rearrange-
ment contribution in our calculations. Both improvements are shown to be necessary
for predicting reliably the s.p. properties of nuclear matter within the Brueckner
approach. Especially, the TBF rearrangement potential turns out to be strongly re-
pulsive and momentum-dependent at high densities and momenta, which is necessary
for improving the large-density and high-momentum behavior of the s.p. potentials.
At high densities well above the saturation density, the TBF effect leads to an overall
enhancement of the depletion of nuclear Fermi sea since the TBF may induce extra
short-range correlations in dense nuclear medium.

The work is partly supported by the National Natural Science Foundation of China
(11435014, 11175219) and the 973 Program of China (2013CB834405).
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Abstract

This contribution addresses momentum distributions in A = 2, 3 systems,
with particular emphasis on high momentum components. The latter carry
information on the short-range nuclear dynamics. We show predictions obtained
with state-of-the-art chiral interactions and compare with those obtained with
traditional, phenomenological or meson-theoretic, potentials. Model dependence
is discussed, along with other aspects such as the impact of three-nucleon forces
on the predictions.

Keywords: Momentum distribution; short-range correlations; chiral nuclear
interactions

1 Introduction

The nuclear force has short-range repulsive and intermediate-range attractive com-
ponents. Naturally, these features strongly limit the validity of a mean-field picture.
Short-range correlations (SRC) refer to the nucleon dynamics at short distances and
are responsible for the high-momentum components of nuclear wave functions.

An additional motivation for studying this important aspect of nucleon dynamics
is provided by the lively experimental program aimed at extracting the SRC infor-
mation via inclusive electron scattering at high momentum transfer or coincidence
experiments involving knock-out of a nucleon pair [1–10].

In this contribution, we will first address high-momentum distributions and SRC in
the deuteron, reviewing and updating one of our previous investigations [11]. We will
then present a subselection of our most recent results [12] for momentum distributions
and SRC in 3He.

We conclude with some thoughts on the meaning and implications of measuring
SRC. In future work, a careful consideration should be given to the approximations
typically applied in order to extract the SRC information from high-momentum trans-
fer electron scattering data.

Proceedings of the International Conference ‘Nuclear Theory in the Supercomput-
ing Era — 2018’ (NTSE-2018), Daejeon, South Korea, October 29 – November 2,
2018, eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2019, p. 64.
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2 High-momentum distributions in the deuteron

Deuteron momentum distributions in the context of SRC were studied in Ref. [11]
using local and non-local realistic two-nucleon (2N) interactions. Those included:
purely phenomenological local potentials, such as the Argonne v18 [13] (AV18) or
the Nijmegen II [14] models, non-local meson-theoretic models, such as the charge
dependent Bonn (CDBonn) potential [15], and state-of-the-art non-local chiral po-
tentials [16–18]. In the study of Ref. [11], it was concluded that predictions of high-
momentum distributions in the deuteron with non-local meson-exchange forces or
state-of-the-art chiral forces are systematically lower than those obtained with the
local AV18 or Nijmegen II potentials.

The analysis of Ref. [11] highlights non-localities in the tensor force as the source
of differences in SRC among the various predictions. We recall that the presence of
non-locality in the tensor force has been determined since a long time to be a desirable
feature in nuclear structure calculations (see, for instance, Refs. [19–21].)

In Fig. 1 we show the deuteron momentum distributions ρ(k), defined as the
Fourier transform squared of the coordinate-space deuteron wave function. On the
left side of the figure, we show the results, with focus on high-momentum components,
obtained with the latest chiral interactions of Ref. [22] from the leading to fifth order
(N4LO). On the right side of the figure, we show for comparison the same quantities
calculated as in Ref. [11] with the older chiral potentials of Refs. [16–18]. We note
that the convergence pattern shows improvement from the use of the new potentials.

We define the integrated probability of SRC in the deuteron as in Ref. [11], i. e.,

a2N(d) = 4π

∫ ∞

kmin

ρ(k) k2dk, (1)

where kmin is taken to be 1.4 fm−1. This definition was adopted in Ref. [1], where
the choice of the lower integration limit was suggested by the onset of scaling of
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Figure 1: Left: Momentum distributions in the deuteron predicted with the chiral
potentials of Ref. [22] at LO (dotted), NLO (dash-double dot), N2LO (dash-dot),
N3LO (dash), N4LO (solid). The cutoff is fixed at Λ = 500 MeV. Right: Predictions
taken from Ref. [11] are obtained using the chiral potentials of Refs. [16–18].
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Table 1: Probabilities of SRCs as defined in Eq. (1) and deuteron D-state percent-
age for the chiral interactions considered in the left panel of Fig. 1. The values in
parenthesis, given for comparison, are taken from Ref. [11] and correspond to the
distributions shown in the right panel of Fig. 1. The cutoff Λ is equal to 500 MeV in
all cases.

Model a2N(d) PD

LO 0.046 (0.047) 0.0729 (0.0757)

NLO 0.015 (0.015) 0.0340 (0.0313)

N2LO 0.026 (0.022) 0.0449 (0.0417)

N3LO 0.024 (0.030) 0.0415 (0.0451)

N4LO 0.024 (0.026) 0.0410 (0.0414)

electron scattering cross section, which should signal the dominance of scattering
from a strongly correlated nucleon. The absolute per-nucleon SRC probability in
a nucleus A can be deduced if the absolute per-nucleon probability in 3He and the
deuteron are calculated or estimated. More precisely,

a2N(A) = a2(A/
3He) a2N(3He) and a2N(3He) = a2(

3He/d) a2N(d), (2)

where a2(A1/A2) is the SRC probability for nucleus A1 relative to nucleus A2. The
probability in the deuteron was taken to be equal to 0.041± 0.008 in Ref. [2]. We list
in Table 1 the integrated probabilities a2N(d) defined in Eq. (1), calculated integrating
the curves of Fig. 1 (left panel). As an additional, related information, we also show
the corresponding D-state percentage. In fact, deuteron D-state probabilities are
larger with stronger short-range central and tensor components of the nuclear force
which, for the non-local chiral interactions and, generally, for non-local interactions,
are softer than for the local AV18 potential. The values in parenthesis correspond to
the distributions displayed on the right of Fig. 1, i. e., obtained with the older chiral
potentials of Refs. [16–18]. As the table shows, there are huge variations between
the LO and the NLO cases, and still large differences between the NLO and N2LO.
Variations at higher orders indicate a clear convergence pattern, definitely improved
by the use of the newest potentials. Finally we notice that the deuteron integrated
probabilities a2N(d) display significant model-dependence, as the corresponding values
obtained with the AV18 and the CDBonn potentials are 0.042 and 0.032, respectively.

3 Momentum distributions in 3He

In this Section, we show and discuss a subselection of results from Ref. [12] for mo-
mentum distributions in 3He. We refer the reader to Ref. [12] for an extensive and
detailed presentation of the formalism as well as additional predictions.

Note that the Hyperspherical Harmonics (HH) method is used to solve the A = 3
quantum mechanical problem. This method has the great advantage of being ap-
plicable in both coordinate- and momentum-space, with no restriction on the choice



Correlations in nuclear matter and nuclei 67

✵ ✶ ✷ ✸ ✹ ✺

❦
r�✁

✥✂✄
✲☎
❪

✶✵
✲✆

✶✵
✲✝

✶✵
✲✞

✶✵
✲✟

✶✵
✲✠

✶✵
✲✡

✶✵
✲☎

✶✵
☛

✶✵
☎

✶✵
✡

♥
☞✌
✍✌
✌ ✭✎

✏✑
✒✱

✓
❝✔
✕
✔

✖
✗
✘
✙✚
✛

✻ ✜

✢✣ ✤✦✶✧

✣✣ ✤✦✶✧

✢✣ ✤✦✶✧★✩✪✫

✣✣ ✤✦✶✧★✩✪✫

✢✣ ✬✮✯✰✢✢

✣✣ ✬✮✯✰✢✢

✢✣ ✬✮✯✰✢✢★✳✴

✣✣ ✬✮✯✰✢✢★✳✴

102

100

10−2

10−4

10−6

Figure 2: The 2N momentum distributions nnp/pp(krel,Kc.m. = 0) in 3He calculated
using the AV18, AV18/UIX, CDBonn and CDBonn/TM 2N and 3N interaction mod-
els. The thin and thick lines essentially overlap.

of the nuclear potential model, which can be local or non-local. The starting point
are the so-called Jacobi coordinates, which are defined in the coordinate space as in
Refs. [23, 24].

We first explore the model-dependence of the 2N momentum distributions, by
comparing predictions based on the CDBonn potential without or with the Tucson–
Melbourne (TM) [25] three-nucleon (3N) force with those based on the AV18, without
or with the UIX 3N force [26]. In Fig. 2 we show results for the nnp/pp(krel,Kc.m. = 0),
namely, we have selected the “back-to-back” (BB) configuration for the nucleon pair.
We observe that the results with CDBonn/TM and those with AV18/UIX are sub-
stantially different from each other, especially in the high-krel tails, confirming con-
sistency with our earlier observations about the deuteron. Furthermore, the 3N force
contributions are barely appreciable on the logarithmic scale of the plot.

We now turn our attention to the 2N momentum distributions obtained with the
2N chiral potentials without or with the 3N forces, obtained as discussed in Ref. [12].
We begin with studying the order-by-order pattern, using the Λ = 500 MeV cutoff
as an example. The results obtained with the other values of Λ display a similar
behavior. In Fig. 3 we show the BB np momentum distribution nnp(krel,Kc.m. = 0)
obtained using only the 2N force at LO, NLO, N2LO, N3LO and N4LO. The figure
reveals that the LO curve has a distinctly different behavior at small krel compared
with the other curves, which suggests that the asymptotic part of the wave function
at LO is significantly different than at the higher orders. Figure 4 displays the same
predictions but for the pp pair, also BB. As we can see, similar remarks apply to
the pp case as well. We also observe that the N3LO and N4LO curves are very similar
up to krel ≃ 2.2 fm−1, indicating satisfactory order-by-order convergence at least in
the region where the distributions still have non-negligible size.
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Figure 3: The np momentum distributions nnp(krel,Kc.m. = 0) in 3He calculated
using only 2N chiral interactions with Λ = 500 MeV. The different chiral orders are
labelled as in the text. In the inset we show the small krel range (krel ≤ 1 fm−1) on
a linear scale.

The BB 2N momentum distributions nnp(krel,Kc.m. = 0) and npp(krel,Kc.m. = 0)
calculated with and without 3N interaction, at different chiral order and for different
values of the cutoff Λ, are shown in Figs. 5 and 6, respectively. The cutoff depen-
dence is negligible below krel ≃ 2.2−2.5 fm−1, and increasingly strong above that.
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Figure 4: Same as Fig. 3 but for the pp pair.
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Figure 5: The npmomentum distributions nnp(krel,Kc.m. = 0) in 3He calculated using
only 2N (solid lines) and 2N+3N (dashed lines) chiral interactions, at different chiral
order and for three values of the cutoff Λ = 450, 500, 550 MeV. In all panels, the lines
from bottom to top correspond to the lower to higher values of Λ. Our approach to
the construction of the leading 3N force is described in Ref. [12].

Furthermore, the 3N force contributions are visible only for krel ≥ 3.0−3.5 fm−1.
Note, however, that above krel ≃ 2.5 fm−1 all momentum distributions are so small
that the differences are of no practical relevance.

As noted for the deuteron case, the momentum distributions calculated with chi-
ral interactions die out at a faster rate than those obtained with phenomenological
potentials, a feature which may be expected given the softer nature of chiral forces.
While this is a correct observation within the spectrum of interactions considered
here, it is important to note that the chiral nature of an interaction does not neces-
sarily bring the additional softness. To support this statement, we refer to Ref. [27],
where predictions for single-nucleon and 2N momentum distributions in A ≤ 16 are
shown. In that work, it is concluded that, when local chiral interactions are employed,
the resulting momentum distributions are consistent with those obtained from local
phenomenological potentials. In fact, the local 2N chiral interactions (at N2LO) ap-
plied in Ref. [27] and developed in Refs. [28, 29] predict a D-state probability for the
deuteron ranging between 5.5 and 6.1%, values which are typical for the “hardest”
local potentials.

Therefore, once again, the local vs non-local nature of the 2N force (by far the
largest contribution to our predicted momentum distributions), is a major factor in
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Figure 6: Same as Fig. 5 but for the pp pair.

determining the theoretical momentum distributions in nuclei and, particularly, their
short-range part.

4 Conclusions and outlook

We have discussed predictions for the 2N momentum distributions in the deuteron
and 3He. Our predictions are based on the state-of-the-art chiral 2N potentials, in-
cluding (or not) the leading chiral 3N force. Also, for the purpose of comparison,
we have considered older potentials plus an appropriate 3N force, either fully phe-
nomenological or based on meson theory. One of the main motivations was to explore
the short-range few-nucleon dynamics as predicted by these diverse interactions. One
of our findings is that, regardless the 2N force model, the contribution from the 3N
forces is weak.

We find a significant model dependence, especially in the high-momentum tails
of the momentum distributions, with both phenomenological and chiral potentials.
We have explored the cutoff dependence and found that it can be significant. This is
the case, though, in the region where the momentum becomes larger than the cutoff
values themselves.

Although potentials based on chiral EFT may be expected to produce weaker
SRC than purely phenomenological or meson-exchange ones, the local vs non-local
nature of the underlying 2N force appears to be a major factor in the observed
model dependence. We find this to be an important issue, extensively debated in
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the literature of the 1990’s [19–21] and now re-emerging along with new stimulating
discussions around electron scattering measurements.

The 2N potentials considered here have an established success record with low-
energy predictions, such as the structure of light and medium-mass nuclei as well as
the properties of nuclear matter. But, as shown above, they differ considerably in
their high-momentum components. Note that there is no physical reason why the
off-shell behavior of, say, AV18, should be preferable as compared to other potentials.
In fact, on the fundamental grounds, the off-shell behavior is not an observable. High
momentum transfer reactions are easier to analyze using one-body currents of the
impulse approximation, suitable with harder 2N potentials, whereas the use of soft,
non-local potentials, complicates the currents necessary to describe high momentum
transfer experiments [30]. One should carefully consider, for instance, to which extent
analyses of quasielastic electron scattering in terms of external radiation graphs [30],
without gauge-invariance preserving terms, may cause a sensitivity to the (otherwise
unobservable) off-shell behavior.

Acknowledgments

The work of F.S. and R.M. was supported by the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences, under Award Number DE-FG02-03ER41270.
Computational resources provided by the INFN-Pisa Computer Center are gratefully
acknowledged.

References

[1] K. S. Egiyan et al., Phys. Rev. Lett. 96, 082501 (2006) and references therein.

[2] K. Sh. Egiyan et al., CLAS-NOTE 2005-004 (2005),
https://misportal.jlab.org/ul/physics/Hall-B/clas/index.cfm?note_year=2005.

[3] K. Sh. Egiyan et al., Phys. Rev. C 68, 014313 (2003).

[4] M. McGauley and M. M. Sargsian, arXiv:1102.3973v3 [nucl-th] (2012).

[5] E. Piasetzky, M. Sargsian, L. Frankfurt, M. Strikman and J. W. Watson, Phys.
Rev. Lett. 97, 162504 (2006).

[6] A. Tang et al., Phys. Rev. Lett. 90, 042301 (2003).

[7] I. Korover et al. (Jefferson Lab Hall A Collaboration), Phys. Rev. Lett. 113,
022501 (2014).

[8] R. Shneor et al. (Jefferson Lab Hall A Collaboration), Phys. Rev. Lett. 99, 072501
(2007).

[9] R. Subedi et al., Science 320, 1476 (2008).

[10] H. Baghdasaryan et al. (CLAS Collaboration), Phys. Rev. Lett. 105, 222501
(2010).

[11] F. Sammarruca, Phys. Rev. C 92, 044003 (2015).



72 F. Sammarruca, L. E. Marcucci, M. Viviani and R. Machleidt

[12] L. E. Marcucci, F. Sammarruca, M. Viviani and R. Machleidt, Phys. Rev. C 99,
034003 (2019).

[13] R. B. Wiringa, V. G. J. Stoks and R. Schiavilla, Phys. Rev. C 51, 38 (1995).

[14] V. G. J. Stoks, R. A. M. Klomp, C. P. F. Terheggen and J. J. de Swart, Phys.
Rev. C 49, 2950 (1994).

[15] R. Machleidt, Phys. Rev. C 63, 024001 (2001).

[16] D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001(R) (2003).

[17] E. Marji, A. Canul, Q. MacPherson, R. Winzer, Ch. Zeoli, D. R. Entem and
R. Machleidt, Phys. Rev. C 88, 054002 (2013).

[18] R. Machleidt and D. R. Entem, Phys. Rep. 503, 1 (2011).

[19] R. Machleidt, F. Sammarruca and Y. Song, Phys. Rev. C 53, R1483(R) (1996).
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Abstract

A simple and effective algebraic isospin projection procedure for construct-
ing basis vectors of irreducible representations of O(5) ⊃ OT (3) ⊗ ON (2) from
those in the canonical O(5) ⊃ SUΛ(2)⊗SUI (2) basis is outlined, which is useful
in dealing with the isovector pairing problem. The expansion coefficients are
components of null-space vectors of the projection matrix. Explicit formulae for
evaluating OT (3)-reduced matrix elements of O(5) generators are derived.

Keywords: Isovector pairing; proton-neutron quasi-spin group; dynamical sym-
metry

1 Introduction

The proton-neutron quasi-spin group generated by an O(5) algebra is very useful
in dealing with nucleon pairing problems in a shell model framework [1–5]. Due to
its importance in nuclear spectroscopy, irreducible representations (irreps) of O(5)
have been studied in various ways. The most natural basis for irreps of O(5) may
be the branching multiplicity-free canonical one with O(5) ⊃ O(4), where O(4) is
locally isomorphic to SUΛ(2)⊗SUI(2), of which the construction of the basis vectors
was presented in Refs. [6–8]. The matrix representations of O(5) ⊃ SUΛ(2) ⊗ SUI(2)
were provided in Refs. [6–9]. Since the isospin is approximately conserved in the
charge-independent isovector pairing problem, it is more convenient to adopt the
non-canonical O(5) ⊃ OT (3) ⊗ ON (2) basis for this case, where OT (3) is the isospin
group, and ON (2) ∼ UN (1) is related with the number of nucleons in the system.
The main problem is that the reduction O(5) ↓ OT (3)⊗ON (2) is no longer branching
multiplicity-free in general. Basis vectors of O(5) irreps in the O(5) ⊃ OT (3)⊗ON (2)
basis can be either expanded in terms of those in the O(5) ⊃ SUΛ(2) ⊗ SUI(2) or
constructed by using tensor coupling methods directly, for which various attempts
were made [6, 10–15]. A recent survey on the subject with relevant references is
provided in Refs. [16, 17]. Though various procedures for the construction of ba-
sis vectors of O(5) irreps in the O(5) ⊃ OT (3) ⊗ ON (2) were provided in these
works, only cases up to the branching multiplicity three were obtained explicitly

Proceedings of the International Conference ‘Nuclear Theory in the Supercomput-
ing Era — 2018’ (NTSE-2018), Daejeon, South Korea, October 29 – November 2,
2018, eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2019, p. 73.
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in the past. Moreover, though there are closed expressions of the expansion coeffi-
cients (overlaps) [13] of the basis vectors of O(5) ⊃ OT (3) ⊗ON (2) in terms of those
of O(5) ⊃ SUΛ(2)⊗SUI(2) for any irrep of O(5), a triple sum is involved. Especially,
the basis vectors of O(5) ⊃ OT (3) ⊗ ON (2) obtained in all previous works [6, 10–15]
are non-orthogonal with respect to the branching multiplicity label, of which direct
computation will be CPU time consuming.

2 O(5) in the OT (3) ⊗ ON (2) basis

The generators of O(5) in the O(5) ⊃ OT (3) ×ON (2) basis may be expressed as

A†
1 = ν+, A†

−1 = τ+, A1 = ν−, A−1 = τ−,
A†

0 = U 1
2

1
2
, A0 = −U− 1

2− 1
2
, T+ = −

√
2U 1

2− 1
2
, T− = −

√
2U− 1

2
1
2
,

T0 = ν0 − τ0, N̂ = ν0 + τ0,

(1)

where {T+, T−, T0} generate the subgroup OT (3), and N̂ generates the ON (2).
N̂ = n̂

2 − Ω, where Ω =
∑

j(j + 1/2) and the sum runs over all single-particle or-
bits considered, and n̂ is the total number operator of valence nucleons, which is used
in the isovector pairing model [1–5]. Moreover, {ν+ = A†

1, ν− = A1, ν0 = n̂π/2−Ω/2}
and {τ+ = A†

−1, τ− = A−1, τ0 = n̂ν/2− Ω/2}, where n̂π and n̂ν are valence neutron
and proton number operator, respectively, generate the SUΛ(2)⊗SUI(2) related to the
quasispin of protons and neutrons with Λ = (Ω− vπ)/2 and I = (Ω− vν)/2, where vπ
and vν are proton and neutron seniority numbers, respectively. The matrix elements
of the double-tensor U introduced in Eq. (1) under the O(5) ⊃ SUΛ(2)⊗SUI(2) basis
were given in Refs. [6–9].

For a given irrep (v1, v2) of O(5), the basis vectors of O(5) ⊃ SUΛ(2) ⊗ SUI(2)
are denoted as ∣∣∣∣∣∣

(v1, v2)
Λ = 1

2 (u1 + u2), I = 1
2 (u1 − u2)

mΛ, mI

〉
, (2)

where mΛ and mI are quantum number of ν0 and τ0, respectively, u1 = v1 − q
and u2 = v2 − p with p = 0, 1, ... , 2v2, and q = 0, 1, ... , v1 − v2.

As can be observed from Eq. (1), the basis vectors of O(5) ⊃ SUΛ(2) ⊗ SUI(2)
given in Eq. (2) are also eigenstates of T0 and N̂ with eigenvalues

MT = mΛ −mI , N = mΛ +mI . (3)

For a given irrep (v1, v2) of O(5), all possible basis vectors of O(5) ⊃ SUΛ(2) ⊗ SUI(2)
⊃ UΛ(1) ⊗ UI(1) shown in Eq. (2) restricted by the conditions (3) form a complete
set for the fixed MT and N . Therefore, the basis vectors of O(5) ⊃ OT (3) ⊗ON (2)
can be expanded in terms of them with the restriction on the quantum numbers
mΛ = 1

2 (N +MT ) and mI = 1
2 (N − MT ). In constructing the basis vectors

of O(5) ⊃ OT (3) ⊗ON (2) for the irrep (v1, v2) of O(5) with fixed N , there is a free-
dom to choose a specific basis vector of O(5) ⊃ OT (3) ⊗ ON (2) with isospin T and
the quantum number of the third component of the isospin MT . Practically, it is
convenient to choose the highest or the lowest weight state of OT (3) with MT = T
or MT = −T . Here, we choose the highest weight state of OT (3) with MT = T as a
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reference state with ∣∣∣∣
(v1, v2)

ζ T = MT ,N

〉
, (4)

where ζ is the multiplicity label needed in the reduction (v1, v2) ↓ (T,N ) of O(5) ⊃
OT (3) ⊗ON (2). Thus, the vectors (4) should satisfy

T+

∣∣∣∣
(v1, v2)

ζ T = MT ,N

〉
= 0. (5)

Once the basis vector (4) for the highest weight state of OT (3) with MT = T is
known, the basis vector of O(5) ⊃ OT (3) ⊗ ON (2) for any MT can be expressed in
the standard way as

∣∣∣∣
(v1, v2)

ζ T,MT ,N

〉
=

√
(T +MT )!

(2T )! (T −MT )!
(T−)T−MT

∣∣∣∣
(v1, v2)

ζ T,MT = T,N

〉
. (6)

In order to find all basis vectors of O(5) ⊃ SUΛ(2) ⊗ SUI(2) with fixed MT > 0
and N in the irrep (v1, v2) of O(5), one suffices to consider possible irreps (Λ, I)
of SUΛ(2) ⊗ SUI(2) embedded in the canonical chain satisfying the condition (3).
According to the restrictions MT = mΛ − mI , N = mΛ + mI and the reduction
rules, we find that the following basis vectors are all possible ones within the O(5)
irrep (v1, v2) with MT ≥ 0 for fixed N :

∣∣∣∣∣∣

(v1, v2)
Λ, I

1
2 (N +MT ), 1

2 (N −MT )

〉
(7)

with the restrictions

1
2 |N +MT | ≤ Λ ≤ 1

2 (v1 + v2), 1
2 |N −MT | ≤ I ≤ 1

2 (v1 − v2). (8)

Hence, the basis vectors of O(5) ⊃ OT (3) ⊗ ON (2) may be expanded in terms of
vectors (7) as

∣∣∣∣
(v1, v2)

ζ T = MT ,N

〉
=

v1−v2∑

q=0

Min[v1+v2−q−|N+T |, 2v2]∑

p=Max[0, q−v1+v2+|N−T |]
c(ζ)p,q

×

∣∣∣∣∣∣

(v1, v2)
Λ = 1

2 (v1 + v2 − p− q), I = 1
2 (v1 − v2 + p− q)

1
2 (N + T ), 1

2 (N − T )

〉
, (9)

where the summations should also be restricted by the condition that
v1 + v2 − p − q − |N + T | are even numbers, ζ is the multiplicity label needed in

the reduction (v1, v2) ↓ (N , T ), and {c(ζ)pq ≡ c
(ζ)
pq ((v1, v2),N , T )} are the expansion

coefficients, which must satisfy

−
√

1

2
T+

∣∣∣∣
(v1, v2)

ζ T = MT ,N

〉
= U 1

2− 1
2

∣∣∣∣
(v1, v2)

ζ T = MT ,N

〉
= 0. (10)
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By using the explicit matrix elements of U in the O(5) ⊃ SUΛ(2) ⊗ SUI(2) basis
provided in Refs. [6–9], Eq. (10) leads to the following four-term relation to determine

the expansion coefficients {c(ζ)p,q}:

c
(ζ)
p,q+1(−1)2N−2q+2v1

×
[
(1+q)(2v1−q+2)(v1+v2−q+1)(v1+v2−p−q+T+N+1)(v1−v2+T−N+p−q+1)(v1−v2−q)

(v1+v2−p−q)(v1−v2+p−q)

] 1
2

+ c
(ζ)
p+1,q(−1)v1+v2+N−p−q+T

×
[
(1+p)(2v2−p)(v1+v2−p+1)(v1+v2+T+N−p−q+1)(v1−v2+p+2)(v1−v2−T+N+p−q+1)

(v1+v2−p−q)(v1−v2+p−q+2)

] 1
2

+ c
(ζ)
p−1,q(−1)v1−v2+N+p−q−T

×
[
p(2v2−p+1)(v1+v2−p+2)(v1+v2−T−N−p−q+1)(v1−v2+p+1)(v1−v2+T−N+p−q+1)

(v1+v2−p−q+2)(v1−v2+p−q)

] 1
2

+ c
(ζ)
p,q−1

×
[
q(2v1−q+3)(v1+v2−q+2)(v1+v2−T−N−p−q+1)(v1−v2−T+N+p−q+1)(v1−v2−q+1)

(v1+v2−p−q+2)(v1−v2+p−q+2)

] 1
2

= 0.

(11)
Accordingly, one can construct a matrix equation equivalent to Eq. (11),

P
(
(v1, v2),N , T

)
c(ζ) = Λc(ζ). (12)

Entries of the isospin projection matrix P
(
(v1, v2),N , T

)
can easily be read out from

Eq. (11) and the eigenvector c(ζ) ≡ c(ζ)
(
(v1, v2),N , T

)
, which transpose is arranged

as
(
c(ζ)
)T

= (c
(ζ)
0,0, c

(ζ)
1,0, c

(ζ)
2,0, ... , c

(ζ)
0,1, c

(ζ)
1,1, ...). The components of the eigenvector c(ζ)

corresponding to Λ = 0 provide the expansion coefficients {c(ζ)p,q} of Eq. (9). Once the
matrix P

(
(v1, v2),N , T

)
is constructed, it can be verified that the number of Λ = 0

solutions of Eq. (12) equals exactly to the number of rows of P
(
(v1, v2),N , T

)
with

all entries zero. Actually, the eigenvectors c(ζ)
(
(v1, v2), T,N

)
belong to the null-space

of P
(
(v1, v2),N , T

)
. Since there are many ways to find null-space vectors of a matrix,

to find solutions of Eq. (12) with Λ = 0 becomes practically easy. Furthermore,(
c(ζ

′)
)T ·c(ζ) 6= 0 when the multiplicity is greater than 1 mainly because the projection

matrix P
(
(v1, v2),N , T

)
is nonsymmetric. Therefore, the O(5) ⊃ OT (3)⊗ON (2) basis

vectors (9) constructed from the expansion coefficients obtained according to Eq. (11)
are also non-orthogonal with respect to the multiplicity label ζ in general. The Gram–
Schmidt process may be adopted in order to construct orthonormalized basis vectors
of O(5) ⊃ OT (3) ⊗ ON (2). Nevertheless, in the Wolfram Mathematica, the built-in
function NullSpace of a matrix with non-integer entries generates orthonormalized
null-space vectors automatically, with which the Gram–Schmidt orthogonalization
can be avoid. In the following, we use c̃(ζ) to denote the orthonormalized null-space
vectors of N

[
P
(
(v1, v2),N , T

)]
with respect to the multiplicity label ζ obtained from

the Wolfram Mathematica numerically, where N [P] means to take P with numerical
valued entries with a default precision.

The CPU time cost and memory space needed for a computer to solve the null-
space problem (12) depend mainly on the number of terms d(N , T ) needed in the
expansion (9), which equals to the number of columns of P

(
(v1, v2),N , T

)
. Generally,

it would take the CPU time on the order of O(d3) with a unit inversely proportional
to the CPU frequency, and the memory space on the order of O(d2) bytes. When v1
and v2 are integers, for example, we observe form Eq. (9) that the maximal number
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of terms occurs in the T = N = 0 case. In such extreme case, the upper bound of
the number of terms involved in the expansion can be estimated as

d(N = 0, T = 0) ≤
v1−v2∑

q=0

Min[v1+v2−q, 2v2]∑

p=Max[0, q−v1+v2]

1 = (1 + v1 − v2)(2v2 + 1), (13)

which shows that Max[d(N , T )] ≤ d(N = 0, T = 0) increases with v1 linearly and
with v2 quadratically.

3 Matrix elements of the isovector pairing
operators in the O(5) ⊃ OT (3) ⊗ ON (2) basis

Once the orthonormalized expansion coefficients {c̃(ζ)} are obtained according to
the isospin projection shown in the previous section, one can easily calculate matrix
elements of O(5) generators {A†

µ, Aµ, Tµ,N} (µ = −1, 0, 1) given in Eq. (1) in
the OT (3) ⊗ON (2) basis. Since the matrix elements of {Tµ, N} are well-known,
depend only on T or N , and are irrelevant to the irrep of O(5) and the multiplicity
label ζ, only the formulae of matrix elements of the isovector pairing operator A†

µ

and Aµ in the O(5) ⊃ OT (3) ⊗ON (2) basis will be provided.

In the O(5) ⊃ OT (3) ⊗ ON (2) basis, the pair creation operators A+
µ with

{A+
1 = −A†

1, A+
0 = A†

0, A+
−1 = A†

−1} and the pair annihilation operators Aµ with
{A1 = A−1, A0 = −A0, A−1 = −A1} are T = 1 irreducible tensor operators of OT (3)
satisfying the following conjugation relation [18]:

Aµ = (−1)1−µ
(
A+

−µ

)†
. (14)

These T = 1 irreducible tensor operators shift N by one unit, while A†
1 = ν+,

A†
0 = U 1

2
1
2
, and A†

−1 = τ+ in the O(5) ⊃ SUΛ(2)⊗ SUI(2) basis shown in Refs. [6–9].

Using the Wigner–Eckart theorem for matrix elements of O(5) ⊃ OT (3)⊗ON (2), we
have

〈
(v1, v2)

ζ′ T ′M ′
T ,N ′

∣∣∣∣A+
µ

∣∣∣∣
(v1, v2)

ζ T MT ,N

〉

= δN ′,N+1〈TMT , 1µ|T ′ M ′
T 〉
〈

(v1, v2)
ζ′ T ′,N + 1

∥∥∥∥A+

∥∥∥∥
(v1, v2)
ζ T,N

〉
, (15)

where 〈TMT , 1µ|T ′ M ′
T 〉 is the Clebsch–Gordan coefficient of OT (3), and

〈
(v1, v2)
ζ′ T ′,N ′

∥∥∥∥A+

∥∥∥∥
(v1, v2)
ζ T,N

〉

is the OT (3)-reduced matrix element. In the calculation, we ensure that T ′ is al-
ways involved in the OT (3) coupling T ⊗ 1, and M ′

T = MT + µ is always satisfied.
By using Eq. (9) and the expressions of A†

µ in terms of the generators of O(5) in
the SUΛ(2) ⊗ SUI(2) basis shown in Eq. (1), the left-hand-side of Eq. (15) can be
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expressed in terms of expansion coefficients c̃(ζ) and the matrix elements of O(5) gen-
erators in the SUΛ(2)⊗SUI(2) basis. In the following, we list nonzero OT (3)-reduced
matrix elements of A† derived in this way:

〈
(v1, v2)

ζ′ T + 1,N + 1

∥∥∥∥A+

∥∥∥∥
(v1, v2)
ζ T,N

〉
= −1

2

∑

q,p

c̃(ζ
′)

p,q (N + 1, T + 1) c̃(ζ)p,q(N , T )

×
√

(v1 + v2 − p− q −N − T )(v1 + v2 − p− q + N + T + 2),

〈
(v1, v2)

ζ′ T,N + 1

∥∥∥∥A+

∥∥∥∥
(v1, v2)
ζ T,N

〉

=
√

T+1
8T

∑
q,p c̃

(ζ)
q,t (N , T )

(
c̃
(ζ′)
p,q−1(N + 1, T ) (−1)2N−2q+2v1+1

×
[
q(2v1−q+3)(v1−v2+p−q+N−T+2)(v1+v2−p−q+T+N+2)(v1−v2−q+1)(v1+v2−q+2)

(v1−v2+p−q+1)(v1−v2+p−q+2)(v1+v2−p−q+1)(v1+v2−p−q+2)

] 1
2

+ c̃
(ζ′)
p−1,q(N + 1, T )(−1)v1+v2+N−p−q+T

×
[
p(2v2−p+2)(v1−v2+p−q−N+T )(v1+v2−p−q+T+N+2)(v1−v2+p+1)(v1+v2−p+2)

(v1−v2+p−q+1)(v1−v2+p−q)(v1+v2−p−q+1)(v1+v2−p−q+2)

] 1
2

+ c̃
(ζ′)
p+1,q(N + 1, T )(−1)v1−v2+N+p−q−T

×
[
(p+1)(2v2−p)(v1−v2+N−T+p−q+2)(v1+v2−T−N−p−q)(v1−v2+p+2)(v1+v2−p+1)

(v1−v2+p−q+1)(v1−v2+p−q+2)(v1+v2−p−q)(v1+v2−p−q+1)

] 1
2

+ c̃
(ζ′)
p,q+1(N + 1, T )

×
[
(q+1)(2v1−q+2)(v1−v2−T+N+p−q)(v1+v2−T−N−p−q)(v1−v2−q)(v1+v2−q+1)

(v1−v2+p−q)(v1−v2+p−q+1)(v1+v2−p−q)(v1+v2−p−q+1)

] 1
2

)

for T ≥ 1
2 , and

〈
(v1, v2)

ζ′ T − 1,N + 1

∥∥∥∥A+

∥∥∥∥
(v1, v2)
ζ T,N

〉

=
1

2

√
2T + 1

2T − 1

∑

q,p

c̃(ζ
′)

p,q (N + 1, T − 1)c̃(ζ)p,q(N , T )

×
√

(v1 − v2 + p− q −N + T )(v1 − v2 + p− q + N − T + 2) (16)

for T ≥ 1. The other non-zero reduced matrix elements of A can be obtained by the
conjugation relation:
〈

(v1, v2)
ζ′ T ′,N ′

∥∥∥∥A
∥∥∥∥

(v1, v2)
ζ T,N

〉
= (−1)T

′−T+1

√
2T + 1

2T ′ + 1

〈
(v1, v2)
ζ T,N

∥∥∥∥A+

∥∥∥∥
(v1, v2)
ζ′ T ′,N ′

〉
. (17)

4 Applications to the isovector pairing model

In the spherical shell model, we consider n valence nucleons with J = 0 and T = 1
pairing interactions in p single-particle orbits. In general, the spherical shell model
is the mean-field plus the isovector pairing interaction Hamiltonian may be written
as [5]

Ĥ =
∑

j

ǫjnj −GπA
†
+1A+1 −GπνA

†
0A0 −GνA

†
−1A−1, (18)
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where ǫj is the single particle energy of the j-orbit, Gπ > 0, Gν > 0, and Gπν > 0 are
proton-proton (pp), neutron-neutron (nn), and neutron-proton (np) pairing interac-

tion strengths, respectively, nj =
∑

mmt
a†jm,mt

ajm,mt is the valence nucleon number

operator in the j-orbit, and a†jm,mt
(ajm,mt) is the creation (annihilation) operator

for a valence nucleon in the state with angular momentum j, angular momentum
projection m, and isospin projection mt = 1/2, − 1/2. When Gπ = Gν = Gπν = G,
the isospin is a good quantum number. In this isospin conserving-case, the Hamilto-
nian (18) is exactly solvable [18,19]. Since neutron and proton single-particle energies
in the j-orbit are the same, it is expected that Gπ = Gν = G may be approximately
satisfied, while, in general, Gπν 6= G and the Bethe ansatz method used in Ref. [18,19]
will no longer be useful. In such a case, the Hamiltonian (18) may be diagonalized
in the O(5) ⊃ OT (3) ⊗ON (2) basis [20–23]. For the sake of simplicity, in the follow-
ing, we consider the degenerate case with ǫj = ǫ ∀ j when the first term in Eq. (18)
becomes a constant for a fixed number of nucleons n, and is neglected. Thus, the
Hamiltonian can be expressed as

ĤP = −GA+ · A, (19)

where Gπ = Gν = Gπν = G is assumed. The Hamiltonian (19) is OT (3) invariant
and can be expressed as

ĤOT (3) = ĤP = −GA+ · A = −1

2
G
(
C2

(
O(5)

)
− N̂ (N̂ − 3) −T ·T

)
, (20)

which is diagonal in the O(5) ⊃ OT (3) ⊗ON (2) basis:

ĤOT (3)

∣∣∣∣
(v1, v2)

ζ T,MT ,N

〉

= −1

2
G
(
v1(v1 + 3) + v2(v2 + 1) −N (N − 3) − T (T + 1)

)∣∣∣∣
(v1, v2)

ζ T,MT ,N

〉
. (21)

In this case, the labels of the O(5) irrep (v1, v2) are related to the seniority of nu-
cleons v and the reduced isospin t with v1 = Ω − v/2 and v2 = t, where v and t
indicate that there are v nucleons coupled to the isospin t, which are not included in
the J = 0 and T = 1 pairs. One can also directly calculate matrix elements of A+ · A
in the O(5) ⊃ OT (3) ⊗ON (2) basis using the matrix elements of A+ provided in the
previous Section,

〈
(v1, v2)

ζ T,MT ,N

∣∣∣∣A+ · A
∣∣∣∣

(v1, v2)
ζ T,MT ,N

〉
=
∑

ζ′T ′

∣∣∣∣
〈

(v1, v2)
ζ T,N

∥∥∥∥A+

∥∥∥∥
(v1, v2)

ζ′ T ′,N − 1

〉∣∣∣∣
2

, (22)

where the relation (17) is used to check that the results shown in the previous Section
are indeed valid.

Moreover, besides the OT (3) isospin dynamical symmetry limit case shown above,
there is the well known SUΛ(2)⊗SUI(2) quasispin dynamical symmetry limit for any
value of Gπ and Gν when Gπν = 0, where Λ and I are the quasi-spin of the proton
and neutron pairing, respectively. In this case, the pairing interaction part of Eq. (18)

ĤSUΛ(2)⊗SUI(2) = −GπA
†
+1A+1 −GνA

†
−1A−1 (23)



80 Feng Pan, K. D. Launey and J. P. Draayer

is diagonal in the O(5) ⊃ SUΛ(2) ⊗ SUI(2) basis,

ĤSUΛ(2)⊗SUI(2)

∣∣∣∣∣∣

(v1, v2)
Λ, I

mΛ,mI

〉

=
(
−Gπ

(
Λ(Λ + 1) −mΛ(mΛ + 1)

)
−Gν

(
I(I + 1) −mI(mI + 1)

))
∣∣∣∣∣∣

(v1, v2)
Λ, I

mΛ,mI

〉
, (24)

where Λ = (Ω−vπ)/2 and I = (Ω−vν)/2 and vπ (vν) is the proton (neutron) seniority,
mΛ = nπ/2 − Ω/2, mI = nν/2 − Ω/2 and nπ (nν) is the number of valence protons
(neutrons), which shows that the Hamiltobian (23) is still block diagonal with respect
to the O(5) irrep labeled by (v1, v2), though the interpretation of (v1, v2) in terms of v
and t is no longer appropriate in this case due to the fact that the isospin symmetry
is broken.

For other values of the pairing interaction strengths, the pairing interaction part of
the Hamiltobian (18) can be only diagonalized in any basis of O(5) and the eigenstates
may be expanded in terms of either the basis vectors of O(5) ⊃ OT (3) ⊗ ON (2) or
those of O(5) ⊃ SUΛ(2) ⊗ SUI(2). The parameter rectangle of the pure isovector
pairing Hamiltonian is illustrated in Fig. 1, which shows that the pure isovector
pairing Hamiltonian may be diagonalized in the O(5) ⊃ OT (3)⊗ON (2) basis, except
the Gπν = 0 case indicated by the left leg of the rectangle with the SUΛ(2)⊗ SUI(2)
quasispin dynamical symmetry.

5 Summary

In this talk, a simple and effective algebraic isospin projection procedure for construct-
ing basis vectors of the irreducible representations of the non-canonical

Figure 1: The parameter rectangle of the isovector pairing Hamiltonian, where the
left leg marked by the solid line represents the Hamiltonian with arbitrary values
of Gπ and Gν and Gπν = 0 corresponding to the SUΛ(2) ⊗ SUI(2) quasispin dy-
namical symmetry, and the vertex marked by the solid dot represents the Hamil-
tonian with Gπ = Gν = Gπν corresponding to the OT (3) isospin dynamical symme-
try. The Hamiltonian for other values of the parameters shown by the other area
of the rectangle may be diagonalized in either the O(5) ⊃ SUΛ(2) ⊗ SUI(2) or
the O(5) ⊃ OT (3) ⊗ON (2) basis.
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O(5) ⊃ OT (3) ⊗ON (2) basis from those of the canonical O(5) ⊃ SUΛ(2)⊗SUI(2) ba-
sis is presented. The main content of this talk is based on our recent work [24], where
more detailed results are provided. It is shown that the expansion coefficients can
be obtained as components of the null-space vectors of the projection matrix, where
there are only four nonzero elements in each row in general. There are currently
available well-optimized algorithms for computing the null-space vectors of a matrix,
for example, the Wolfram Mathematica providing the null-space vectors which are or-
thonormalized. Hence, an evaluation of the expansion coefficients of the orthonormal
basis vectors of O(5) ⊃ OT (3) ⊗ ON (2) in terms of the basis of the canonical chain
becomes straightforward. The advantage of this work lies in the fact that the basis
vectors of O(5) ⊃ OT (3) ⊗ ON (2) thus obtained are orthonormalized with respect
to the O(5) ↓ OT (3) ⊗ ON (2) branching multiplicity label ζ for any irrep of O(5).
Explicit formulae for evaluating OT (3)-reduced matrix elements of O(5) generators
are derived.

For the general non-degenerate case of the Hamiltonian (18) when there are p
non-degenerate orbits, one needs to diagonalize the Hamiltonian in the

⊗p
i=1Oi(5)

subspace, where the matrix elements of the isovector pairing operators provided in
this talk are useful. Thus, one can further analyze the isospin symmetry breaking
effects in the Hamiltonian (18) with Gπ 6= Gν 6= Gπν as was done for the specific
cases in Refs. [20–23], which is also helpful for understanding the np-pairing effect
in N ∼ Z nuclei [25].
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Large-Scale Shell Model Calculations

of Heavy Nuclei

Chong Qi

Department of physics, KTH Royal institute of Technology, SE-10691, Stockholm

Abstract

In this contribution I describe briefly the application of the shell model con-
figuration interaction approach to intermediate-mass and heavy nuclei at KTH.
I focus in particular on the technical side of the development which enables us
not only to perform large-scale full-configuration interaction calculations but
also to solve efficiently the nuclear pairing Hamiltonian in a truncated space
defined by seniority.

Keywords: Nuclear shell model; truncation; pairing; collective motion

1 Introduction

In the talk I present systematic calculations of the spectroscopy and transition prop-
erties of intermediate-mass and heavy nuclei around doubly magic 100Sn as well as
around 208Pb by using the large-scale configuration interaction shell model approach
with realistic interactions. Those nuclei are of interest to us partially due to the fact
that they are the longest isotopic chains that can be studied by the nuclear shell
model. We hope they can provide excellent background to study the competition of
single-particle and two-body excitations. In particular, we studied the yrast spec-
tra of Te isotopes which show a vibrational-like equally-spaced pattern but a few
known E2 transitions show anomalous rotational-like behaviour, which cannot be
reproduced by collective models [1–6]. Moreover, the calculated B(E2) values for
neutron-deficient and heavier Te isotopes show contrasting different behaviours along
the yrast line. This may be related to the enhanced neutron-proton correlation when
approaching N = 50. In general, the deviations between theory and experiment con-
cerning the excitation energies and electromagnetic properties of low-lying 0+ and 2+

excited states and isomeric states may provide a constraint on our understanding of
nuclear interaction and a hint on possible quantum phase transition. We have mea-
sured the lifetimes of the first excited 2+ and 4+ states in the neutron-deficient nuclide
172Pt [7]. We have also done several large-scale shell model calculations with realistic
nucleon-nucleon interactions for Pt, Os and W isotopes between N = 82 and 94 by
considering either 132Sn or 146Gd as the inert cores. A striking feature we found is
that the ratio B(E2; 4+1 → 2+1 )/B(E2; 2+1 → g.s.) = 0.55(19) is unusually low. In

Proceedings of the International Conference ‘Nuclear Theory in the Supercomput-
ing Era — 2018’ (NTSE-2018), Daejeon, South Korea, October 29 – November 2,
2018, eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2019, p. 83.

http://www.ntse.khb.ru/files/uploads/2018/proceedings/Qi.pdf.
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addition, a few other neutron-deficient W, Os, and Pt nuclei in this region feature the
same effect [8].

In this talk I also illustrate the application of the importance-truncation approach,
which is based on the monopole Hamiltonian, to neutron deficient Pb isotopes [9].
For those nuclei, the full shell-model results also agree well with our generalized
seniority and nucleon-pair-approximation truncation calculations. We have developed
an angular momentum projection technique to derive the analytic wave functions and
energy expressions for those states in the simplified single-j case [10].

In this Proceeding, I would like to focus on some technical details of our efforts
at KTH, Stockholm in developing the shell model algorithm and its possible various
applications. In addition to large-scale full and truncated configuration interaction
calculations, one of our primary interests is to apply the model to solve the pairing
Hamiltonian in large model space efficiently.

2 Shell model approach

The shell model we refer to, deals with residual interaction between valence particles
around the Fermi surface, which is mostly supposed to be of a two-body nature.
The effective Hamiltonians in terms of single-particle energies and two-body matrix
elements can be written as follows,

Heff =
∑

α

εα N̂α +
1

4

∑

αβδγJT

〈αβ|V |γδ〉JT A†
JT ;αβ AJT ;δγ , (1)

where we assume that the effective Hamiltonian conserves isospin symmetry, α={nljt}
denotes the single-particle orbitals and εα stands for the corresponding single-particle
energies. N̂α =

∑
jz,tz

a†α,jz ,tzaα,jz ,tz is the particle number operator. 〈αβ|V |γδ〉JT
are the two-body matrix elements coupled to spin J and isospin T . AJT (A†

JT ) is the
fermion pair annihilation (creation) operator.

The pairing matrix elements refer to those with J = 0 and α and β (as well as δ
and γ) corresponding to time reversal orbitals. One has

HP =
∑

α

εα N̂α +
1

4

∑

ααγγT

〈αα|V |γγ〉J=0T A
†
JT ;ααAJT ;γγ . (2)

In most mean field approaches, usually the proton-proton and neutron-neutron pairing
are considered only. The neutron and proton pair can couple to both T = 1 (isovector)
and T = 0 (isoscalar). The importance of neutron-proton correlation may also become
important in N ∼ Z nuclei. In relation to that, there is a long-standing quest for
a possible existence of the np pairing in N ∼ Z nuclei (see recent discussions in
Refs. [11–15]).

The monopole Hamiltonian determines average energy of eigenstates in a given
configuration. The monopole interaction itself does not induce any mixture between
different configurations, however it can change significantly the (effective) mean field
and drive the evolution of the shell structure. The monopole interaction Vm is the
angular momentum averaged effects of the two-body interaction,

Vm,αβ =

∑
J(2J + 1)V J

αβαβ∑
J(2J + 1)[1 − δαβ(−1)J ]

=

∑
J(2J + 1)V J

αβαβ

(2jα + 1)

1 + δαβ
2jβ + 1 − δαβ

. (3)
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The strong mixture of the wave function is mainly induced by the residual J = 0 pair-
ing and the QQ neutron-proton interaction in the multipole Hamiltonian. However, a
tricky issue one often get confused is that the diagonal matrix elements of the pairing
Hamiltonian (with α = γ) also contribute significantly to the monopole interaction.

The number of orbitals one can include is strongly restricted due to the compu-
tational limitation. Extensive studies of the algorithm optimizations and possible
truncation or approximation methods have been carried out. State-of-the-art config-
uration interaction algorithms are able to diagonalize matrices with dimensions up
to 2 × 1010 with the shell model codes like KSHELL and Redstick. Truncations often
have to be applied in order to reduce the sizes of the shell-model bases. The sim-
plest way of the truncation is to restrict the maximal/minimal numbers of particles
in different orbitals. This method is applied to both the no-core (often being referred
to as Nmax) and empirical shell model (np−nh) calculations. We studied in Ref. [1]
the structure and electromagnetic transition properties of light Sn isotopes within the
large gdsh11/2 model space by restricting to four the maximal number of neutrons
that can be excited out of the g9/2 orbital. However, the convergence can be very
slow if there is no clear shell or subshell closure or if the single-particle structure is
significantly modified by the monopole interaction, as it happens in neutron-rich light
nuclei (see, e. g., Ref. [16]).

One can evaluate the importance of a given basis vector ψi within a partition
through the perturbation measure Ri = |〈ψi|Heff |ψc〉|/(ǫi − ǫc) where ψc is the cho-
sen reference state with the unperturbed energy ǫc. It is expected that the basis
vectors with larger Ri should play larger role in the given state dominated by the
reference basis state ψc used to define the truncation scheme. The off-diagonal ma-
trix elements 〈ψi|Heff |ψc〉 are relatively weak in comparison to the diagonal ones.
The most important configurations may be selected by considering the unperturbed
energy difference ri = ǫi− ǫc. A truncated model space can thus be defined by taking
the vectors with smallest ri. The challenge here is that the truncated bases may not
conserve angular momentum. An angular momentum conserved correlated basis trun-
cation approach was introduced in Ref. [17]. We are implementing this method in the
widely distributed shell-model code NuShellX by replacing its projection subroutine
with our new correlated basis method.

An importance truncation can be introduced based on the total monopole energy
by considering the multipole Hamiltonian as a perturbation. The idea behind is
again that the Hamiltonian is dominated by the diagonal monopole channel. One can
evaluate the total monopole energy of a given partition P as

Em
P =

∑

α

εαNP;α +
∑

α≤β

Vm;αβ
NP;α(NP;β − δαβ)

1 + δαβ
, (4)

where NP;α denotes the particle distributions within a given partition P . One can
order all partitions according to the monopole energy Em

P and consider the lowest
ones for a given truncation calculation. Moreover, it is expected that the pairing
correlation should play a significant role governing the structure of the lowest-lying
states of the semi-magic Pb isotopes. This model was applied in our calculations of
Pb isotopes [9]. Convergence is mostly achieved at d/D ∼ 0.1, i. e., by considering
only 10% of the total M-scheme bases. This method is very easy to implement and it
preserves the simplicity of the M-scheme algorithm.
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We have also done pair-truncated shell-model calculations with collective pairs as
building blocks in Refs. [9, 14, 18] for both the standard shell model and continuum
shell model in the complex energy plane.

3 Exact diagonalization of pairing Hamiltonian

The pairing Hamiltonian is usually solved using the simple BCS or the HFB ap-
proach which both violate the conservation of the number of particles. Particle-
number-conserved pairing calculations can be done within the Richardson approach
(see, e. g., Ref. [19]) or utilizing the exact diagonalization in a way similar to the
shell model [16, 20]. The Richardson approach can be applied to very large (infi-
nite) systems but is limited to Hamiltonians of a certain form. On the other hand,
the exact diagonalization can be done for a general Hamiltonian but the number of
orbitals one can include is limited. This limitation makes is difficult to perform re-
alistic calculations and to compare the results with those from the BCS or similar
approaches. In addition, it limits the application of the model to the α decay or pair
transfer reaction calculations. This is one of the challenges we have been trying to
resolve in the past few years. We have developed a very efficient and robust solver for
the Richardson equation which will be publicly available soon. We have also devel-
oped two large-scale exact diagonalizers: one is based on our large-scale shell model
code and parallelized using MPI + OpenMP hybrid algorithm; the other one uses only
OpenMP parallelization which can be easily combined with existing mean field codes
to replace the problematic BCS solver.

We have developed a seniority truncation approach for the M-scheme shell model
algorithms. For systems comprising the particles of the same kind, the low-lying states
can be well described within the seniority scheme. This is related to the fact that
the T = 1 two-body matrix elements are dominated by the J = 0 pairing interactions.
The seniority is related to the number of particles that are not paired to J = 0. The
seniority coupling has shown a remarkable success in describing the spectroscopy and
electromagnetic transition properties of semi-magic nuclei with spherical symmetry.
Our recent studies on the seniority coupling scheme may be found in Refs. [21–26].
The standard seniority coupling cannot be utilized within the M-scheme shell model
code where the angular momentum conservation is not considered at the basis vector
level. On the other hand, we can define a seniority-like M-scheme pair. We set this
‘seniority’ to zero if all particle pairs can be coupled to M = 0 that is all orbitals
have their time reversal partners. The seniority in our M-scheme refers then to the
number of particles that have no time reversal partners.

One can derive the exact solution of the pairing Hamiltonian by diagonalizing the
matrix spanned by the seniority v = 0, spin I = 0 states which represent only a tiny
part of the total wave function. Our second code is designed in such a way that it
works only in the v = 0 or low seniority cases but in a very simple and efficient way.
If only the seniority v = 0 states are considered, there is ONLY one basis vector
for each shell model partition. This allows us to generate the v = 0 basis in a way
similar to the M-scheme shell model. We take one time reversal orbital pair as one
binary bit which is represented as ‘1’ if the orbital is occupied. So, the combination
problem of generating all possible M-scheme vectors with a fixed number of identical
pairs N in M time reversal states is equal to generating binary integers consisting
of the same N number of digit ‘1’ and M − N number of digit ‘0’. As an example,
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for three pairs in six doubly degenerate orbitals, an obvious basis would be ‘000111’
which is easy to generate and which has the minimum value. The basis with maximum
value can also be generated simply. Then we have a two-step mechanism to generate
the rest basis vectors: For an input binary integer, first, find the first two adjacent
bits with the binary pattern ‘01’ and turn them to ‘10’; second, move all digit ‘1’ on
the lower side of the turned ‘10’ to the lowermost. The next larger integer is then
generated. The iteration should start from the minimum as input and be stopped
when the output is equal to the maximum.

We take again the above system as an example: the two-step mechanism starts
from the vector 000111 with the minimum value; the first ‘01’ appears at the third
bit, we turn ‘01’ to ‘10’ and ‘000111’ is turned to ‘001011’; since all digit ‘1’ is on
the lowermost, the output is ‘001011’. From this basis, we can generate ‘001101’
and ‘001110’. For the basis ‘001110’, we flip the first ‘01’ which changes the basis to
‘010110’. However, on the lower side of the fourth bit, there are two digits ‘1’ at the
second and the third bit which should be moved to the lowermost, so the final output
is ‘010011’. This simple mechanism allows us to generate a large-scale basis in a very
efficient manner which was actually a bottleneck for us before.

A remarkable feature is that the algorithm works also in the case of degenerate
systems which allow more than one pair in a single orbital. In such situations, we
at first represent an orbital with degeneracy D as D/2 continuous bits. One can, of
course, generate the basis in the same way as above. We have a complete M-scheme
basis for which the solution will be eigenstates of the spherical pairing Hamiltonian.
However, one should bear in mind that the dimension of such a M-scheme-like basis
set can be orders of magnitude larger than the J-scheme-like seniority-zero basis which
makes the calculations much less efficient.

To overcome this problem, we label the bits from the same degenerate orbital as a
subgroup. Inside each subgroup, since all particles are indistinguishable, we just need
one vector to represent different combination of bits, and the easiest choice is to put
all digit ‘1’ on the lowermost side. For example, ‘000111’ can represent uniquely the
vector for a system with three pairs in a 12-fold orbital. All the rest will be neglected.
In other words, we will do not flip the ‘01’ within a given subgroup.

The basis vectors generated with the above algorithm are ordered accordingly to
their values. This also allows us to identify the non-zero Hamiltonian matrix elements
in an efficient way. For a given vector |φi〉 we first generate a subbasis set from the
operation φj = H |φi〉. The indices of the subbasis φj can be determined then by
matching their values with those from the original basis set using standard searching
algorithms. It can be quite efficient since the basis vectors are ordered.

With the code described above, one can readily solve a half-filled system with up to
36–38 doubly-degenerate orbitals and 18–19 pairs (with dimensions 9×109−3.5×1010).
The corresponding shell-model space dimensions are around 4×1020−7×1021) which
is a problem formidable to solve.

The code works efficiently on PC, and now we are combing the code with publicly
available Hartree–Fock (HF) mean field codes for realistic calculations. One of our
concerns is the contribution of the pairing matrix elements to the monopole energy.

Let us consider a simple system with N pairs of identical particles in a single-j
shell. The total energy can be obtained as

E = N(N − 1)G−NΩG, (5)
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where G is the pair coupling constant and Ω = j + 1/2. The first linear term on
the right hand side corresponds to the contribution of the pairing to the monopole
channel or the mean field, and the second term defines the pairing correlation energy

Ecorr = N(N − Ω)G. (6)

This aspect looks simple but should be properly taken into account when the pairing
Hamiltonian is solved exactly to evaluate the pairing correlation or to be compared
with the BCS approach. For a system involving equally-spaced doubly-degenerate
orbitals, we showed that the total energy can be also rather well approximated as [20]

E(N) ≃ N (N − 1)G +NE2, (7)

where G is a coefficient related to the pairing strength and level density. One has

Ecorr(N) ≃ N (N − 1)G +NE2 −N(N + 1) +NG

= N (N − 1) (G − 1) +N(E2 − 2 +G), (8)

where the first and the second terms define the Pauli blocking effect and the correlation
energy of a single pair, respectively.

As discussed above, the diagonal channel of the full pairing Hamiltonian con-
tributes significantly to the total binding energy, which may result in an over-counting
problem and has to be removed from the exact solution of the pairing Hamiltonian in
the mean field applications. In some cases, the diagonal matrix elements are removed
in analogy to the BCS approach, and the following Hamiltonian is diagonalized,

H ′ =
∑

α

εn̂α −
∑

α6=β

Gαβ a
†
αa

†
ᾱaβaβ̄ , (9)

where α runs again over the time-reversal orbits with quantum numbers jα and |mα|
within the HF configuration. In this way one excludes the renormalization effect of the
single-particle energy from the diagonal pairing matrix elements. The disadvantage
is that the rotational symmetry is not conserved at the two-body level.

The de facto standard approach to extract the correlation energy is to take the
difference between the total energy E and the energy of the lowest, unperturbed HF
configuration as

Ecorr = E − EHF , (10)

where Ecorr is the (negative) correlation energy and EHF is the HF energy which
provides the upper bound for the total energy and is the starting point for various
post-HF calculations of the correlation. One can define in a straightforward way the
correlation energy as

E(1)
corr = Egs −

∑

α

[2εα −Gαα], (11)

where Egs is the lowest energy. Gαα are the corresponding diagonal matrix elements.
Now we introduce a different definition for the correlation energy based properly on

the definition of the monopole interaction. If only the pairing interaction is considered
for the particle-particle channel, we have V J=0

jjjj = −ΩjGjj and Vjj = −Gjj/2j. Thus
one can define an alternate way to calculate the correlation energy as

E(2)
corr = E −

∑

j∈HF

[
njεj −

Gjj

2j

nj(nj − 1)

2

]
, (12)
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where j runs over all single-j levels within the HF configuration.

E
(1)
corr and E

(2)
corr would be identical if all single-particle levels within the HF con-

figuration are fully occupied. However, it should be emphasized that E
(2)
corr gives a

stronger (negative) correlation energy than E
(1)
corr if the last orbital is only partially

occupied (with N = 1 to Ω − 1 pairs). The deviation is

E(2)
corr − E(1)

corr = −Nk(Ωk −Nk)
Gkk

Ωk − 1/2
, (13)

where k corresponds to the last occupied orbital and Nk(Ωk−Nk) = (Ωkukvk)2. This
deviation is related to the fundamental difference between the coupling of particles
in the two schemes: The particles are constrained to pair to zero angular momentum
with its time reversed partner in the former case but there is no such constraint in

the second case. This is the reason why E
(2)
corr predicts more correlation energy than

the first case. With the pairing correlation energy thus defined, we can perform now
a systematic study of nuclear masses.

4 Summary

In this talk, I presented our recent works on the configuration-interaction shell-model
calculations of the spectroscopy and transition properties of intermediate-mass and
heavy nuclei. In this contribution to the Proceedings, I started by introducing the
basic framework of the nuclear shell model and of the monopole channel of the ef-
fective Hamiltonian. A simple truncation scheme can be established by considering
configurations with the lowest monopole energies, which I refer to as the importance-
truncation approach. A seniority-like truncation has also been introduced, which
allows to apply the large-scale shell model algorithm to the problem of solving the
standard pairing Hamiltonians. We introduced a simple but efficient way to generate
the basis for the paired states and for calculating the non-zero Hamiltonian matrix
elements. We also discussed different ways to exclude the pairing contribution to the
monopole interaction in order to utilize our thus developed exact pairing solver in
realistic mean field calculations.
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[13] C. Qi, J. Blomqvist, T. Bäck, B. Cederwall, A. Johnson, R. J. Liotta and R. Wyss,
Phys. Rev. C 84, 021301 (2011).

[14] Z. X. Xu, C. Qi, J. Blomqvist, R. J. Liotta and R. Wyss, Nucl. Phys. A 77, 51
(2012).

[15] C. Qi and R. Wyss, Phys. Scr. 91, 013009 (2016).

[16] Z. X. Xu and C. Qi, Phys. Lett. B 724, 247 (2013).

[17] L. F. Jiao, Z. H. Sun, Z. X. Xu, F. R. Xu and C. Qi, Phys. Rev. C 90, 024306
(2014).

[18] H. Jiang, C. Qi, Y. Lei, R. Liotta, R. Wyss and Y. M. Zhao, Phys. Rev. C 88,
044332 (2013).

[19] C. Qi and T. Chen, Phys. Rev. C 92, 051304 (2015).

[20] S. Changizi, C. Qi and R. Wyss, Nucl. Phys. A 940, 210 (2015).

[21] C. Qi, X. B. Wang, Z. X. Xu, R. J. Liotta, R. Wyss and F. R. Xu, Phys. Rev. C
82, 014304 (2010).

[22] C. Qi, Phys. Rev. C 83, 014307 (2011).

[23] C. Qi, Z. X. Xu and R. J. Liotta, Nucl. Phys. A 884, 21 (2012).

[24] C. Qi, Phys. Lett. B 717, 436 (2012).

[25] C. Qi, Phys. Lett. B 773, 619 (2017).

[26] L. Y. Jia and C. Qi, Phys. Rev. C 94, 044312 (2016).



Modeling Fission Dynamics

with Leadership Class Computing Capabilities

I. Stetcua, A. Bulgacb, S. Jinb, K. J. Rocheb,c and N. Schunkd

aLos Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
bUniversity of Washington, Seattle, Washington 98195-1560, USA
cPacific Northwest National Laboratory, Richland, Washington 99352, USA
dLawrence Livermore National Laboratory, Livermore, California 94551, USA

Abstract

In this contribution, we present a snapshot of recent progress in the micro-
scopic description of low-energy nuclear fission using the time-dependent density
functional theory approach, made possible by the latest advances in computa-
tional infrastructure. Independent of the choice of the nuclear energy density
functional, our investigations show that the collective motion is highly dissipa-
tive, with little trace of inertial dynamics, due to the one-dissipation mechanism
alone. This finding justifies the validity of using the overdamped collective mo-
tion approach. We also briefly discuss the inclusion, in a quantum-mechanical
unitary approach, of fluctuations and dissipation. These two components are
indispensable to the description of observed distributions (e. g., mass, charge,
total kinetic energy). Thus, as the next generation leadership-class computers
are being deployed, the fully microscopical description of fission observables and
their distributions is within reach.

Keywords: Fission; density functional theory

1 Introduction

Two major developments in theory and computational resources created the favor-
able conditions for achieving a microscopic description of nuclear fission almost eighty
years after its discovery in 1939 by Hahn and Strassmann [1]. The density functional
theory (DFT) provides the only microscopic framework suitable for description of
heavy nuclei and feasible on today’s computers. Instead of computing the full many-
body wave function, one can determine only the one-body density within the DFT,
the highly successful approach pioneered by Kohn, Hohenberg and Sham [2, 3] for
many-electron systems in chemistry and condensed matter physics. Within the ex-
tension to time-dependent DFT [4–6], the fission dynamics becomes computationally
manageable and, hence, a microscopic description feasible. To study quantum dy-
namics, we implemented on leadership class computers the real-time DFT extension,
explicitly including the dynamics of the crucial pairing correlations [6]. At the mo-
ment, we are concentrating on obtaining average properties of fission fragments (FFs)

Proceedings of the International Conference ‘Nuclear Theory in the Supercomput-
ing Era — 2018’ (NTSE-2018), Daejeon, South Korea, October 29 – November 2,
2018, eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2019, p. 91.
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produced during the process, before neutron, gamma and beta emissions, with a plan
to describe distributions of relevant observables in the near future. The broad goals
of our investigations are to provide a microscopic understanding of the fission process,
and to help guide other models used in applications.

In practical applications ranging from energy production to global security, under-
standing and accurately predicting the distribution of prompt neutron and gamma
observables is essential. Hence, phenomenological codes, like FREYA [7] at Liver-
more and CGMF [8,9] at Los Alamos, have been developed. In such approaches, the
fission fragments are treated as compound nuclei, whose de-excitation via neutron
and gamma emission can be modeled using Weisskopf [10] or Hauser–Feshbach [11]
formalisms. Input into these models usually comes from direct experimental data,
like measured mass, charge and total kinetic energy distributions. However, for other
important input quantities, only indirect information can be extracted. For example,
if one can compute the total excitation energy available in FFs from the energy bal-
ance of the reaction, an additional information on the number of neutrons emitted as
a function of the FF mass has been used in order to parameterize the total energy
sharing between FFs. This type of data is available for a limited number of reactions,
usually spontaneous fission of select actinides and fission induced by thermal neu-
trons. Much fewer data are available at higher incident neutron energies, although
the existing data [12] illustrates an interesting property: the entire additional excita-
tion energy brought by the neutron is stored in the heavy fragment. Current modeling
capabilities do not take this feature into account given the lack of experimental data
necessary to parameterize the energy dependence.

The FF spin distributions are important in the description of prompt gamma
properties. A direct measurement of the angular momenta cannot be performed,
but model-dependent attempts to extract average values have been made in the past
from other fission observables like isomer production ratios [13, 14], gamma-ray de-
excitation feeding patterns of the ground-state bands [15] and angular anisotropy
of prompt-fission gamma rays [16]. The information such experiments provide is
sparse, often limited to even-even isotopes. In addition, even for a simple case of
thermal neutron capture, the simulations do not produce an excellent agreement with
experimental data [17].

Existing theoretical models of fission based on random-walks on an energy sur-
face [18], Langevin approach with fluctuations and dissipation [19], or more micro-
scopic approaches like DFT + time-dependent generator coordinator method [20] do
not produce fully separated FFs and can be plagued by the adiabatic approximation,
which inherently produces “cold” fragments. Our time-dependent superfluid local
density approximation (TD-SLDA) is the only framework in which the FFs can be
fully separated, and an important information (e. g., the energy sharing or FF spins)
could be extracted. Such simulations require significant computational resources, but
can be also useful in providing microscopic support for existing theoretical approaches
to fission, that can be more practical in the sense of requiring limited computational
power.

In this contribution, we review our previous investigations of the fission of the
240Pu nucleus. Since the TD-SLDA can only provide average quantities, we briefly
discuss introducing fluctuations and dissipations in the evolution, so that the full
distributions can be calculated in the near future.
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2 Theoretical framework

In mean-field theories, the ground state of a quantum system is described by a single
Slater determinant, constructed from particle states for closed-shell nuclei or quasi-
particle states for open-shell nuclei. Densities and current densities are computed
from this single Slater determinant, and the ground state energy is computed by
minimizing a density energy functional, which is formally equivalent to solving the
self-consistent Hartree–Fock–Bogoliubov or Bogoliubov–de Gennes equations for the
(quasi-)particle wave functions:




h↑↑ − µ h↑↓ 0 ∆
h↓↑ h↓↓ − µ −∆ 0
0 −∆∗ −(h∗↑↑ − µ) −h∗↑↓

∆∗ 0 −h∗↓↑ −(h∗↓↓ − µ)







uk↑
uk↓
vk↑
vk↓


 = Ek




uk↑
uk↓
vk↑
vk↓


, (1)

where uk↑(↓) and vk↑(↓) are the up (down) components of the quasiparticle wave func-
tions (qpwfs), with the dependence on the spacial coordinates not shown explicitly,
Ek is the corresponding quasiparticle energy, and µ is the chemical potential needed
to impose a constraint on the desired number of particles. The one-body Hamilto-
nian h is a function of the densities and current densities and can include external
fields (and, in particular, additional constraints). The superfluid local density ap-
proximation (SLDA) reduces Eq. (1) to the usual Hartree–Fock equations when the
pairing field is zero (the so-called normal systems). In the case of nuclear systems,
two different coupled equations, one for protons and one for neutrons, need to be
solved.

The dynamics is obtained by following in time the evolution of the qpwfs by solving
the time-dependent Schrödinger-like equations,

i~
∂

∂t




uk↑
uk↓
vk↑
vk↓


 =




h↑↑ − µ h↑↓ 0 ∆
h↓↑ h↓↓ − µ −∆ 0
0 −∆∗ −(h∗↑↑ − µ) −h∗↑↓

∆∗ 0 −h∗↓↑ −(h∗↓↓ − µ)







uk↑
uk↓
vk↑
vk↓


, (2)

where, for simplicity, in addition to the spatial coordinate ~r, we have also suppressed
the time coordinate t. At each time t, the one-body Hamiltonian and the pairing field
depend on the densities and currents constructed from the qpwfs at the same time t.

The TD-SLDA can treat both linear response (equivalent to QRPA) and large
amplitude collective motion (e. g., fission). However, during the time evolution, the
underlying solutions are single Slater determinants, even in the case of fission shown
in Fig. 1, when two fragments are formed. In DFT, in general, densities are the
quantities of interest and not the many-body wave functions.

Figure 1: Evolution from a compact configuration to one where the two fragments
are fully separated.
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3 Numerical details

In our implementation, both the SLDA and TD-SLDA equations (1) and (2) are dis-
cretized on rectangular lattices, the former providing initial conditions for the latter.
While the dimensions of the matrices involved are very large, this discretization allows
us to obtain solutions without any symmetry restrictions (arbitrary deformations) and
to describe accurately the continuum components of the qpwfs.

Less demanding numerical methods that allow the extraction of densities and cur-
rents without the full diagonalization of Eq. (1) exist. We have implemented one such
method efficiently on GPU machines [21]. However, in order to start the time evolu-
tion, the full initial eigenvector is required at t = 0. Therefore, the initial qpwfs are
obtained by a full diagonalization of the HFB matrix, using the package SCALapack.
Assuming Nx, Ny and Nz lattice points in x, y and z directions respectively, the basis
states used to diagonalize the full HFB matrix are given generically by

Φix,iy,iz(~r) = φix(x)φiy(y)φiz(z), (3)

where

φix(x) =
1

N
exp

(
− iπ(x− xix)

dx

)
sin

π(x−xix)
dx

sin
π(x−xix)
Nxdx

, (4)

with dx being the lattice constant in x direction and ix = 0, ... , Nx−1 is the location on
the lattice, and similarly for the y and z directions. Each component is expanded using
the basis states (3), so that the total dimension is 4NxNyNz. The matrix elements
of all operators can be analytically calculated in this basis. Because of the spin-
orbit contribution, the matrix in Eq. (1) is complex Hermitian. Note that the phase
factor included in Eq. (4) is necessary to ensure compatibility with the fast Fourier
transforms computed with the FFTW package (on CPUs or its cuda implementation).
This discrete variable representation basis is optimal for numerically representing wave
functions in nuclear physics [22], and SLDA in particular.

The time evolution of the nuclear system formally represented by Eq. (2) is sim-
ulated using the fifth order Adams–Bashford–Milne numerical method [23]. This
approach reduces the number of applications of the Hamiltonian at each time step
to only two, although the errors are of the order O(∆t5), where ∆t is the numer-
ical integration step in time. The derivatives are efficiently calculated via Fourier
transforms, using GPU accelerators. It is well know that on systems with GPUs,
the bottleneck could be the need to transfer often large amounts of data between
CPUs and GPUs. We minimize the amount of data exchanged by only transferring
the densities for reduction over CPUs using MPI calls. This ensures almost perfect
weak and strong scaling properties. At this moment, the bottleneck for the time-
dependent code is only restricted by the communications between MPI processes. We
will publish a more detailed analysis of the scaling properties of the code in an up-
coming manuscript, which will accompany the release of both the static and dynamic
codes as open sources. The advantage brought by GPU acceleration is remarkable,
providing a speedup factor of 9.4x with respect to the CPU version only of the code,
when the two are compared on the same number of processors. The CPU and hybrid
CPU+GPU versions of the codes have the same design, the only difference being
the use of GPUs to accelerate numerically intensive portions of the code, like the
time integration and calculation of densities. Compared with other time dependent
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state-of-the-art codes in the literature, our simulations solve three to four orders of
magnitude more partial differential equations, being about 100 times faster than other
approaches. This significant improvement over other simulations is a consequence of
the less demanding while accurate time-integration algorithm, as well as the efficient
use of GPUs to accelerate the calculations, in particular, the use of accurate Fast
Fourier transforms for spatial derivatives. The first application of these codes have
been to linear response [24] and relativistic Coulomb excitation of heavy nuclei [25],
but the main focus of our work has been devoted to fission.

The evolution in time follows the system from a compact shape to two fully sepa-
rated fragments. When the fragments are fully separated, we split the box into two,
and compute the properties of each fragment in its half of the box. The total ki-
netic energy (TKE) is calculated by adding each FF kinetic energy and the Coulomb
interaction between the fragments, as TKE is defined at infinite distance between
fragments. We can also compute the total energy of each fragment, and then calcu-
late the FF excitation energy by subtracting the ground state energy computed in an
independent minimization for each FF.

4 Fission fragment properties from fission dynamics

In our first simulations of the fission of 240Pu [26], our initial states in the evolution
were chosen from beyond the fission barrier, a few MeVs above the zero-temperature
potential energy surface. Those states were obtained with a mix of shape constraints
and external potentials that would induce a mass asymmetry. The constraints and
external potential were then removed adiabatically, and the dynamics of the system
followed from a compact initial configuration to two fully separated fragments, as
shown in Fig. 1. For this first calculation, the SLy4 parameterization of the Skyrme
functional was chosen. However, because the potential energy surface and the fission
barrier properties in particular are not well described with this functional, it was found
that the evolution time from the saddle to the scission can be extremely large [26] as
this particular functional facilitates the conversion between multiple collective degrees
of freedom. It was also found that the saddle-to-scission time is particularly sensitive
to the pairing correlations, which is to be expected as the pairing interaction facilitates
fission at low energies [27–29]. Finally, results obtained in TD-SLDA are consistent
with expectations that the light fragment emerges deformed, while the heavy fragment
is close to spherical shape with very weak or collapsed pairing field, as it is expected
to be close to a closed shell configuration.

In Ref. [26], only four distinct initial conditions have been used to compute the
FF properties. Hence, one of natural and frequently asked questions was about the
impact the particular initial conditions have on the final results. In a more recent
investigation of Ref. [30], we have started with a larger number of initial conditions
considering different points on the potential energy surface. In this case, we have
used functionals that better describe the potential energy surfaces of actinides, in
particular, the SKM* and recently developed SeaLL1 density functionals. The initial
conditions were chosen to have a large spread in quadrupole deformation (Q20) and
mass asymmetry (Q30), but similar initial excitation energies with respect to the
ground state, as shown in Fig. 2. The two sets of initial conditions shown in Fig. 2
have excitation energies around 7.9 MeV (red) and 2.6 MeV (blue), respectively.

The results of the two sets of calculations are summarized in Table 1. Despite the



96 I. Stetcu, A. Bulgac, S. Jin, K. J. Roche and N. Schunck

Figure 2: Evolution from
compact to separated shapes
in the (Q20, Q30) plane, for
the SeaLL1 nuclear density
functional. These trajectories
start around 7.9 MeV (red)
and 2.6 MeV (blue) excita-
tion energies, with a standard
deviation of about 1.7 and
1.8 MeV, respectively. Q20 is
in the units of b and Q30 is in
the units of b3/2.

relatively large spread in the shape of the initial state, the fragments are produced
with a relatively small dispersion in all observables, as illustrated by the focusing of
the different trajectories in Fig. 2. The TD-SLDA can only provide an average path
for the evolution, following to a large extent the minimum on the potential energy
surface. Very similar FF characteristics are thus obtained within TD-SLDA, if no
fluctuations (and dissipation) are included.

An interesting feature of the evolution is the fact that the collective energy flow,
defined as

Ecoll.flow =

∫
d3~r

~j2(~r, t)

2MNρ(~r, t)
, (5)

where ~j(~r, t) = i~
2

∑
k

(
v∗k(~r, t)~∇vk(~r, t) − vk(~r, t)~∇v∗k(~r, t)

)
is the current density,

and ρ(~r, t) =
∑

k|vk(~r, t)|2 is the particle number density, remains almost constant
throughout the saddle-to-scission evolution, and at a very low (1–2 MeV) value.
Hence, the motion from the saddle to the scission is strongly dissipative, because
the one-body dissipation included in TD-SLDA is strong. This finding is at odds
with adiabatic approaches, where one expects a full conversion of the collective en-
ergy potential surface into a collective flow energy of about 15 to 20 MeV from the
saddle to the scission, and in line with the hypothesis of overdamped collective motion,
as assumed in the work by Randrup et al. [31].

Fluctuations and dissipations have been introduced recently in a quantum-me-
chanical fully-unitary approach [32]. The fluctuations are modeled by introducing

Table 1: The excitation energy of the initial state used in TD-SLDA evolution, TKE,
charge, mass and excitation energy of the heavy FF for the trajectories shown in
Fig. 2. We record the standard deviation for each quantity in parentheses.

E∗
ini (MeV) TKE (MeV) ZH AH E∗

H (MeV)

7.9(1.7) 177.8(3.1) 53.2(0.4) 136.6(0.8) 17.1(3.0)
2.6 (1.8) 178.0(2.3) 52.9(0.4) 135.8(0.6) 19.5(3.8)
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a “stochastic” velocity field ~u(~r, t), see Ref. [32] for details. This additional field
induces heating in the system, which has to be counterbalanced by a dissipation term
to the evolution of the form γ[ρ(~r, t)]ρ̇(~r, t), with a density-dependent strength γ. This
addition ensures that the energy of the system is conserved on average. The strength
of the friction term is connected to the strength of the stochastic field, similar to the
Einstein’s fluctuation-dissipation theorem.

The resources necessary to run simulations that include fluctuations and dissi-
pation in TD-SLDA are considerable. Hence, for the first test that also allow us
to experiment with the strength of fluctuation and dissipation terms, this approach
has been implemented in the nuclear quantum hydrodynamic equations using a phe-
nomenological nuclear energy density functional [32]. The hydrodynamic equations
do not include the shell effects and stationary states with broken left-right symmetry
have always higher energies than states with unbroken left-right symmetry. In appli-
cations to the spontaneous fission of 258Fm, the widths of the simulated distributions
are in good agreement with observed experimental distributions [32]. The fluctua-
tions and dissipation have been also implemented in the full TD-SLDA equations and
illustrated in Ref. [32]. Calculations of the full distribution of fission observables are
thus within reach, even with the current computational power available on leadership
capabilities available today (and in the near future).

5 Conclusions

Current computing capabilities put us in the position to be able to envision a complete
microscopic model for fission in the next few years. TD-SLDA is an effective tool in
answering qualitative and quantitative questions regarding the dynamics of the fission
process. This is also the only method that can offer a guidance on properties that sim-
ply cannot be described in alternate approaches. This includes the excitation energy
sharing mechanism between the fission fragments and its behavior with increasing the
incident neutron energy. Within the TD-SLDA one can also investigate the physics
of scission neutrons, that make the subject of heated debate in the community, and
the distribution of the angular momenta. In the future, we will obtain trends with
the incident energy of the incoming neutrons from TD-SLDA calculations and will
use them as an input in phenomenological calculations of prompt fission neutron and
gamma-ray emission.
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Abstract

Determination of the neutrino mass scale is a major subject of modern
physics. I calculate the nuclear matrix element of the neutrinoless double-β
decay of 48Ca and derive the reduced half-life, which makes a relation between
the half-life and the effective neutrino mass. The nuclear wave functions are ob-
tained by the quasiparticle random-phase approximation. The reduced half-life
of a few nuclear species are shown along with those of other groups. My value
of reduced half-life is much larger than the majority of values of other groups.
The charge-change transition density is examined by comparing the calculated
transition strength function with that extracted by the charge-change reactions.
The data are reproduced successfully using the appropriate transition operator
and my charge-change transition density.

Keywords: Neutrinoless double-β decay; effective neutrino mass; nuclear ma-
trix element; QRPA

1 Introduction

Nuclear theory plays two indispensable roles in neutrino physics. One is a calculation
of the cross section of the ν-nucleus scattering [1] in relation to the neutrino-oscillation
experiments, and another is a calculation of the nuclear matrix element (NME) and
phase-space factor of the neutrinoless double-β (0νββ) decay for determining the
effective neutrino mass. The half-life of this decay is a function of the NME, phase-
space factor, and the effective neutrino mass, thus, a reliable predictive calculation
of these theoretical quantities are necessary. 48Ca is the lightest candidate of the
mother nuclei for the experiments. The nuclear wave functions cannot be obtained
without an approximation. On the other hand, the values of the phase-space factor
are established for relatively light candidate nuclei because accurate wave functions
of the emitted particles can be used. It is a well-known problem that the calculated
NME of the 0νββ decay is distributed in a region of a factor of 2–3 systematically
depending on the theoretical methods [2]. The number of calculations increased in
the past decade, however this uncertainty factor does not change. The NME also
affects the future plans of the experimental facilities for observing the 0νββ decay

Proceedings of the International Conference ‘Nuclear Theory in the Supercomput-
ing Era — 2018’ (NTSE-2018), Daejeon, South Korea, October 29 – November 2,
2018, eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2019, p. 100.
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because the NME affects an amount of the detector materials necessary for the aimed
effective neutrino masses [3].

The reason for the discrepancy of the calculated NMEs is not yet clarified. The
shell model includes high-order particle-hole correlations, but the single-particle space
is limited to one major shell in most of the calculations. The quasiparticle random-
phase approximation is not constrainted by this limit, but its applicability is limited
to nuclei in which the effects of high-order particle-hole correlations are small. Under
this circumstance, the appropriate effective gA, the axial-vector current coupling, is
not yet established. Thus, the key point of the NME study is how the reliability of
the calculation is shown.

Operators for calculating the 0νββ NME are the neutrino potential and the charge-
change operators of the Gamow–Teller (GT), Fermi, and the tensor types. The last
one has only a small contribution, and it is neglected in my calculations. The GT
transition density associated with Jπ = 1+ is an ingredient of the NME calculation.
This transition density is also included in the charge-change strength function, which
can be extracted from the experimental cross sections using the impulse approxima-
tion and an extrapolation to the limit of vanishing momentum transfer [4]. There
are experimental charge-change strength functions obtained in this manner from the
48Ca(p, n)48Sc and 48Ti(n, p)48Sc reactions [5]. In this paper, I show that these data
can be reproduced by my QRPA calculation. However, this reproduction is not triv-
ial because the experimental data do not satisfy the GT sum rule. This problem is
resolved by introducing an isovector spin-monopole operator in addition to the usual
GT operator. By this test, the validity of my charge-change transition density is
proven indirectly.

2 Nuclear matrix element
of neutrinoless double-β decay

The effective neutrino mass is defined by

〈mν〉 =

∣∣∣∣∣∣

∑

i=1,2,3

U2
eimi

∣∣∣∣∣∣
, (1)

where Uei is the matrix element of the Pontecorvo–Maki–Nakagawa–Sakata (PMNS)
matrix [6] with i denoting the eigenstate of mass mi. Suffix e stands for the electron

flavor. The half-life to the 0νββ decay T
(0ν)
1/2 and 〈mν〉 are related as [7]

T
(0ν)
1/2 =

R
(0ν)
1/2

〈mν〉2
, (2)

R
(0ν)
1/2 =

(mec
2)2

G0ν g4A|M (0ν)|2 , (3)

where G0ν is the phase-space factor, gA is the axial-vector current coupling, M (0ν) is

the NME, and me is the electron mass. I call R
(0ν)
1/2 a reduced half-life.

The 0νββ-decay NME M (0ν) is obtained by calculating

M (0ν) = M
(0ν)
GT − g2V

g2A
M

(0ν)
F . (4)
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M
(0ν)
GT is the GT NME, and M

(0ν)
F is the Fermi NME. The vector current coupling gV

is 1; this coupling is thought to be a physical constant. An effective value is used
for gA (see below). Those NMEs can be written as

M
(0ν)
GT =

∑

K

∑

aK
I aK

F

∑

pnp′n′

V
GT (0ν)
pp′,nn′ (Ēa)〈F |c†pcn|aKF 〉〈aKF |aKI 〉〈aKI |c†p′cn′ |I〉, (5)

M
(0ν)
F =

∑

K

∑

aK
I aK

F

∑

pnp′n′

V
F (0ν)
pp′,nn′(Ēa)〈F |c†pcn|aKF 〉〈aKF |aKI 〉〈aKI |c†p′cn′ |I〉. (6)

The initial and final states of the 0νββ decay are denoted by |I〉 and |F 〉, respectively,
and the states of the intermediate nucleus are |aKF 〉 and |aKI 〉. The states {|aKF 〉} are

obtained by QRPA1 based on |F 〉, and {|aKI 〉} are obtained by QRPA based on |I〉.
K is a component of the nuclear angular momentum projected on the symmetry axis;
in my calculation, the axial symmetry of the nuclear density distribution is assumed.
The indexes p and p′ denote the proton states, and n and n′ denote the neutron
states. c†i and ci are respectively the creation and annihilation operators of a particle

in the state i. 〈F |c†pcn|aKF 〉 and 〈aKI |c†p′cn′ |I〉 are the transition-density matrices of

the charge change. V
GT (0ν)
pp′,nn′ (Ēa) and V

F (0ν)
pp′,nn′(Ēa) are the two-body transition matrix

elements:

V
GT (0ν)
pp′,nn′ (Ēa) = 〈pp′|h+(r12, Ēa)σ(1)·σ(2) τ−(1) τ−(2)|nn′〉, (7)

V
F (0ν)
pp′,nn′(Ēa) = 〈pp′|h+(r12, Ēa) τ−(1) τ−(2)|nn′〉. (8)

The operators of the spin and charge change from neutron to proton are denoted
by σ and τ−, respectively. Their argument distinguishes the two particles that the
operators act on. The neutrino potential is given by

h+(r12, Ēa) ≃ R

r12

2

π

{
sin
( c
~
µ̄amer12

)
ci
( c
~
µ̄amer12

)
(9)

− cos
( c
~
µ̄amer12

)
si
( c
~
µ̄amer12

)}
, (10)

µ̄a =
1

mec2
(Ēa − M̄). (11)

This neutrino potential is derived by neglecting the effective neutrino mass compared
to the major momentum transfer by the propagating neutrino [7]. R is the root-
mean-square radius of nucleus, r12 is the distance variable between two particles, and
Ēa is the average energy of the intermediate states (the closure approximation). R =
1.1A1/3 fm with the mass number A and µ̄a = 18.51 [7] are used in our calculations.
In Eq. (10), the functions

si(x) = −
∫ ∞

x

sin(t)

t
dt, ci(x) = −

∫ ∞

x

cos(t)

t
dt (12)

are used.
The interaction used for obtaining the nuclear states is the Skyrme SkM∗ [9] and

volume contact pairing interactions. The QRPA equation was solved in the matrix

1The proton-neutron QRPA [8] is used. I call it the QRPA for simplicity in this paper.
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Table 1: NME of 0νββ decay of 48Ca, specific terms, effective gA used for the calcu-
lation, and reduced half-life.

M (0ν) M
(0ν)
GT M

(0ν)
F gA R

(0ν)
1/2

(1012 MeV2 yr)

3.054 1.723 −0.319 0.49 19.572

formulation. Table 1 shows the obtained NME, GT and Fermi terms, effective gA,
and the reduced half-life of the 0νββ decay of 48Ca. The effective gA = 0.49 was
determined so as to reproduce the measured half-life to the 2νββ decay [10]. This
value of gA is much smaller than the bare value of approximately 1.27. Figure 1

Figure 1: Reduced half-life of 48Ca, 136Xe, and 150Nd obtained by several groups. The
references are as follows. 48Ca: [11] (QRPA Tübingen), [12] (SM, Mount Pleasant),
[13] (SM, Tokyo), [14] (IBM-2), [15] (GCM, Madrid), [16] (GCM, Sendai), [17] (SM,
Madrid), [18] (GCM, Chapel Hill), [19] (QRPA, my calculation); 136Xe: [14] (IBM-2),
[11] (QRPA, Tübingen), [20] (QRPA, Chapel Hill), [16] (GCM, Sendai), [15] (GCM,
Madrid), [17] (SM, Madrid), [12] (SM, Mount Pleasant), [21] (QRPA, Jyväskylä), [22]
(QRPA, my calculation); 150Nd: [14] (IBM-1), [23] (QRPA, Tübingen), [20] (QRPA,
Chapel Hill), [16] (GCM, Sendai), [15] (GCM, Madrid), [24, 25] (QRPA, my calcula-
tion). SM, GCM, and IBM stand for the shell model, generator coordinate method,
and interacting boson model, respectively. The effective gA is not unified.
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illustrates the reduced half-life of three nuclear species obtained by several groups
including my values, which are much higher than the majority of the results of other
groups. This result implies that the half-life is predicted by my calculation to be
much longer than that of other groups. Test of reliability of my calculation is quite
important.

3 Charge-change strength function

The experimental GT strength function of 48Ca(p, n)48Sc and GT+ [τ+ = (τ−)†

is used] strength function of 48Ti(n, p)48Sc are drawn in Fig. 2 together with my
theoretical strength functions obtained by calculating

SGT−(E) =
1

π

∑

aK
I

δ|〈aKI |στ−|I〉|2
[E − E(aKI )]2 + δ2

. (13)

E(aKI ) is the energy of the state |aKI 〉, and δ is a small constant for smoothing. The
transition operator στ− is the one-body operator. The summation includes all states
of 48Sc for which the transition matrix element does not vanish. The GT+ strength
function can be calculated analogously using |F 〉 and |aKF 〉. The calculated strength
functions apparently overestimate the data, however these results satisfy the GT sum
rule,

∫ ∞

0

dE SGT−(E)|(Z,N)→(Z+1,N−1) −
∫ ∞

0

dE SGT+(E)|(Z,N)→(Z−1,N+1) = 3(N − Z).

(14)

For the initial nucleus 48Ca, the first term provides the value of 24.638 while the
second term is equal to −0.633 resulting in the sum-rule value of 24.005. For the initial
nucleus 48Ti, I obtain respectively 15.257 and −3.268 and thus the value of 11.989
for the sum rule. The exact values are respectively 24 and 12 for these two nuclei.
The sum of the experimental charge-change transition strengths of 48Ca(p, n)48Sc
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Figure 2: Charge-change strength functions of 48Ca(p, n)48Sc (left) and 48Ti(n, p)48Sc
(right). Symbols are the experimental data of Ref. [5], solid lines are the results of my
calculations. The inset in the left panel is a magnification of the high-energy region.
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Figure 3: The same as Fig. 2 but for the transition operator O±.

is 64 ± 9 % of the sum-rule [5]. The tail of the experimental strength function (left
panel of Fig. 2) converges to zero, indicating that there is no strength in the higher-
energy region. Thus, it is implied by the data, that this transition involves not only
the GT operator στ− but also other ones. A possible candidate is the isovector
spin-monopole operator r2στ− [26,27]. This operator causes a two-~ω jump and can
explain the strength distribution in the higher-energy region where στ− cannot create
the strength, see the right panel in Fig. 2. The possible contribution of the isovector
spin-monopole operator has been already mentioned in Ref. [5].

I introduce the transition operator [19]

O± = στ± + α±r
2στ±, (15)

and determine α± so as to reproduce the experimental strength functions in
the two-~ω-jump region; those values are α− = −0.03 fm−2 for 48Ca → 48Sc and
α+ = −0.0253 fm−2 for 48Ti → 48Sc. The strength functions of O± are drawn in
Fig. 3 together with the experimental data. The description of the data is improved
significantly. Therefore, the contribution of the isovector spin-monopole operator is a
reasonable explanation to the observed charge-change transitions. It is stressed that
my transition density is confirmed indirectly through this reproduction of the data.

The calculated strength function of O± up to 12 MeV (48Ca) or 10 MeV (48Ti)
is lowered compared to that of the GT operator. This change can be understood by
rewriting O± as

O± =
{

1 + α±〈r2〉nf7/2 + α±(r2 − 〈r2〉nf7/2)
}
στ±, (16)

where 〈r2〉nf7/2 is the expectation value of r2 with respect to the specified neutron

state. The operator α±(r2−〈r2〉nf7/2) is the two-~ω component in a good approxima-

tion [27]. Since α± are negative, the zero-~ω component 1 + α±〈r2〉nf7/2 is hindered.

4 Summary

I have calculated the NME of the 0νββ decay of 48Ca → 48Ti using the QRPA, and
the reduced half-life was obtained. My result predicts much longer half-life of 48Ca
to that decay compared to those predicted by other groups. Check of the transition
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density has been made indirectly by reproducing the charge-change strength functions
obtained by the (n, p) and (p, n) reactions. As a by-product, it has been shown that
the transition operator of that charge-change reaction includes the isovector spin-
monopole operator.

In this paper, I omitted the discussions on the two-neutrino double-β (2νββ)
decay and the detail of the method to determine the strength of the proton-neutron
(pn) pairing interaction [19]. The strength of the isoscalar pn pairing interaction is
determined by an identity derived under the closure approximation, and the effective
gA is determined so as to reproduce the measured half-life to the 2νββ decay. The
convergence of the 0νββ NME was also checked with respect to the single-particle
space. Thus, my calculation does not have a free parameter.
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[11] F. Šimkovic, V. Rodin, A. Faessler and P. Vogel, Phys. Rev. C 87, 045501 (2013).

[12] M. Horoi and A. Neacsu, Phys. Rev. C 93, 024308 (2016).

[13] Y. Iwata, N. Shimizu, T. Otsuka, Y. Utsuno, J. Menéndez, M. Homma and
T. Abe, Phys. Rev. Lett. 116, 112502 (2016).

[14] J. Barea, J. Kotila and F. Iachello, Phys. Rev. C 91, 034304 (2015).
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Experimental Approach to Three-Nucleon Forces

via Three- and Four-Nucleon Scattering
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Abstract

Few-nucleon scattering offers a good opportunities to study dynamical as-
pects of three-nucleon forces, that are momentum, spin and isospin dependent.
In this contribution, the experimental results of deuteron-proton elastic scatter-
ing obtained in the course of the study are presented. The data are compared
with the state-of-the-art theoretical predictions based on the realistic bare nu-
clear potentials. Recently the experimental study has been extended to the
proton-3He scattering in which the isospin T = 3/2 channel in 3NFs could be
investigated.

Keywords: Three-nucleon force, nucleon-deuteron scattering, proton-3He scat-
tering

1 Introduction

One of the main interests of nuclear physics is to understand the forces acting between
nuclear constituents. Importance of the three-nucleon force (3NF) in the nuclear
Hamiltonian has been studied in few-nucleon systems as well as in many-nucleon
systems [1–3].

The nucleon-deuteron (Nd) scattering — a scattering process in the the three-
nucleon (3N) system — offers a good opportunity to study dynamical aspects of
3NFs, which are momentum, spin and isospin dependent, since it provides not only
cross sections but also a variety of spin observables at different incident nucleon en-
ergies. A direct comparison between the experimental data and rigorous numerical
calculations in terms of Faddeev theory based on realistic bare nuclear potentials pro-
vides information on 3NFs. Indeed, the last two decades have witnessed extensive
experimental and theoretical investigations of the Nd scattering performed in a wide
range of incoming nucleon energies up to E ∼ 300 MeV/nucleon.

The four-nucleon (4N) systems could also play an important role for the study of
3NFs. The 3NF effects are expected to be sizable in the 4N system. In addition,
while the Nd scattering is essentially a pure isospin T = 1/2 state, tests of the T = 3/2
channel in any 3NF can be performed in a 4N system such as proton-3He scattering.
Note, an importance of the study of isospin dependence of the 3NF has been pro-
nounced for understanding of nuclear system with larger-isospin asymmetry [4,5]. In
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recent years, there has been a large progress in solving the 4N scattering problem with
realistic Hamiltonians even above the four-nucleon breakup threshold energies [6, 7],
which opens up new possibilities to approaching to properties of 3NFs.

With the aim of exploring the 3NFs, experimental programs of deuteron-proton
(dp) scattering as well as proton-3He (p + 3He) scattering using polarized beams
and target systems are in progress at RIKEN, RCNP Osaka University, and CYRIC
Tohoku University in Japan. In this contribution we introduce recently conducted
experiments and present results of comparison between the experimental data and
theoretical predictions based on realistic bare nuclear potentials.

2 Experimental results for dp scattering

Experiments on the dp scattering were performed at the RIKEN Accelerator Facility
using the polarized deuteron beams at the incident energies up to 135 MeV/nucleon.
The measured observables are the cross sections, all deuteron analyzing powers
(iT11, T20, T21, and T22), and the deuteron to proton polarization transfer coeffi-
cients [8]. Later the experiments were extended to the RIKEN RI Beam Factory
(RIBF). All deuteron analyzing powers were obtained at the energies of 190, 250,
and 294 MeV/nucleon [9–11].

In Fig. 1 some representative experimental results for the dp and nd elastic scat-
tering are compared with the Faddeev calculations with and w/o the 3NFs. The red
(blue) bands are the calculations with (without) the Tucson–Melbourne99 (TM99)
3NF [12], which is a version of the Tucson–Melbourne 3NF [13] more consistent with
the chiral symmetry [14,15], based on modern NN potentials, i. e., CD Bonn, AV18,
Nijmegen I and II. The solid lines are the calculations based on the AV18 potential
and including the Urbana IX 3NF [16].

specific features are seen in the dependence on scattering angles in the center-of-
mass system, θc.m.. At the forward angles, θc.m. . 80◦, the theoretical calculations
based on various NN potentials are well converged and the predicted 3NF effects are
very small. The experimental data are well described by the calculations except for the
very forward angles. This discrepancy comes from the fact that the calculations shown
in the figure do not take into account the Coulomb interactions between protons [17].
At the angles θc.m. & 80◦, clear discrepancies between the data and the calculations
based on the NN potentials are found. They become larger with the incident energy.
At the angles around θc.m. = 80◦–120◦, the discrepancies are explained by taking
into account the 2π-exchange-type 3NF models (TM99 and Urbana IX ). At the
backward angles, θc.m. & 120◦, with increasing the incident energy, the differences
appear between the experimental data and even the calculations including the 3NF
potentials and are seen up to the very backward angle, θc.m.∼ 180◦, at a higher energy
of 250 MeV/nucleon. Since these features are more pronounced as going to higher
energies [18, 19], the relativistic effects were estimated by using the Lorentz-boosted
NN potentials with the TM99 [20]. However, the relativistic effects have turned out
to be small and only slightly alter the cross sections [10].

For the vector analyzing power iT11, the discrepancies between the data and the
predictions based on 2NFs (blue bands) are seen at the angles θc.m. ∼ 120◦. At 135
and 190 MeV/nucleon, the data agree well with the predictions with the 3NFs, while
at 250 MeV/nucleon, a discrepancy is seen at the backward angles θc.m.& 120◦. The
tensor analyzing power T22 reveals a different energy dependence than that of iT11.
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Figure 1: Differential cross section and deuteron analyzing powers iT11, T22 for elastic
Nd scattering. The red (blue) bands are the calculations with (w/o) TM99 3NF based
on the modern NN potentials, namely CD Bonn, AV18, Nijmegen I and II. The solid
lines are the calculations based on the AV18 potential with inclusion of Urbana IX
3NF. For the cross sections, the open circles at 70 and 135 MeV/nucleon are the dp
data from Refs. [8]. The open and solid circles at 250 MeV/nucleon are the pd and
nd data, respectively, from Refs. [18]. For the deuteron analyzing powers, the data
at 70 and 135 MeV/nucleon are from Refs. [8]. The data at 250 MeV/nucleon are
taken at the RIBF [9].

At 135 MeV/nucleon, adding the 3NFs worsens the description of data in a large
angular region. It is contrary to what happens at 190 and 250 MeV/nucleon, where
large 3NF effects are supported by the measured data. The results of comparison
show that the 3NF is definitely needed in the Nd elastic scattering. However the
spin-dependent parts of the 3NF may be deficient.

It is interesting to see how the potentials of the chiral effective field theory (χEFT)
describe the deuteron analyzing powers for the dp elastic scattering. In Fig. 2, the data
are compared with the calculations based on the χEFT N4LO NN potentials [21].
For the cross section, a large difference is seen at the backward angles, that is quite
similar to the results shown in Fig. 1 The vector analyzing power iT11 data are well
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Figure 2: Differential cross section and deuteron analyzing powers iT11, T22 for the
elastic Nd scattering. The bands are the calculations based on the χEFT N4LO NN
potentials.

described by the χEFT N4LO NN potentials, while large discrepancies are found for
the tensor analyzing power T22. In order to see how χEFT 3NFs describe the data,
the theoretical treatments are now in progress [22].

3 Experiment on p + 3He scattering

Following the experiments on the dp scattering, we proceeded to the experiments
on the p+ 3He scattering at energies around 100 MeV/nucleon. The experiment
consisted of two measurements. The measurement of the cross section and proton
analyzing power was performed by using a 65 MeV polarized proton beam at RCNP,
Osaka University. The measurement of the 3He analyzing power at an incident proton
energy of 70 MeV was performed by using the newly constructed 3He target [23] at
Cyclotron Radioisotope Center (CYRIC), Tohoku University. Both measurements
covered a wide angular range in the center-of-mass system. In Fig. 3, a part of the
data is compared with rigorous numerical four-nucleon calculations in terms of the
Alt–Grassberger–Sandhas equation based on modern NN potentials (CD Bonn and
INOY04 [24]) [25]. The clear discrepancies are found in the 3He analyzing power at
the angles 80–120◦ in the center-of-mass system. The data analysis is now in progress.
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Figure 3: Proton analyzing power (left) and 3He analyzing power (right) for
the p+ 3He elastic scattering. The data for the proton analyzing power were taken
with a polarized proton beam at 65 MeV; those for the 3He analyzing power at
70 MeV were obtained using a polarized 3He target. The solid (dotted) lines are the
calculations based on the INOY04 (CD Bonn) NN potential.

4 Summary

The few-nucleon scattering provides rich sources to explore the properties of 3NFs
that are momentum, spin and isospin dependent. The last two decades have wit-
nessed an extensive study of the Nd scattering, that is an example of scattering in a
three-nucleon system, both from theory and experiment. The experiments performed
with polarized deuteron beams at RIKEN are presented and recent achievements in
the study of 3NFs via dp scattering are discussed. The energy and angular depen-
dent results for the cross sections as well as the polarization observables show that
clear signatures of the 3NF effects are found in the cross section. Meanwhile the
spin-dependent parts of the 3NFs may be deficient. In order to obtain a consistent
understanding of the effects of three-nucleon forces in the 3N scattering, a further
investigation is necessary. It would be interesting to see how well new theoretical
approaches, e. g., an addition of the 3NFs other than that of the 2π-exchange type,
and the potentials based on the chiral effective field theory, will be able to describe
these data.

The 3NF effects could also be sizable in the four-nucleon scattering systems, such
as the p+ 3He scattering, where tests of the isospin T = 3/2 channel in 3NFs can be
performed. As the first step, we have conducted experiments on the p + 3He elastic
scattering at around 65 MeV. The obtained data would provide a valuable source of
information on the 3NFs including their isospin dependences.
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Abstract

The nucleon-deuteron elastic scattering reaction is investigated using two
chiral models of the two-body interaction with semilocal regularization pro-
posed by E. Epelbaum et al. and by P. Reinert et al. In particular, we give
predictions for the differential cross section and the deuteron tensor analyzing
power T22 at energies of the incoming nucleon up to 200 MeV. Both models de-
liver a qualitatively similar description of the nucleon-deuteron elastic scattering
data. However, we find the model by P. Reinert et al. to be less sensitive to the
values of regularization parameters used. For this interaction the long-standing
problem of the cut-off dependence of three-nucleon predictions is practically
absent, as the uncertainty of studied observables related to regularization pa-
rameters remains below 1% at most of the scattering angles. Only in the worst
case of T22 at E = 200 MeV and for specific scattering angles this uncertainty
amounts to 7%.

Keywords: Nuclear forces; chiral effective field theory; nucleon-deuteron scat-
tering; few-body systems

1 Introduction

The Chiral Effective Field Theory (χEFT) has dominated studies of the nuclear forces
since the beginning of the 21st century. The ideas introduced by S. Weinberg [1–3],
J. Gasser and H. Leutwyler [4,5], C. Ordónez̃ and U. van Kolck [6], and many others
(see Refs. [7,8] for a historical background and a general introduction to the χEFT),
resulted in various models of the nuclear interaction [9–14]. The two recent models
from this group are the chiral interaction with semilocal regularization performed in
the coordinate space (SCS) [12, 13] and the chiral interaction with semilocal regu-
larization applied in the momentum space (SMS) [14]. The nucleon-nucleon (NN)
interaction has been derived completely up to the fifth order of the chiral expansion
(N4LO) in both models. Additionally, in the SMS interaction also some terms from
the sixth order of the chiral expansion have been incorporated. This, together with
other improvements introduced to the SMS model, has resulted in the best NN data
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description obtained so far, achieving χ2/data ≈ 1 (see Ref. [14] for more specific
values, which depend on the energy range, isospin channel, order of chiral expansion
and values of regulator parameters).

The applications of both models beyond the two-nucleon system are ongoing.
They are more advanced for the SCS interaction which has been already used to
study the nucleon-deuteron scattering and properties of the light and medium mass
nuclei [15–18] as well as to investigate the deuteron and 3He photodisintegrations, the
nucleon-deuteron radiative capture, and muon capture in the deuteron and 3He [19].
Summarizing these studies one can conclude that the SCS interaction shows its good
quality also in many-nucleon systems. Using only the two-body interaction, a nice
convergence with respect to the chiral order is observed for all observables. The
cut-off dependence, i. e., the dependence on the regulator parameter value, is small,
however for the nucleon-deuteron scattering at higher energies and the energies of
nuclear states it is not negligible. The three-nucleon interaction consistent with the
SCS two-body force has been applied so far only up to the next-to-next-to-leading
order (N2LO) to study elastic nucleon-deuteron scattering and structure of chosen
nuclei. At this order of chiral expansion, where only the leading contributions to the
three-nucleon interaction are present, the SCS model describes data with a precision
similar to the semi-phenomenological models, like the combination of the AV18 NN
force [20] with the Urbana IX three-nucleon interaction [21] discussed in detail, e. g.,
in Ref. [22]. Combining the chiral N2LO three-nucleon force with the N4LO two-
nucleon interactions does not change that picture [18]. This shows that to improve
the data description, the three-nucleon force at higher orders of chiral expansion
has to be included. Unfortunately, an explicit regularization of the chiral three-
nucleon force in the coordinate space is very challenging and has not been done
beyond the N2LO order yet. The regularization in the momentum space gives more
hope. While currently the three-nucleon force consistent with the NN interaction
with the semilocal regularization in the momentum space is under construction, the
application of the two-body interaction [14] is a first step towards obtaining a complete
(i. e., NN + 3N + 4N + ...) chiral interaction at higher orders of the chiral expansion.

In this contribution, we focus on the nucleon-deuteron elastic scattering process
and would like to test the dependence of the predictions for the differential cross
section and the deuteron tensor analyzing power T22 on the regulator values used in
the SCS and the SMS interactions.

2 Formalism

The nucleon-deuteron scattering can be described within the formalism of Faddeev
equations [23, 24]. In practical applications, we solve the Faddeev equation for an
auxiliary state T |φ〉,

T |φ〉 = tP |φ〉+(1+tG0)V
(1)
4 (1+P )|φ〉+tPG0T |φ〉+(1+tG0)V

(1)
4 (1+P )G0T |φ〉, (1)

and from its solutions all physical observables for elastic nucleon-deuteron scattering
and the deuteron breakup reaction are obtained [25]. The ingredients of Eq. (1)
are the off-the-energy shell NN t-matrix t related to the NN interaction via the
Lippmann–Schwinger equation, the three-body permutation operator P , the free 3N
propagator G0,, and the initial channel state |φ〉 composed of a momentum eigenstate
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of the projectile nucleon and a deuteron. On top of the two-nucleon forces also a

three-nucleon force is included, and V
(1)
4 is that part of it which is symmetrical under

the exchange of nucleons 2 and 3. Equation (1) accounts for an infinite sequence of
two-body and three-body rescattering processes with free propagations in between.
In Ref. [23] the path to the cross section and spin observables is described in detail.

We solve Eq. (1) in the partial wave basis and take into account all two-body
channels up to the 2N total angular momentum jmax = 5 and the 3N total angular
momentum Jmax = 25

2 . This number of partial waves is sufficient to achieve the
convergence of predictions at both presented here energies. Since the consistent three-
nucleon interaction is not available for the SMS model, we restrict ourselves only to

the NN interaction and set V
(1)
4 = 0. Thus we will not discuss the importance of the

three-nucleon interaction for the nucleon-deuteron elastic scattering reaction.

3 Results

In the following we compare the cut-off dependence of our predictions for the differ-
ential cross section and the deuteron tensor analyzing power T22 obtained with two
semilocal regularized interactions at N4LO. We choose two kinetic energies of the
incoming nucleon in the laboratory (lab) system: E = 65 MeV and E = 200 MeV.
While the first one is well within the range of applicability of chiral forces at the order
used, for the second one it is expected that contributions from the higher orders of
the chiral expansion can still play some role. We refer the reader to Ref. [26] for a
more detailed discussion based on the analysis of the truncation errors.

The differential cross section at E = 65 MeV is shown in Fig. 1. It is clear that at
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Figure 1: Differential cross sections for the elastic nucleon-deuteron scattering at the
incoming nucleon energy in the lab system E = 65 MeV. The predictions have been
obtained with the N4LO SCS potential (left) and the N4LO SMS force (right). In
the left panel, curves are the predictions obtained with the following values of the
regulator parameter R: 1.2 fm (black), 1.1 fm (dark green), 1.0 fm (magenta), 0.9 fm
(blue), and 0.8 fm (green). In the right panel, curves are the predictions obtained
with the following values of the regulator parameter Λ: 400 MeV (black), 450 MeV
(red), 500 MeV (green), and 550 MeV (blue). The experimental data are taken from
Refs. [27] (pluses) and [28] (circles).
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Figure 2: Deuteron tensor analyzing power T22 for the elastic nucleon-deuteron scat-
tering at the incoming nucleon energy in the lab system E = 65 MeV. Curves are the
same as in Fig. 1. The experimental data are taken from Ref. [29].

this energy the dependence of the predictions on the regulator parameters is insignif-
icant for both potentials. All predictions are close to each other and the maximal
difference between them for all scattering angles is smaller than the experimental un-
certainties. The observed discrepancy with data in the minimum of the cross section
stems from neglecting three-nucleon forces in calculations presented here.

Another picture is observed at the same energy, E = 65 MeV, for the deuteron
tensor analyzing power T22, see Fig. 2. Here the predicted magnitude of the T22 clearly
depends on the value of the regulator R used for the SCS model. This dependence is
especially strong at both minima of the T22 seen around scattering angles θc.m. = 100◦

and θc.m. = 145◦. The spread of predictions amounts up to 10% for the first mini-
mum and up to 5% for the latter one and predictions obtained with R = 0.8 fm
and R = 1.2 fm are the extreme ones for both minima. The SMS interaction pre-
dictions are much less sensitive to the value of the cut-off parameter. Here at the
minimum around θc.m. = 100◦ the spreed of predicted values of T22 is 3% and at the
minimum around θc.m. = 145◦ it amounts up to approximately 1.3%.

The cut-off dependence grows with energy. This is shown for the cross section
at E = 200 MeV in Fig. 3 and for the deuteron tensor analyzing power T22 at the
same energy in Fig. 4. At such a high energy, the cut-off dependence is seen already
for the cross section when the SCS potential is used. Using various values of the
regulator R leads to substantially different predictions not only near the minimum of
the cross section but nearly for all scattering angles. The SMS model works much
better at this energy and we observe only a tiny cut-off dependence in the minimum of
the cross section. The SCS potential fails also for the T22, especially at the scattering
angles 60◦ ≤ θc.m. ≤ 150◦. At θc.m. = 110◦ the spread of predictions exceeds 65%.
The SMS potential delivers a much more stable description in this case. While the
cut-off dependence of predictions is also seen in the range 60◦ ≤ θc.m. ≤ 150◦, it
is much smaller and at θc.m. = 110◦ predictions differ by less then 7%. Outside
the 60◦ ≤ θc.m. ≤ 150◦ range, the predictions based on various values of regulators
remain practically the same for both models of the interaction used.

Summarizing, we can confirm that the newest chiral interaction derived by the
Bochum group [14] preserves its high quality when moving from two- to three-nucleon
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Figure 3: Differential cross section for the elastic nucleon-deuteron scattering at the
incoming nucleon energy in the lab system E = 200 MeV. Curves are the same as in
Fig. 1.

system. We found that for this model the predictions for the elastic nucleon-deuteron
scattering practically do not depend (at N4LO) on the value of regulator used. This
property eliminates one of the most important difficulties in practical applications of
the chiral forces in many-nucleon systems and in the detailed analysis of the data
and properties of nuclear forces. The lack of the cut-off dependence also reduces
the theoretical uncertainties present in studying various secondary effects like, i. e.,
the role of many-nucleon forces. A study of the cut-off dependence of the three-
and many-body observables including the consistent SMS three-nucleon force is in
progress.
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3H and 3He Bound State Calculations

without Angular Momentum Decomposition
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Yu. Volkotrub, V. Soloviov and A. Grassi

M. Smoluchowski Institute of Physics, Jagiellonian University, PL-30348 Kraków, Poland

Abstract

Recent advances in the so-called “three dimensional” (3D) formalism made it
possible to perform numerically efficient calculations of the three-nucleon (3N)
bound states that utilize 3N forces. In this paper we present results related
to the 3H bound state. We also discuss our way of incorporating the Coulomb
forces in 3D calculations of the 3He bound state.

Keywords: Few-nucleon forces; three-nucleon system; bound states

1 Introduction

An introduction to the 3D approach can be found in Ref. [1]. In this approach, few-
nucleon calculations are carried out without using the partial wave decomposition
and instead the three-dimensional momentum degrees of freedom of the nucleons are
used. Some previous work related to the 3N bound state was reported in Refs. [2,3].
Below we provide a brief summary of the formalism used in these papers.

The starting point of the calculation is the operator form of the Faddeev compo-
nent | ψ〉 of the 3N bound state | Ψ〉 [3, 4]:

〈pq;
(
t
1

2

)
TMT |ψ〉 =

8∑

i=1

ψ
(i)
tT (p, q, p̂ · q̂) Ǒi(p, q) |χm〉. (1)

In Eq. (1), ψ
(i)
tT (p, q, p̂ · q̂) are scalar functions that effectively define the Faddeev

component |ψ〉, Ǒi(p, q) are operators in the spin space of the 3N system (they are
listed in Ref. [3]), |(t 12 )TMT 〉 is a 3N isospin state in which the isospins of two nucleons
are coupled to t and then further coupled with the isospin of the third particle to the
total isospin T with projection MT . Finally p, q are Jacobi momenta and |χm〉 is a
3N spin state (given explicitly in Ref. [3]).

The operator form (1) is plugged into the Faddeev equation (note that we use a
version of the Faddeev equation without the two nucleon transition operator):

|ψ〉 = Ǧ0(E)
(
V̌ + V̌ (1)

)(
1̌ + P̌

)
|ψ〉, (2)

Proceedings of the International Conference ‘Nuclear Theory in the Supercomput-
ing Era — 2018’ (NTSE-2018), Daejeon, South Korea, October 29 – November 2,
2018, eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2019, p. 122.

http://www.ntse.khb.ru/files/uploads/2018/proceedings/Topolnicki.pdf.
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where V̌ is the two-nucleon (2N) potential acting between particles 2 and 3, V̌ (1) is a
part of the 3N potential that is symmetric with respect to the exchange of particles 2
and 3, Ǧ0(E) is the free propagator for energy E and finally P̌ = P̌12P̌23 + P̌13P̌23 is
an operator composed from transpositions P̌ij . After removing the spin dependencies
from the resulting equations, Eq. (2) is transformed into

Ǎ(E)ψ = ψ, (3)

where the energy-dependent operator Ǎ(E) acts in a linear space spanned by the

scalar functions ψ
(
≡ ψ

(i)
tT (p, q, p̂ · q̂)

)
that appear in Eq. (1). In practice a slightly

different equation is solved:
Ǎ(E)ψ = λψ, (4)

and various values of the energy E are checked looking for the one that yields λ = 1, so
the corresponding energy is the bound state energy. The resulting scalar functions ψ
can be used to reconstruct the Faddeev component.

The full bound state wave function of the 3N system |Ψ〉 is related to the Faddeev
component |ψ〉 via

|Ψ〉 =
(
1̌ + P̌

)
|ψ〉. (5)

The operator form (1) can also be used to represent the full bound state function |Ψ〉
where it will be defined by a different set of scalar functions Ψ

(
≡ Ψ

(i)
tT (p, q, p̂·q̂)

)
. The

operator forms of |Ψ〉 and |ψ〉 can be inserted into Eq. (5) and the spin dependencies
can be removed. This results in the following equation:

Ψ = B̌ψ, (6)

where the operator B̌ acts in a linear space spanned by the scalar functions that define
the Faddeev component.

2 Numerical results

We show in Figs. 1 and 2 selected scalar functions (ψ(1), Ψ(1) and ψ(2), Ψ(2), respec-
tively) for the Faddeev component |ψ〉 and the full bound state function |Ψ〉 of 3H.
These results were obtained using the same 2N and 3N potentials as in Ref. [3].

In order to verify our solutions, all plots related to the Faddeev component |ψ〉
also contain the functions

β = Ǎψ. (7)

Since the functions ψ satisfy Eq. (4) with λ ≈ 1, the two functions, ψ and β, should
overlap. Additionally all plots related to the full 3N bound state function |Ψ〉 also
contain functions

1

3
ζ =

1

3
B̌ |Ψ〉. (8)

Since the operator B̌ is directly related to 1̌ + P̌ , acting with this operator on the
Faddeev scalar functions twice results in a multiplying factor of 3. It can be expected
that Ψ = 1

3ζ.
The calculations presented in Figs. 1 and 2 both benefit from the new method of

implementing the 3N forces described in Ref. [5]. That paper also contains results
related to the 3He bound state with a screened Coulomb potential from Ref. [6]. The
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Figure 1: Selected scalar functions for the Faddeev component of the 3H bound state
are shown in the first column, panels (a), (c). The values of the ψ (circles) and β
(crosses) functions practically overlap, verifying the solution. Chosen scalar func-
tions for the full bound state of 3H are shown in the second column, panels (b), (d).
The values of the Ψ (circles) and 1

3ζ (crosses) functions practically overlap, again
verifying the obtained solution. All plots show the t = 0, T = 1

2 components
with p = 0.355851 fm−1, p̂ · q̂ = −0.950676. The presented calculations used an
improved implementation of the 3N force from Ref. [5], and the resulting value of the
bound state energy is −8.62 MeV.

implementation of the Coulomb interaction in 3D calculations is straightforward and
requires only modifications in certain sets of integration points. The value of the
bound state energy for 3He obtained in Ref. [5] is −7.73 MeV.

3 Summary

The new implementation of the 3N force in 3D calculations described in Ref. [5] makes
it possible to test a wide variety of nuclear interactions. Although the calculations
presented in Ref. [5] were carried out with a small number of grid points for the scalar
functions, the results are encouraging and we plan future calculations with a larger
number of integration points. This will require adaptation of our code to an efficient
use of the JURECA booster computer at the Jülich Supercomputing Center. This will
increase the precision of the 3D calculations and allow us to test the newest versions
of two- and three-nucleon forces.
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Figure 2: Selected scalar functions for the Faddeev component of the 3H bound state
are shown in the first column, panels (a), (c). The values of the ψ (circles) and β
(crosses) functions practically overlap, verifying the solution. Chosen scalar func-
tions for the full bound state of 3H are shown in the second column, panels (b), (d).
The values of the Ψ (circles) and 1

3ζ (crosses) functions practically overlap, again
verifying the obtained solution. All plots show the t = 1, T = 1

2 components
with p = 0.355851 fm−1, p̂ · q̂ = −0.950676. The presented calculations used an
improved implementation of the 3N force from Ref. [5], and the resulting value of the
bound state energy is −8.62 MeV.
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ing Center, Jülich, Germany.

References
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Abstract

The Friedrichs–Faddeev model is considered in the case where the kernel
of the potential operator is holomorphic in both arguments on a certain com-
plex domain. For this model, we, first, derive representations for the transition
operator and scattering matrix continued on unphysical energy sheet(s) that ex-
plicitly express them in terms of the same operators exclusively on the physical
sheet. Then the Friedrichs–Faddeev Hamiltonian becomes subject to a complex
deformation. We show that, in the case under consideration, the deformation
resonances (non-real eigenvalues of the deformed Hamiltonian) are nothing but
the scattering matrix resonances, i. e., they represent the poles of the scattering
matrix analytically continued on the respective unphysical energy sheet.

Keywords: Friedrichs–Faddeev model; complex deformation; resonances; un-
physical sheets

1 Introduction

Assume that h is a Hilbert space and let ∆ = (a, b), where −∞ ≤ a < b ≤ ∞.
Denote by L2(∆, h) the Hilbert space of h-valued functions of λ ∈ (a, b) with the
scalar product

〈f, g〉 =

∫ b

a

dλ 〈f(λ), g(λ)〉h,

where 〈·, ·〉h stands for the scalar product in h. The Hamiltonian of the Friedrichs–
Faddeev model has the form

H = H0 + V (1.1)

with H0 being the operator of multiplication by an independent variable in L2(∆, h),

(H0f)(λ) = λf(λ), λ ∈ ∆, f ∈ L2(∆, h), (1.2)

and V being an integral operator,

(V f)(λ) =

∫ b

a

V (λ, µ) f(µ) dµ. (1.3)

Proceedings of the International Conference ‘Nuclear Theory in the Supercomput-
ing Era — 2018’ (NTSE-2018), Daejeon, South Korea, October 29 – November 2,
2018, eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2019, p. 127.
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It is assumed that, for every λ, µ ∈ ∆, the quantity V (λ, µ) is a bounded linear
operator on h such that V (λ, µ) = V (µ, λ)∗, and, in addition, V is a Hölder continuous

operator-valued function of λ, µ ∈ ∆. Furthermore, one requires

V (a, µ) = V (b, µ) = V (λ, a) = V (λ, b) = 0 in the case of finite a or/and b (1.4)

or imposes suitable requirements on the rate of decreasing of V (λ, µ) as |λ|, |µ| → ∞
in the case of infinite a or/and b.

In its starting form the model (1.1)–(1.4) was introduced by K. Friedrichs [1] who
considered the Hamiltonian

Hǫ = H0 + ǫV, ǫ > 0, (1.5)

with H0 and V given by (1.2) and (1.3) in the simplest case of one-dimensional inter-
nal Hilbert space h = C and ∆ = (−1, 1). The spectrum of the (self-adjoint) opera-
tor H0 is absolutely continuous and, in this case, coincides with the segment [−1, 1].
Friedrichs studied variation of the continuous spectrum of H0 under the perturba-
tion ǫV . He has succeeded to prove that, if ǫ is sufficiently small, then the spec-
trum of Hǫ remains absolutely continuous and still fills the segment [−1, 1]. In
Ref. [2], Friedrichs has extended this result to the case of arbitrary finite- or infinite-
dimensional Hilbert space h and arbitrary finite or infinite end points a and b. More
precisely, he has proven that, if ǫ > 0 is small enough, then the perturbed opera-
tor (1.5) is unitarily equivalent to the unperturbed one, H0, and, hence, the spectrum
of Hǫ is absolutely continuous and fills the set ∆.

O. A. Ladyzhenskaya and L. D. Faddeev have dropped in Ref. [3] the assumption of
smallness of the perturbation V and studied the model Hamiltonian (1.1)–(1.4) with
not small ǫ at V . However, instead of the smallness, they required compactness of the
values of V (λ, µ) as operators on h for all λ, µ ∈ ∆. Detail proofs for the results of
Ref. [3] are presented by Faddeev in Ref. [4]. As a matter of fact, the paper [4] contains
a complete version of the scattering theory for the model (1.1)–(1.4). Furthermore,
the paper [4] may be viewed as a relatively simple introduction to the approach used
by Faddeev in his celebrated study [5] of the three-body problem. Also notice that
the typical two-body Schrödingrer operator may be reduced to the Friedrichs–Faddeev
model with a = 0, b = +∞ and h = L2(S2), where S2 is the unit sphere in R

3 (see
Ref. [4]; cf. Ref. [6, Section 3]).

Faddeev’s in-depth study [4] of the Hamiltonian (1.1)–(1.4) is the main reason why
this Hamiltonian is often referred to as the Friedrichs–Faddeev model. In addition,
the double naming allows to distinguish the model (1.1)–(1.4) from another popular
model due to Friedrichs contained in Ref. [2]. The second model from Ref. [2] involves
a 2 × 2 block matrix Hamiltonian and works well, in particular, in the theory of
Feshbach resonances (see, e.g., Refs. [7, 8] and references therein). For later results
just on the Friedrichs–Faddeev model and its generalizations, see Refs. [9–13].

In the present work, we adopt the ideas and approach from the previous works
of the author [14, 15] in order to study the structure of the T - and S-matrices for
the Friedrichs–Faddeev model continued on unphysical energy sheets neighboring the
physical one. Namely, we obtain representations that explicitly express the continued
T - and S-matrices in terms of the same operators considered exclusively on the phys-
ical sheet (see Lemmas 2.2 and 2.3 below). The obtained representations show, in
particular, that a resonance on an unphysical sheet under consideration corresponds
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to the energy z in the physical sheet where the scattering matrix has the zero eigen-
value.

We perform a complex deformation of the Friedrichs–Faddeev Hamiltonian. (No-
tice that the “usual” complex scaling [16,17] may be understood as a particular case
of the complex deformation, see Ref. [6, Section 3].) A complex discrete spectrum
of the complexly-deformed Hamiltonian is interpreted as resonances. We show that
these resonances are simultaneously the poles of the continued scattering (and T -)
matrix on the unphysical sheet(s), that is, they are resonances in the sense of scatter-
ing theory. Recall that, in general, to prove the equivalence of the scaling resonances
and scattering matrix resonances is a rather hard job (see Ref. [18]). In contrast, in
the case of the Friedrichs–Faddeev model, the proof of such an equivalence is quite
easy and illustrative.

Throughout the article, we denote by σ(T ) the spectrum of a closed linear opera-
tor T . Notation T ∗ is used for the adjoint of T . T is called self-adjoint (Hermitian)
if T ∗ = T . Notations σp(T ) and σc(T ) are used for the point and continuous spec-
tra of T , respectively. By IK we denote the identity operator on a vector space K;
the index K is omitted if no confusion arises. Notation C

+ = {z ∈ C | Imz > 0}
(C− = {z ∈ C | Imz < 0}) is used for the upper (lower) halfplane of of the complex
plane C.

The present paper represents a conference version of the work [6].

2 Structure of the T - and S-matrices

on unphysical energy sheets

We consider the model (1.1)–(1.4) in the case where for each λ, µ ∈ (a, b) the value
of V (λ, µ) is a compact operator in h. We assume, in addition, that the func-
tion V (λ, µ) admits analytic continuation both in λ and µ onto a domain Ω ⊂ C

containing ∆. More precisely, we suppose that

V (λ, µ) is compact and holomorphic in both λ, µ ∈ Ω, Ω ⊃ (a, b). (2.1)

Also we assume that V (λ, µ) = V (µ, λ)∗ for real λ, µ ∈ ∆ (which is needed for the self-
adjointness of V ). Surely, this implies V (λ, µ) = V (µ∗, λ∗)∗ for any λ, µ ∈ Ω such that
their conjugates λ∗, µ∗ ∈ Ω and, hence, the domain Ω should be mirror-symmetric
with respect to the real axis.

Following Refs. [2, 4] one imposes some natural requirements on the rate of de-
creasing of V (λ, µ) as |λ|, |µ| → ∞ in the case of a = −∞ or/and b = +∞. To unify
the consideration, we simply assume that

‖V (λ, µ)‖ ≤ K(1 + |λ| + |µ|)−(1+η1), η1 > 0; (2.2)

‖V (λ+ α, µ+ β) − V (λ, µ)‖ ≤ K(1 + |λ| + |µ|)−(1+η1)(|α|η2 + |β|η2), η2 > 1/2,
(2.3)

with some K > 0 for any λ, µ ∈ Ω and any α, β such that λ + α ∈ Ω, µ + β ∈ Ω.
Since V (λ, µ) is holomorphic in both λ ∈ Ω and µ ∈ Ω, the requirement (2.3) with
η2 < 1 is essential only in the neighborhoods of the finite end points a and/or b.
Otherwise, one may replace η2 with unity.
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We use the standard notations for the resolvents,

R0(z) := (H0 − z)−1, R(z) := (H − z)−1,

and for the transition operator,

T (z) := V − V R(z)V. (2.4)

Since, at least for z 6∈ σ(H0) ∪ σ(H),

R(z) = R0(z) −R0(z)T (z)R0(z), (2.5)

the study of the spectral problem for the perturbed Hamiltonian H = H0 + V is
reduced to the study of the transition operator (T -matrix) T (z), the kernel of which
is less singular than that of the resolvent R(z).

From [4, Theorem 3.1] it follows that the kernel T (λ, µ, z) is a well-behaved func-
tion of λ, µ ∈ ∆ and z on the complex plane C punctured at σp(H) and cut along [a, b].
Moreover, T (λ, µ, z) is of the same class (2.2), (2.3) as V (λ, µ) but with η1 and η2
replaced by positive η′1 < η1 and η′2 < η2 which may be chosen arbitrary close to η1
and η2, respectively. The kernel T (λ, µ, z) has limits

T (λ, µ,E ± i0), E ∈ ∆ \ σp(H).

In our case, these limits are smooth in λ, µ ∈ ∆ \ σp(H). The scattering matrix for
the pair (H0, H) reads as

S+(E) = Ih − 2πiT (E,E,E + i0), E ∈ (a, b) \ σp(H).

Due to requirements (1.4) and (2.3) the point spectrum σp(H) of H represents a finite
set of eigenvalues with finite multiplicities (see Ref. [4]; cf. Ref. [12]).

Recall that the T (λ, µ, z) satisfies the following two Lippmann–Schwinger equa-
tions:

T (λ, µ, z) = V (λ, µ) −
∫ b

a

dν
V (λ, ν)T (ν, µ, z)

ν − z
, (2.6)

T (λ, µ, z) = V (λ, µ) −
∫ b

a

dν
T (λ, ν, z)V (ν, µ)

ν − z
, (2.7)

z 6∈ (a, b), λ, µ ∈ (a, b)

Substituting T (ν, µ, z) in the r.h.s. part of Eq. (2.6) by the r.h.s. part of Eq. (2.7),
one obtains

T (λ, µ, z) = V (λ, µ) −
∫ b

a

dν
V (λ, ν)V (ν, µ)

ν − z

+

∫ b

a

dν1

∫ b

a

dν2
V (λ, ν1)T (ν1, ν2, z)V (ν2, µ)

(ν1 − z)(ν2 − z)
, z 6∈ [a, b]. (2.8)

Since V (λ, µ) is analytic in both λ, µ ∈ Ω, one easily concludes from Eq. (2.8) that
the kernel T (λ, µ, z) possesses the same holomorphy property. More detail statement
is as follows.
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Proposition 2.1. If z 6∈ (a, b) ∪ σp(H), the function T (λ, µ, z) is holomorphic in
both λ ∈ Ω and µ ∈ Ω. One can replace the interval (a, b) in Eqs. (2.6) and (2.7) by an
arbitrary piecewise smooth Jordan contour γ ⊂ Ω obtained from (a, b) by continuous
transformation provided that the end points are fixed and the point z is avoided during
the transformation (a, b) → γ.

For the sake of simplicity, in the following we usually assume that the num-
bers a, b ∈ R are finite.

Now consider a smooth Jordan contour γ ⊂ Ω ∩ C
± obtained from the inter-

val (a, b) by a continuous transformation with the fixed end points a and b. From the
Proposition 2.1 it follows that Eq. (2.6) can be equivalently written as

T (λ, µ, z) =V (λ, µ) −
∫

γ

dν
V (λ, ν)T (ν, µ, z)

ν − z
, (2.9)

λ, µ ∈ Ω, z ∈ C \ Ωγ ,

where the set Ωγ ⊂ C is confined by (and containing) the segment [a, b] and the
curve γ (see Fig. 1). By applying to Eq. (2.9) the Faddeev’s approach of Ref. [4], one
can prove that a solution T (λ, µ, z) exists and is analytic on z for any

z 6∈ σp(H) ∪ γ ∪ σres(γ), (2.10)

where σres(γ) is a discrete set located inside Ωγ ; the overlining in γ means the closure,
that is, γ = γ ∪ {a} ∪ {b}. Because of the holomorphy of V (λ, µ) in λ, µ ∈ Ω, the
solution T (λ, µ, z) remains analytic in λ, µ ∈ Ω for any z ∈ C satisfying (2.10). The
points of σres(γ) (resonances) correspond to the poles of the solution T (z), which
residues are finite rank operators. Hence, Eq. (2.9) allows one to pull the argument z
of T (z) from C+ to C− at least into the interior of the set Ωγ . Of course, the points
of σres(γ) should be avoided during this procedure.

It turns out, however, that, after such a continuation, the solution T (λ, µ, z)
for z ∈ Ω ∩ C− is taken on an unphysical sheet of the Riemann energy surface of T .
This unphysical sheet is attached to the physical sheet along the upper rim of the cut
of C through the interval (a, b) and we denote it by Π−. Thus, it is necessary to use
a different notation, say, T ′(λ, µ, z) for the continuation of the kernel of T on Π− (in
order to distinguish if from T (z) at the same z on the physical energy sheet). By the

Ω

a b R

Ωγ
γ

Ω

Figure 1: Domain Ω where the kernel V (λ, µ)
is holomorphic both in λ and µ. The set Ωγ

is bounded by (and contains both) the Jordan
contour γ and the segment [a, b].
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way, this kernel will coincide with the original one, that is, T ′(λ, µ, z) = T (λ, µ, z),
provided z ∈ C \

(
Ωγ ∪ σp(H)

)
.

The amazing thing is that the continued equation (2.9) may be solved explicitly.
To show this, let us assume that z ∈ Ωγ \

(
γ ∪ σres(γ)

)
and perform a two-step

transformation of the contour γ (see Fig. 1) in the way shown in Fig. 2.

a b a b
  

 

  

 

z z

Figure 2: Two steps in transformation of the contour γ back to (a, b).

By performing such a transformation and computing the residue at ν = z, one ob-
tains from Eq. (2.9) the following equation for the unphysical-sheet values T ′(λ, µ, z)
of T :

T ′(λ, µ, z) = V (λ, µ) − 2πi V (λ, z)T ′(z, µ, z) −
∫ b

a

dν
V (λ, ν)T ′(ν, µ, z)

ν − z
, (2.11)

λ, µ ∈ Ω, z ∈ Ω ∩ C
−.

Adopting the standard terminology of scattering theory one calls the kernel T ′(z, µ, z)
“half-on-shell” since its first argument equals the spectral parameter (energy) z.
Similarly, the kernel T ′(z, z, z) is called “(completely) on-shell”, whereas the ker-
nel T ′(λ, µ, z) with arbitrary admissible values of λ and µ is called “off-shell”. Surely,
the adjectives “off-shell”, “half-on-shell”, and “on-shell” may be applied to any func-
tion of the complex arguments λ, µ, and z.

By transferring all the entries in Eq. (2.11) with the off-shell kernel T ′ to the l.h.s.
one obtains:

T ′(λ, µ, z) +

∫ b

a

dν
V (λ, ν)T ′(ν, µ, z)

ν − z
= V (λ, µ) − 2πiV (λ, z)T ′(z, µ, z), (2.12)

λ, µ ∈ Ω, z ∈ Ω ∩ C
−.

Meanwhile, for z on the physical sheet we have:
(
I + V R0(z)

)−1
V = T (z), z 6∈ σp(H).

This allows to rewrite Eq. (2.12) in the form

T ′(λ, µ, z) = T (λ, µ, z) − 2πiT (λ, z, z)T ′(z, µ, z), (2.13)

where the absence of the the prime in notation of the entry T (·, µ, z) means that this
entry is taken for z on the physical energy sheet. Now by setting λ = z in Eq. (2.13),
one gets

T ′(z, µ, z) = T (z, µ, z)− 2πiT (z, z, z)T ′(z, µ, z). (2.14)

From Eq. (2.14) it follows that

S−(z)T ′(z, µ, z) = T (z, µ, z), (2.15)

where
S−(z) := Ih + 2πi T (z, z, z), z ∈ Ω ∩C

−, (2.16)
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is just the scattering matrix for the values of z in the lower half-plane. We emphasize
that the values of z in Eq. (2.16) are taken on the physical sheet. From Eq. (2.15) it
follows that

T ′(z, µ, z) = S−(z)−1 T (z, µ, z), (2.17)

of course, under the condition that the inverse S−(z)−1 exists. That is, z in Eq. (2.17)
should be such that S−(z) does not have eigenvalue zero. Combining Eqs. (2.13)
and (2.17), one finally obtains

T ′(λ, µ, z) = T (λ, µ, z) − 2πiT (λ, z, z)S−(z)−1 T (z, µ, z). (2.18)

All the entries on the r.h.s. part of Eq. (2.18) are taken for the same z as on the l.h.s.
part but on the physical sheet. Thus, the representation (2.18) discloses the structure
of the analytically continued transition operator T ′(z) = T (z)|Π−

on the unphysical
sheet Π− exclusively in terms of the physical sheet.

An analytic continuation of T (λ, µ, z) from the lower half-plane C− to the
part Ω ∩ C+ of the unphysical energy sheet Π+ attached to the physical sheet along
the lower rim of the cut (a, b) may be performed exactly in the same way. As a
result, one arrives at the following statement that works for both sheets Πℓ where
the number ℓ = ±1 in the subscript is identified with the corresponding sign ± in the
previous notation Π±.

Lemma 2.2. The transition operator T (z) admits a meromorphic continuation (as
an operator-valued function of the energy z) through the cut along the interval (a, b)
both from the upper, C+, and lower, C−, half-planes to the respective parts

Ω− := Ω ∩ C
− and Ω+ := Ω ∩ C

+

of the unphysical sheets Π−1 and Π+1 attached to the physical sheet along the upper
and lower rims of the above cut. The kernel of the continued operator T (z)

∣∣
Πℓ∩Ωℓ

,

ℓ = ±1, is given by the equality

T (λ, µ, z)
∣∣
z ∈ Πℓ ∩ Ωℓ

=
(
T (λ, µ, z) + 2πi ℓ T (λ, z, z)Sℓ(z)−1 T (z, µ, z)

)∣∣
z ∈ Ωℓ

, (2.19)

z ∈ Ωℓ \ σℓ
res, (2.20)

with all the entries on the r.h.s. part, including the scattering matrix

Sℓ(z) = Ih − 2πi ℓ T (z, z, z), (2.21)

being taken for the same z on the physical sheet. Notation σℓ
res is used for the set of

all those points ζ ∈ Ω ∩Cℓ where Sℓ(ζ) has eigenvalue zero.

It is worth mentioning that some further analytic properties of V (λ, µ) outside Ω
should be known in order to decide whether Π− and Π+ represent the same (“second”)
unphysical sheet or they are really different sheets of the energy Riemann surface (cf.
Ref. [14]).

Continuation formula for the scattering matrix is a simple corollary to Lemma 2.2.

Lemma 2.3. An analytic continuation of the scattering matrix S−ℓ(z), ℓ = ±1, to
the unphysical sheet Πℓ is is given by

S−ℓ(z)
∣∣
z∈Πℓ ∩Ωℓ

= Sℓ(z)−1
∣∣
z∈Ωℓ

, z 6∈ σℓ
res, (2.22)

where the r.h.s. part is taken for z on the physical sheet.
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3 Equivalence of the deformation and scattering
resonances in the Friedrichs–Faddeev model

From now on we consider a family of the Friedrichs–Faddeev Hamiltonians

Hγ= H0,γ + Vγ

associated with smooth Jordan curves γ ⊂ Ω obtained by continuous transformation
from the interval (a, b), with the end points a, b fixed during the transformation. As
before, the notation Ω is used for the holomorphy domain of V (λ, µ) in λ, µ. The
domain Ω may or may not include the points a and/or b. The entries H0,γ and Vγ
are given by

(
H0,γf

)
(λ)= λ f(λ) and

(
Vγf

)
(λ) =

∫

γ

V (λ, µ) f(µ) dµ, λ ∈ γ.

It is assumed that f ∈ L2(γ, h) where L2(γ, h) is the Hilbert space of h-valued func-
tions of the variable λ ∈ γ with the scalar product

〈f, g〉γ =

∫

γ

|dλ|〈f(λ), g(λ)〉h.

Notice once again that the standard complex scaling [16, 17] of a two-body Hamilto-
nian may be viewed as a particular case of the complex deformation of the Friedrichs–
Faddeev model (see Ref. [6, Section 3]).

Assume, for simplicity, like in Section 2, that both a and b are finite real numbers
and let V (λ, µ) be also as in Section 2. As usually, for the resolventRγ(z) = (Hγ−z)−1

of the operator Hγ we have

Rγ(z) = R0,γ(z) −R0,γ(z)Tγ(z)R0,γ(z), (3.1)

where R0,γ(z) is the resolvent of H0,γ ,

R0,γ(z) = (H0,γ − z)−1, z 6∈ σ(H0,γ),

and

Tγ(z) = Vγ − Vγ (Hγ − z)−1 Vγ , z 6∈ σ(Hγ) (3.2)

is the transition operator for the pair (H0,γ , Hγ).
Clearly, H0,γ is a normal operator on Hγ . Its spectrum is purely absolutely con-

tinuous and fills the curve γ. From Eq. (3.1) it immediately follows that the discrete
eigenvalues of Hγ are associated just with the poles of the operator-valued func-
tion Tγ(z).

Suppose that the above Jordan contour γ lies entirely in Ω− = Ω∩C− (or entirely
in Ω+ = Ω ∩ C+) and let Ωγ be again the set in C confined by (and containing) the
interval [a, b] and the curve γ (see Fig. 1).

Lemma 3.1. The following equality holds: σ(Hγ) \ Ωγ = σp(H) \ ∆, which means
that the spectrum of Hγ outside Ωγ is purely real and coincides with the corresponding
eigenvalue set of H. Furthermore, σp(Hγ) ∩ ∆ = σp(H) ∩ ∆, i. e., the eigenvalues
of Hγ lying on ∆ do not depend on the (smooth) Jordan contour γ. Finally, the
spectrum of Hγ inside Ωγ consists of the scattering-matrix resonances.
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We skip a detail justification of this assertion and refer the reader to the proof of
the corresponding statement in Ref. [6, Proposition 4.1]. Here we only notice that the
proof in Ref. [6] is reduced to the observation that the kernels of the T -matrices (3.2)
and (2.4) possess the property

Tγ(λ, µ, z) = T (λ, µ, z) whenever λ, µ ∈ γ, z ∈ C \ Ωγ (and z 6∈ σp(H)).

Then, by the uniqueness principle for the analytic continuation, one concludes that,
for z inside Ωγ , the kernel Tγ(λ, µ, z) represents just the analytic continuation
of T (λ, µ, ·) to the interior of Ωγ belonging already to the unphysical sheet. Hence,
the poles of Tγ(z) within Ωγ represent resonances of the original Friedrichs–Faddeev
Hamiltonian

(
the one associated with the interval (a, b)

)
. This also means that the

positions of the resonances inside Ωγ are stable in the sense that they do not depend
on γ.

Conclusion

In this work we have studied the Friedrichs–Faddeev model with an analytic potential
kernel V (λ, µ). We have found that the transition operator and the scattering matrix
for this model, analytically continued on unphysical energy sheets, admit explicit
representations in terms of the same operators considered exclusively on the physical
sheet. A resonance on the unphysical sheet Πℓ, ℓ = ±1, or, more precisely, in the
domain Πℓ∩Ωℓ, is a point, for the copy z of which on the physical sheet the scattering
matrix Sℓ(z) has eigenvalue zero, i. e.,

Sℓ(z)A = 0 for a non-zero A ∈ h.

We have also shown that, for the Friedrichs–Faddeev model under consideration, the
deformation resonances are nothing else but the scattering matrix resonances.
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Ab Initio Scattering Calculation in Three-Body

Coulomb Systems: e+−H, e−−H̄ and e+−He+
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Abstract

We present the results of our detailed calculations of scattering characteris-
tics in e−e+p̄ (e−e+p) and e+e−He++ systems with zero total orbital momentum
by direct solving the Faddeev–Merkuriev equations in the differential form. We
calculate all possible cross-sections in the low-energy region which admits up
to seven open channels including the rearrangement channels of ground and ex-
cited states of antihydrogen, positronium and helium ion formations. All sharp
resonances of the systems obtained and approved previously by a number of
authors are clearly reproduced in the calculated cross sections. Alternatively,
the exterior complex scaling approach has been used for calculating resonant
energies. It confirmed the existence of reported by other authors broad reso-
nances in the e+e−He++ system. Prominent oscillations of Gailitis–Damburg
type have been found in cross sections for energies above the threshold corre-
sponding to n = 2 state of antihydrogen.

Keywords: Faddeev–Merkuriev equations; positron scattering; antihydrogen
formation; Gailitis–Damburg oscillations

1 Introduction

Study of electron and positron scattering off light atomic targets
(
like (anti)hydrogen

atom and helium cation
)

is of fundamental importance for atomic physics. These
colliding systems represent genuine three-body Coulombic systems with variety of
channels, rich resonant structure of scattering cross sections and the fundamental
rearrangement phenomenon of positronium (electron-positron bound state) formation.
For such a case the solution methods should be capable of representing the solution
for all the asymptotic fragmentations accurately. The Faddeev equations [1] and their
generalization to the long-range Coulomb case, the so-called Faddeev–Merkuriev (FM)
equations [2], were designed especially to fulfill this requirement. This generalization
is based on the Coulomb potential splitting into the interior and the long range tail
parts leading to the mathematically rigorous boundary value problem, which solution

Proceedings of the International Conference ‘Nuclear Theory in the Supercomput-
ing Era — 2018’ (NTSE-2018), Daejeon, South Korea, October 29 – November 2,
2018, eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2019, p. 137.

http://www.ntse.khb.ru/files/uploads/2018/proceedings/Yakovlev.pdf.
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is strictly equivalent to the solution of the Schrödinger equation [1]. This approach
suits the computationally difficult detailed low-energy elastic and reactive scattering
calculations in three-body Coulomb systems perfectly [3–5].

Here, the formalism of FM equations is used to calculate the S-wave cross sec-
tions in e−e+p̄ (e−e+p) and e+e−He++ systems in the low-energy region for all
open channels. Even though there are many calculations available in the litera-
ture [3, 4, 6–17], there is still some lack of high-precision and detailed results espe-
cially for the e+e−He++ system, which is one of the motivations for performing this
research. Besides, a special emphasis is made on the antihydrogen formation by an-
tiproton impact of positronium which is currently used in experiments on antimatter
at CERN (see Ref. [18] and references therein).

The paper is organized as follows. In Section 2, we give the necessary portion
of the three-body FM equations formalism and briefly describe the respective solu-
tion technique in the case of zero total orbital momentum of the system. Section 3
contains results of calculations of low-energy reactive scattering in e−e+p̄ (e−e+p)
and e+e−He++ systems. The last Section concludes the paper.

We use atomic units throughout the paper. The magnitude of a vector x is denoted
by x, i. e., x = |x|, and x̂ = x/x stands for the unit vector. The set of indices {α, β, γ}
runs over the set {1, 2, 3} enumerating particles and is also used for identifying the
complementary pair of particles since the pair of particles βγ in the partition {α(βγ)}
is uniquely determined by the particle α.

2 Theory and numerical solution

We consider a system of three spinless nonrelativistic charged particles of masses mα

and charges Zα, α = 1, 2, 3. Standard Jacobi coordinates are defined for a parti-
tion α(βγ) as the relative position vectors between the particles of the pair βγ and
between their center of mass and the particle α. In applications, it is convenient to
use the reduced Jacobi coordinates xα,yα which are Jacobi vectors scaled by the
factors

√
2µα and

√
2µα(βγ), respectively, where the reduced masses are given by

µα =
mβmγ

mβ +mγ
, µα(βγ) =

mα(mβ +mγ)

mα +mβ +mγ
. (1)

The reduced Jacobi vectors for different choices of α are related by an orthogonal
transformation,

xβ = cβα xα + sβα yα, yβ = −sβα xα + cβα yα, (2)

where

cβα = −
[

mβ mα

(M −mβ)(M −mα)

]1/2
, sβα = (−1)β−αsgn(α− β)(1 − c2βα)1/2,

and M =
∑

αmα. In what follows, it is assumed that the β Jacobi vectors are
represented through the α vectors via Eq. (2).

In the reduced Jacobi coordinates, the FM equations for three charged particles [1]
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read
{
Tα + Vα(xα) +

∑

β 6=α

V
(l)
β (xβ , yβ) − E

}
ψα(xα,yα) = −V (s)

α (xα, yα)
∑

β 6=α

ψβ(xβ,yβ).

(3)

Here Tα ≡ −∆xα
− ∆yα

are the kinetic energy operators. In this paper, the po-
tentials Vα represent the pairwise Coulomb interaction Vα(xα) =

√
2µαZβZγ/xα

(β, γ 6= α), although, generally, a short-range (decreasing as 1/x2α or faster as xα → ∞)
potential can also be included in the formalism. The potentials Vα are split into the

interior (short-range) V
(s)
α and the tail (long-range) parts V

(l)
α ,

Vα(xα) = V (s)
α (xα, yα) + V (l)

α (xα, yα). (4)

Equations (3) can be summed up leading to the Schrödinger equation for the wave
function Ψ =

∑
α ψα, where ψα are the components of the wave function given by the

solution of Eqs. (3).
Splitting Eq. (4) for the potentials in general case is done in the three-body con-

figuration space by the Merkuriev cut-off function χα [1],

V (s)
α (xα, yα) = χα(xα, yα)Vα(xα). (5)

This splitting confines the short-range part of the potential to the regions in the three-
body configuration space corresponding to the three-body collision point (particles are
close to each other) and the binary configuration (xα ≪ yα when yα → ∞). The form
of the cut-off function can be rather arbitrary within some general requirements [2,5].
In the paper [19], we have shown, that for the energies below the breakup threshold, it
is practical to confine the cut-off function to the two-body configuration space. Thus
in this paper, for actual calculations we use the cut-off function of the form

χα(xα) = 2/
{
1 + exp

[
(xα/x0α)2.01

]}
, (6)

where x0α is a parameter. With this smoothed Heaviside step function, the split

potentials V
(s,l)
α become two-body quantities V

(s,l)
α = V

(s,l)
α (xα).

The splitting procedure makes the properties of the FM equations for Coulomb
potentials as appropriate for scattering problems as the standard Faddeev equations
in the case of short-range potentials [4]. With the described above choice of the
short-range part of the potential V (s), the right-hand side of each Eq. (3) is confined
to the vicinity of the three-body collision point [20], which is the key property of
the FM equations. It leads to the asymptotic uncoupling of the set of FM equa-
tions and, accordingly, the asymptotics of each component ψα for energies below the
breakup threshold contains only the terms corresponding to the binary configurations
of pairing α [4, 20].

The total orbital momentum is an integral of motion for the three-particle system.
This makes it possible to reduce the set of FM equations by projecting Eq. (3) onto
a subspace of a given total angular momentum [14]. In this article we consider the
case of zero total orbital momentum of the system. The kinetic energy operator in
the left-hand side of Eq. (3) on the subspace of zero total orbital momentum has the
form

Tα = − ∂2

∂y2α
− 2

yα

∂

∂yα
− ∂2

∂x2α
− 2

xα

∂

∂xα
−
(

1

y2α
+

1

x2α

)
∂

∂zα
(1 − z2α)

∂

∂zα
, (7)
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where zα ≡ cos(x̂α · ŷα). The corresponding projection of the component ψα depends
only on the coordinates Xα = {xα, yα, zα} in the plane containing all three particles.
By choosing the coordinate system appropriately, its asymptotics for energies E below
the three-body ionization threshold can be written as

ψα(Xα) ∼ −φn0ℓ0(xα)

xα yα
Yℓ00(θα, 0) e−iϑℓ0

(yα,pn0) δα,α0

+
∑

nℓ

φnℓ(xα)

xα yα
Yℓ0(θα, 0)

√
pn0

pn
Snℓ,n0ℓ0 e+iϑℓ(yα,pn), (8)

where the set of indices {nℓ} specifies various two-body Coulomb bound states
in the pair α

(
that is, binary scattering channels {α;nℓ}

)
with the wave

function φnℓ(xα)Yℓm(x̂)/xα and the energy εn. Here Yℓm(x̂) stands for the standard
spherical harmonic function. The momentum pn of the outgoing particle is deter-
mined by the energy conservation condition E = p2n + εn. The Coulomb distorted
wave phase ϑℓ(yα, pn) ≡ pnyα− ηn log(2pnyα)− ℓπ/2 +σn, where σn = arg Γ(1 + iηn)
and the Sommerfeld parameter is defined as ηn ≡ Zα(Zβ + Zγ)

√
2mα(βγ)/(2pn).

Finally, Snℓ,n0ℓ0 are the S-matrix elements.

To reduce the computational cost of solving the system of FM equations (3),
several modifications has been done. First, since the potential V3 is repulsive and
the corresponding two-body Hamiltonian does not support any bound state, this
potential is included in the left-hand side of Eqs. (3), thus reducing the number of
these equations from 3 to 2. Formally, it is done by setting χ3 = 0. Secondly,
the asymptotic particle-atom Coulomb potential V eff

α (yα) = 2pnηn/yα is introduced
explicitly in Eqs. (3) for treating the asymptotic Coulomb singularity,

{
Tα + Vα(xα) + V eff

α (yα) − E
}
ψα(Xα) = −V (s)

α (xα)ψβ(Xβ)

−
[
V

(l)
β (xβ) + V3(x3) − V eff

α (yα)
]
ψα(Xα), (9)

where β 6= α = 1, 2. After that the Coulomb singularity can be effectively in-
verted [21]. Another modification is done to make the solutions of Eqs. (3) to be
real functions. This is achieved by using the asymptotic conditions with standing
waves instead of conditions (8).

The FM equations are solved by the spline collocation method [22] in a
box [0, Rx

α] × [0, Ry
α] × [−1, 1] for each component ψα. As a basis set for expanding

the components, we use products of basis functions in the space of quintic Hermite
splines S3

5 (splines of degree 5 with 2 continuous derivatives) in each coordinate. Each
basis function is local and nonzero only on two adjoining intervals of the grid. As a
result, the matrix of the system of linear equations for expansion coefficients is sparse.
It is solved by the Arnoldi iterations in GMRES variant [23] with right precondition-
ing by the discretized version of the operators in the left-hand side of the system of
FM equations. To invert the preconditioner, we use the algorithm which is known
as the “tensor trick” or matrix decomposition method [22, 24, 25]. It provides a fast
diagonalization of the matrix using its tensor product structure. For a more detailed
description of our computational method, we refer the reader to Ref. [21].
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3 Results

3.1 Scattering in e−e+p̄ and e+e−p systems

The positron-hydrogen atom scattering is the simplest example of positron-atom scat-
tering process. Many calculations are available in the literature [3, 7, 9–13,15, 16, 18].
The renewed interest in studying reactions involving the positron, electron and
(anti)proton is motivated by experiments on antimatter ongoing at CERN [18]. The
reaction of the antihydrogen production via the antiproton (p̄) impact on positronium
atom (Ps, the bound state of e+ and e−) plays the key role in antimatter formation.
Due to the symmetry of particle charges, the cross sections in e+e−p and e−e+p̄
systems are identical. Below in this section we refer to the e+e−p̄ system.

By solving the FM equations, we have calculated the cross sections for all possible
scattering processes in the e+e−p̄ system in the total energy range between the
energies of the atomic states H̄(n = 1) and H̄(n = 3), i. e., from −0.49973 a.u.
to −0.05553 a.u. with the step in energy of 0.0007 a.u. Within this energy interval, the
elastic scattering, excitation and rearrangement processes leading to the H̄(n = 1, 2)
and Ps(n = 1, 2) atomic states are possible. The energies of these atomic states form
the thresholds for scattering channels. The maximal number of open channels in the
energy interval between the Ps(n = 2) and H̄(n = 3) states equals to 6. The accuracy
of our calculations guarantees that the uncertainties of the obtained cross sections
are less than 1%. A calculation of all cross sections for each energy value from this
interval requires a time of approximately 3 hours on a SMP node with 32 cores and 20
Gb RAM. We have a system of 3,241,020 linear equations and the respective matrix
has 432 nonzero elements in a row.

We compare our results in Table 1 with tabulated results of other authors and
present some additional cross sections for further references. In this Table and in the
text below we use shortcuts H̄(n) and H̄(n, ℓ) for the atomic states with the principal
quantum number n and the orbital momentum ℓ. Some of all possible 36 cross sections
for the collision processes with e−−H̄ and p̄−Ps configurations in the entrance and
final channels are presented in Fig. 1.

The antihydrogen production cross sections in the energy region between the H̄(2)
and H̄(3) thresholds are studied in detail in a recent work [18]. These cross sections
are compared with our results in Fig. 2. The resonances manifest themselves in Figs. 1
and 2 as peaks in some of the calculated cross sections. The resonance energies found
by different methods [26–29] are known with a good accuracy. We mark their positions
in the figures by vertical dashed lines. All resonances are clearly seen in the calculated
cross sections. The p̄+ Ps(1, s) → p̄+ Ps(1, s) and e− + H̄(2, s) → e− + H̄(2, p) cross
sections as well as the e− + H̄(2, s) → e− + H̄(2, s) cross section not shown in the
figure, have sharp minima which also look like resonances but do not coincide with any
of the known resonance positions. We agree with the interpretation of these minima
suggested in Ref. [10] where they were associated with the Ramsauer–Townsend effect.

A special attention should be paid to the oscillations of the cross sections just above
the H̄(2) threshold in Fig. 2. We give more detailed plots of the p̄+Ps(1) → e−+H̄(1)
and p̄ + Ps(1) → e− + H̄(2) cross sections in the energy region above this threshold
in Fig. 3. Prominent oscillations of both cross sections and their character suggest to
associate these oscillations with the phenomenon predicted in Refs. [30,31]. According
to Refs. [30,31], the energy position En of the nth maximum of the oscillations follows
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Table 1: Our results for scattering cross sections in the e−e+p̄ system in comparison with that of other authors
(energies are given relative to the H̄(1) threshold at −0.49973 a.u.).

E, a.u. 0.27026 0.28140 0.32017 0.36145 0.385 0.40 0.415 0.42

σe−+H̄(1)→e−+H̄(1) 0.0353 0.0417 0.0634 0.0836 0.0944 0.100 0.105 0.107

[10] 0.0651 0.0844 0.100
[3] 0.0372 0.0429 0.0649 0.0866 0.090 0.096 0.099 0.101
[9] 0.0431 0.0650 0.0856

σe−+H̄(1)→p̄+Ps(1) 0.00412 0.00430 0.00487 0.00562 0.00565 0.00572 0.00575 0.00574
[10] 0.00490 0.00567 0.00581
[3] 0.00410 0.00439 0.00487 0.00557
[9] 0.00422 0.00481 0.00554

σp̄+Ps(1)→p̄+Ps(1) 3.49 7.06 9.87 8.31 7.11 6.44 5.82 5.62
[10] 9.87 8.32 6.45
[3] 3.500 7.060 9.866 8.312 7.09 6.44 5.83 5.63
[9] 6.936 9.868 8.332

σp̄+Ps(1)→e−+H̄(1) 0.0272 0.0191 0.0111 0.0091 0.00806 0.00763 0.00724 0.00709

[3] 0.0274 0.0195 0.0111 0.0091 0.00815 0.00780 0.00729 0.00715

σe−+H̄(1)→e−+H̄(2,s) 0.000662 0.00137 0.00206 0.00228

σe−+H̄(1)→e−+H̄(2,p) 0.000399 0.000236 0.000421 0.000582

σe−+H̄(2,s)→p̄+Ps(1,s) 1.26 0.576 0.477 0.475

σe−+H̄(2,s)→e−+H̄(1,s) 0.0249 0.0217 0.0212 0.0212
σp̄+Ps(1)→e−+H̄(2,s) 0.0476 0.0484 0.0581 0.0631

σp̄+Ps(1)→e−+H̄(2,p) 0.0390 0.0484 0.0512 0.0519
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Figure 1: Cross sections in the e−e+p̄ system. Vertical solid lines show the bi-
nary thresholds, vertical dashed lines mark resonances positions. We use the nota-
tion Ps(n1, ℓ1)−H̄(n2, ℓ2) to specify the reaction p̄+ Ps(n1, ℓ1) → e− + H̄(n2, ℓ2) and
similar notations for other reactions.

the rule

log(En − Eth) = An+B, (10)

where A and B are constants and Eth is the threshold energy. We plot the respective
quantities for the p̄ + Ps(1) → e− + H̄(1) and p̄ + Ps(1) → e− + H̄(2) cross section
oscillations near the threshold in panels (c)–(e) in Fig. 3. Clearly, the linear spacing of
log(En−Eth) is nearly perfect in both cases of rearrangement cross sections except for
the last points. The latter probably indicate the range of validity of approximations
made in Ref. [30,31] leading to Eq. (10). As for the p̄+ Ps(2) → e− + H̄(n ≤ 2) cross
section behavior shown in the right panel of Fig. 2, we obviously cannot make such
a quantitative analysis as of the above threshold oscillations. Nevertheless, we can
agree with Ref. [18] that there is an oscillation at the energy close to −0.06194 a.u.,
which was also found earlier in Ref. [32]. It should be noted that the elastic cross
section oscillations for the Ps−p scattering above the Ps(2) threshold were also found
recently in Ref. [33].

3.2 Scattering in e+e−He++ system

The scattering of positron by positive helium ion is an example of the positron–atomic
target scattering in which the asymptotic Coulomb interaction is present in one of
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Figure 2: Antihydrogen formation
cross sections. Black dots are the re-
sults of Ref. [18].

the configurations. There is a number of respective calculations in a wide energy
region [34–36]. However, to the best of our knowledge, there is lack of published
results of calculations in the low-energy region. In this work, by solving the FM
equations, we have calculated cross sections for all possible scattering processes in
the e+e−He++ system in the entire energy range between the energy thresholds of
the He+(1) and He+(4) states, i. e., from −1.9997 a.u. to −0.12496 a.u. with the step in
energy of 0.0007 a.u. In this energy interval, the elastic, excitation and rearrangement
processes leading to the He+(n = 1, 2, 3) and Ps(n = 1) atomic states are possible. As
in the previous case, the accuracy of our calculations guarantees that the uncertainties
of the obtained cross sections are not exceeding 1%.

The calculated 11 of all 49 cross sections are given in Table 2. The energy depen-
dences of the cross sections for the reactions e+ − He+ → e+ − He+,
e+−He+ → He++ −Ps and He++ −Ps → He++ −Ps, He++−Ps → e+−He+ are
displayed in Fig. 4.

Resonance energies in the e+e−He++ system are far lesser-known, there is a num-
ber of disagreements between the published results, see, e. g., Refs. [37–39] and ref-
erences therein. Most of the authors agree that there are two broad resonances at
the energies of −0.371 a.u. and −0.188 a.u. [38] and one narrow resonance slightly
below the positronium ground state formation threshold at −0.250 a.u. [38, 39]. The
positions of these resonances are marked in Fig. 4 by dashed vertical lines (the dashed
vertical line at −0.250 a.u. almost coincides with the vertical line showing the positron-
ium ground state threshold and is not visible). We do not see a usual singular behavior
of the cross sections in the vicinity of the narrow resonance. However, at the same
time, one can see that the e+ + He+(1) → He++ + Ps(1) cross section does not follow
the well-known law of threshold behavior at the Ps(1) threshold at −0.25 a.u. The
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Figure 3: (a), (b) — detailed plots
of the p̄ + Ps(1) → e− + H̄(1)
and p̄+ Ps(1) → e− + H̄(2) cross sec-
tions in the energy region above the
H̄(2) threshold. For these cross sec-
tions, the logarithm of the relative
energy positions of oscillation max-
ima, log(En − Eth), as a function of
their number n are depicted in pan-
els (c)–(e).

cross section should tend to zero linearly as p→ 0 where p is the relative momentum
between the target and the projectile [40], but it grows up to some constant value
instead. This anomalous behavior can be a sign of a resonance. The broad resonances
are not manifested in the cross sections as expected.

To check the existence of the broad resonances, we have used another approach
based on the complex rotation method [41] applied to the Schrödinger equation. We
have found these broad resonances; their positions and widths are given in Table 3
and compared with the results of Ref. [38].

The sharp local minimum is seen again in the He++ +Ps(1) → He++ +Ps(1) cross
section for the direct process with neutral target. As in the previous Subsection, we
associate this minimum with the Ramsauer–Townsend effect.
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Table 2: Scattering cross sections in the e+e−He++ system (energies are given relative to the He+(1) threshold
at −1.9997 a.u.). We use a notation a(b) for a · 10b.

E, a.u. 1.55 1.60 1.65 1.70 1.77 1.80 1.83 1.86

σe++He+(1)→e++He+(1) 0.000855 0.00101 0.00116 0.00133 0.00158 0.00168 0.00178 0.00188
σe++He+(1)→e++He+(2,s) ∼1(-9) ∼1(-8) 2(-7) 6(-7) 2.6(-6) 4.4(-6) 6.9(-6) 1.1(-5)
σe++He+(1)→e++He+(2,p) ∼ 1(-10) ∼1-(8) 3(-7) 2.5(-6) 1.1(-5) 1.8(-5) 2.6(-5) 3.6(-5)
σe++He+(1)→He+++Ps(1) 1(-7) 1(-7) 2(-7) 3(-7)
σHe+++Ps(1)→He+++Ps(1) 20.6 19.6 8.82 3.00
σHe+++Ps(1)→e++He+(2,s) 0.366 0.102 0.0433 0.0199
σHe+++Ps(1)→e++He+(2,p) 0.0944 0.0214 0.00876 0.00584
σe++He+(2,s)→e++He+(2,s) 1.12 3.35 6.64 6.63 5.11 4.59 4.10 3.66
σe++He+(2,p)→e++He+(2,s) 5.34 4.57 2.76 1.35 0.866 0.832 0.820 0.815
σe++He+(3,s)→e++He+(3,s) 9.87 18.4 11.7
σe++He+(3,s)→e++He+(3,p) 15.7 1.62 1.21

Table 3: Energies of broad resonances in the e+e−He++ system and their widths, (Er, Γ) (in a.u.).

Present work (−0.3704, 0.1297) (−0.1857, 0.0395)

[38] (−0.3705, 0.1294) (−0.1856, 0.0393)
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Figure 4: Cross sections in the e−e+He+ system. Vertical solid lines show the bi-
nary thresholds, vertical dashed lines mark resonance positions. We use the notation
Ps(n1, ℓ1)−He+(n2, ℓ2) to specify the reaction He++ + Ps(n1, ℓ1) → e+ + He+(n2, ℓ2)
and similar notations for other reactions.

4 Conclusions

In this paper, detailed calculations of low-energy reactive scattering in the e−e+p̄ and
e+e−He++ systems in the case of zero total orbital momentum have been performed
with the use of the FM equations in the total orbital momentum representation.

The calculated cross sections in the e−e+p̄ system reproduce all known reso-
nant peaks. The Gailitis–Damburg oscillations of the p̄ + Ps(1) → e− + H̄(1) and
p̄+ Ps(1) → e− + H̄(2) cross sections just above the H̄(2) threshold are discovered
and the theory of the energy distribution of the oscillation maxima with respect to
the threshold is verified.

The two known broad resonances [38] in the e+e−He++ system do not contribute
to the cross section. We suggest to explain the anomalous threshold behavior of
the e+ + He+(1) → He++ + Ps(1) cross section by the existence of the narrow
resonance found in Refs. [38, 39].

We have demonstrated that the formalism of FM equations is efficient for calcu-
lating elastic and reactive scattering in three-body atomic systems. The extension of
the current approach to nonzero total orbital momentum case is now in progress.
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Abstract

Chiral effective field theory is being developed into a precision tool for low-
energy nuclear physics. I review the state of the art in the two-nucleon sector,
discuss applications to few-nucleon systems and address challenges that will have
to be addressed over the coming years.
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few-nucleon systems

1 Introduction

Chiral effective field theory (EFT) is widely applied to studies of low-energy structure
and dynamics of nuclear systems. The method relies on the spontaneously broken ap-
proximate SU(2)×SU(2) chiral symmetry of QCD and allows one to compute the
scattering amplitude of pions, the Nambu–Goldstone bosons of the spontaneously
broken axial generators, with themselves and with matter fields via a perturbative
expansion in momenta and quark masses, commonly referred to as the chiral expan-
sion [1]. The appealing features of this method lie in its systematic and universal
nature, which allows one to establish model-independent perturbative relations be-
tween low-energy observables in the Goldstone-boson and single-baryon sectors and
low-energy constants (LECs) of the effective chiral Lagrangian.

When applied to self-bound systems such as atomic nuclei, the method outlined
above has to be modified appropriately to account for the non-perturbative nature
of the problem at hand by resumming certain parts of the scattering amplitude.
According to Weinberg [2], the breakdown of perturbation theory is attributed to the
appearance of time-ordered diagrams, which would be infrared divergent in the limit of
infinitely heavy nucleons and are enhanced relative to their expected chiral order. The
quantum mechanical Schrödinger equation provides a simple and natural framework
to resum such enhanced contributions to the A ≥ 2-nucleon scattering amplitude
as it can be efficiently dealt with using a variety of available ab initio continuum
methods [3–8], see the contributions of Petr Navrátil [9] and James Vary [10], or lattice
simulations [11–13], see the contributions by Ulf-G. Meißner [14] and Dean Lee [15]
for selected highlights and exciting new developments along this line. The problem

Proceedings of the International Conference ‘Nuclear Theory in the Supercomput-
ing Era — 2018’ (NTSE-2018), Daejeon, South Korea, October 29 – November 2,
2018, eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2019, p. 150.
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150



Towards high-precision nuclear forces 151

thus essentially reduces to the derivation of the nuclear forces and currents, defined
in terms of the corresponding irreducible (i. e., non-iterative) parts of the amplitude,
that are not affected by the above-mentioned enhancement and can be worked out
order by order in the chiral expansion. The resulting framework, firmly rooted in
the symmetries of QCD, allows one to derive consistent nuclear forces and currents
and offers a systematically improvable theoretical approach to few- and many-nucleon
systems [16–18].

Contrary to the on-shell scattering amplitudes, the nuclear forces and currents
are scheme-dependent quantities, which are affected by unitary transformations or,
equivalently, by nonlinear redefinitions of the nucleon field operators. Care is there-
fore required to maintain consistency between the two- and many-nucleon forces and
the current operators, see Section 5 for the discussion. The unitary ambiguity in the
resulting nuclear potentials is significantly reduced (but not completely eliminated)
by the requirement of their renormalizability1. Another complication is related to the
regularization of the Schrödinger or Lippmann–Schwinger (LS) equation [19]. Itera-
tions of nuclear potentials in the LS equation generate ultraviolet divergent higher-
order contributions to the amplitude, which cannot be made finite by counterterms
in the truncated potential. One is, therefore, forced to keep the ultraviolet cutoff
Λ finite (of the order of the breakdown scale Λb) [19–21]. As discussed in Section 5,
maintaining consistency between nuclear forces and currents in the presence of a finite
cutoff is a rather nontrivial task starting from the fourth order in the chiral expansion.

In this contribution I will briefly review the current status of the chiral EFT,
discuss a selected application and address the challenges that need to be tackled to
develop this approach into a precision tool beyond the two-nucleon system.

2 Derivation of nuclear forces and currents

As already pointed out in the Introduction, the nuclear forces and currents are iden-
tified with the irreducible parts of the scattering amplitude and can be worked out
using a variety of methods including matching to the S-matrix time-ordered pertur-
bation theory (TOPT) and the method of unitary transformation (UT). The last
approach has been pioneered in the fifties of the last century in the context of pion
field theory [22, 23] and applied to the effective chiral Lagrangian in Refs. [24, 25].
The derivation of nuclear forces is achieved by performing a UT of the effective pion-
nucleon Hamiltonian in the Fock space, which decouples the purely nucleonic subspace
from the rest of the Fock space. The corresponding unitary operator is determined
perturbatively by using the chiral expansion. The method can be formulated utilizing
a diagrammatic language, but the resulting time-ordered-like graphs have a different
meaning than the ones arising in the context of TOPT. The importance of any dia-
gram can be estimated by counting the corresponding power ν of the chiral expansion
parameter Q ∈ {p/Λb, Mπ/Λb}, where Mπ denotes the pion mass and p ∼Mπ are
three-momenta of the nucleons. For connected diagrams contributing to the A-nucleon
potential with B insertions of external classical sources, the chiral dimension ν is given

1Contrary to the on-shell S-matrix, loop contributions to the nuclear forces and currents may
contain ultraviolet divergences which cannot be absorbed into the counterterms of the effective
Lagrangian, see Section 5. When calculating the scattering amplitude, such divergences cancel
against the ones generated by ladder diagrams, which emerge from iterations of the Lippmann–
Schwinger equation.
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(a) (b) (c) (d) (e)

cD

Figure 1: Time-ordered-like diagrams contributing to the two-pion-one-pion-exchange
3NF topology at the fourth order in the chiral expansion (graphs (a)-(d)) along with
the one-pion-exchange-contact contribution to the 3NF at the third order. Solid and
dashed lines refer to nucleons and pions, respectively. Solid dots and the filled circle
denote vertices of dimension ∆ = 0 and ∆ = 1, respectively.

by [2, 26]

ν = −4 −B + 2(A+ L) +
∑

i

Vi∆i , (1)

where L is the number of loops and Vi is the number of vertices of dimension ∆i which
appear in the diagram. The dimension of a vertex with ni nucleon field operators
and di derivatives/Mπ-insertions/insertions of the external classical sources is defined
according to [2] as

∆i = di +
1

2
ni − 2 . (2)

The spontaneously broken chiral symmetry permits only interactions with ∆ ≥ 0, so
that a finite number of diagrams can be drawn at each finite chiral order Qν . Notice
that for actual calculations in the method of UT, it is more convenient to rewrite
Eqs. (1), (2) using different variables as explained in Ref. [27].

As already pointed out above, loop contributions to nuclear potentials can, in
general, not be renormalized. The problem is exemplified in Fig. 1 for the fourth-
order (i. e., N3LO) contribution to the three-nucleon force (3NF) proportional to g6A,
with gA referring to the nucleon axial-vector constant. To obtain a renormalized
expression for the 3NF, the loop integrals should involve only linearly divergent pieces,
which can be cancelled by the counterterm in the LEC cD. This is only possible if
the pion exchange between the pair of the first two nucleons and the last nucleon in
diagrams (a)-(d) factorizes out in order to match the expression for diagram (e) at
the third chiral order (i. e., N2LO). However, evaluating the corresponding diagrams
in TOPT, one finds that the pion exchange does, actually, not factorize out. To
ensure factorization of the one-pion exchange and enable renormalizability of the
3NF2, a broad class of additional unitary transformations in the Fock space has been
considered in Refs. [26, 27]. Other types of contributions to the 3NF at N3LO and
at the fifth order (N4LO) in the chiral expansion and to the current operators show
similar problems with renormalizability. So far, it was always possible to maintain
renormalizability of nuclear forces and current operators, calculated using dimensional
regularization (DR), via a suitable choice of additional unitary transformations, see
Refs. [27–30] for more details.

Figure 2 visualizes the current state-of-the-art in the derivation of the nuclear
Hamiltonian using the heavy-baryon formulation of chiral perturbation theory with

2The situation becomes more complicated if cutoff regularization is used instead of dimensional
regularization, see the discussion in Section 5.
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Figure 2: Chiral expansion of the nuclear forces. Solid and dashed lines refer to
nucleons and pions. Solid dots, filled circles, filled squares, crossed squares and open
squares denotes vertices from the effective chiral Lagrangian of dimension ∆ = 0, 1,
2, 3 and 4, respectively.

pions and nucleons as the only explicit degrees of freedom and utilizing the rules of
naive dimensional analysis for few-nucleon contact operators, see Refs. [31–33] for
alternative proposals. We remind the reader that all diagrams shown in this and
following figures correspond to the irreducible parts of the scattering amplitude and
to be understood as series of all possible time-ordered-like graphs for a given topology.
As already explained before, the precise meaning of these diagrams and the resulting
contributions to the nuclear forces are scheme dependent.

The nucleon-nucleon potential has been calculated to the fifth order (N4LO) in the
chiral expansion using the dimensional regularization [24,34–41]. The expressions for
the leading and subleading 3NF can be found in Refs. [42–46] and [26,27], respectively.
Apart from the contributions involving NN contact interactions, which still have to
be worked out, the N4LO terms in the 3NF can be found in Refs. [29, 47, 48]. The
leading contribution to the four-nucleon force (4NF) appears at N3LO and has been
derived in Refs. [26,27]. It is important to emphasize that the long-range parts of the
nuclear forces are completely determined by the spontaneously broken approximate
chiral symmetry of QCD along with the experimental and/or empirical information
on the pion-nucleon system needed to determined the relevant LECs in the effective
Lagrangian. In this sense, the long-range contributions to the nuclear forces and
currents can be regarded as parameter-free predictions. Given that the chiral expan-
sion of the NN contact operators in the isospin limit contains only contributions at
orders Q2n, n = 0, 1, 2, ..., the N2LO and the isospin-invariant N4LO corrections to
the NN potential are parameter-free. This also holds true for the N3LO contribu-
tions to the 3NF and 4NF. For calculations utilizing a formulation of chiral EFT with
explicit ∆(1232) degrees of freedom see Refs. [49–55].
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The chiral power counting offers a natural qualitative explanation of the observed
hierarchy of the nuclear forces, and the actual size of the various contributions to
observables generally agrees well with the expectations based on naive dimensional
analysis (NDA) underlying the chiral power counting. For example, the kinetic energy
of the deuteron can naively be expected of the order of Ekin ∼ M2

π/mN ∼ 20 MeV,
since the pion mass is the only explicit soft scale in the problem. This compares well
with the actual findings of Ekin ≃ 12 ... 23 MeV for the LO ... N4LO chiral potentials
of Ref. [56,57] and Ekin ≃ 12 ... 16 MeV for the LO ... N4LO+3 potentials of Ref. [58].
For comparison, for the Argonne AV18 potential [60], one finds Ekin ≃ 19 MeV. For
3H, one can use the following simple considerations to estimate the size of the 3NF.
Using phenomenological potentials, one typically finds

∣∣〈VNN 〉
∣∣
3H

∼ 50 MeV. Thus,

according to the power counting, the 3NF contribution to the 3H binding energy may
be expected of the order of Q3

∣∣〈VNN 〉
∣∣
3H

. With Q ∼Mπ/Λb and Λb ≃ 600 MeV [56],

one expects the 3NF to contribute about 0.013
∣∣〈VNN 〉

∣∣
3H

∼ 650 keV to the triton

binding energy. This matches well with the observed typical underbinding of 3H in
calculations based on the NN forces only [61,62]. Similar estimations may be carried
out for the 4NF, for other light nuclei and for nucleon-deuteron scattering observables.
In the latter case, assuming Q = max{p/Λb, Mπ/Λb}, one expects the 3NF effects
to be small at low energy, but become more important at higher energies. Again,
this expectation is in line with the observed discrepancies between nucleon-deuteron
scattering data and calculations based on the NN interactions only [61, 62]. Notice,
however, that the observed fine tuned nature of the nuclear force, resulting, e. g.,
in a small value of the deuteron binding energy of Eb,2H ≃ 2.224 MeV, cannot be
explained by NDA which actually suggests Eb,2H ∼ Ekin,2H ∼

∣∣〈VNN 〉
∣∣
2H

. On the

other hand, one observes 〈VNN 〉
∣∣
2H

≃ −Ekin,2H, so that Eb,2H ≪
∣∣〈VNN 〉

∣∣
2H

. Similar
fine tuning also persists for light nuclei.

Nuclear electromagnetic and axial currents have been worked out in chiral EFT
completely up through N3LO. Figure 3 summarizes the contributions to the
electromagnetic charge and current operators derived using the method of UT in
Refs. [28, 63, 64] and employing DR for loop integrals. The resulting expressions are,
by construction, off-shell consistent with the nuclear forces derived by our group us-
ing the same approach. Again, the hierarchy of the A-nucleon contributions to the
charge and current operators suggested by the chiral power counting is fully in line
with empirical findings based on explicit calculations, which show the dominance of
single-nucleon contributions for most of the low-energy observables [65, 66]. In par-
ticular, the charge operator is strongly dominated by the one-nucleon (1N) term with
the “meson-exchange” contributions being suppressed by four powers of the expansion
parameter. On the other hand, the power counting suggests that the three-nucleon
(3N) charge operator is as important as the two-body one, which can be tested, e. g.,
by calculating elastic form factors (FFs) of light nuclei. Notice further that up to
N3LO, the charge operator does not involve any unknown LEC. It is furthermore
important to emphasize that the single-nucleon contributions to both the charge and
current operators can be expressed in terms of the electromagnetic FFs of the nu-
cleon. Using the available empirical information on the nucleon FFs then allows one
to avoid relying on their strict chiral expansion known to converge slowly due to large
contributions of vector mesons [67, 68].

3The “+” sign indicates that we have included four contact interactions in F waves from N5LO
in order to reproduce several sets of very precisely measured proton-proton data at higher energies.
The same contact interactions are also included in the N4LO potentials of Ref. [59].
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Single-nucleon Two-nucleon Three-nucleon

Q-3

Q-1

Q0

Q1
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and L1,2 

depend on CT 

(known)

parameter-free

depend on CT 

(known)

Figure 3: Chiral expansion of the nuclear electromagnetic currents. Red (blue) dia-
grams show the contributions to the charge (current) operators. Wavy lines refer to
photons. For remaining notations see Fig. 2.

The leading contributions to the two-nucleon (2N) current operator emerge from
a single pion exchange. The corrections at N3LO include one-loop contributions to
the one- and two-pion exchange as well as short-range operators. The third-order
pion-nucleon LECs d18 and d22 can be determined from the Goldberger–Treiman dis-
crepancy and the axial radius of the nucleon, while the d9,21,22 contribute to the
charged pion photoproduction and the radiative capture reactions [69, 70]. For the
explicit form of the pion-nucleon Lagrangian see Ref. [71]. The short-range 2N opera-
tors depend, apart from the LECs Ci, which govern the short-range NN potential at
N2LO, also on two new LECs L1,2, which can be determined, e. g., from the deuteron
magnetic moment and the cross section in the process np→ dγ [72].

Notice that the expressions for the N3LO contributions to the electromagnetic
charge and current operators derived in the method of UT in Refs. [28, 63, 64] differ
from the ones calculated by Pastore et al. using the TOPT [73–75]. The reader
is referred to Ref. [76] for a comprehensive review article, which also addresses the
differences between the two approaches.

Recently, these studies have been extended to derive the nuclear axial and pseu-
doscalar currents up to N3LO using the method of UT [30], see Fig. 4. Interestingly,
one observes exactly the opposite pattern as compared to the electromagnetic oper-
ators with the dominant contributions to the 1N current, 2N charge and 3N current
operators appearing at LO, NLO and N3LO, respectively. In a complete analogy
with the electromagnetic currents, the 1N contributions are expressible in terms of
the corresponding FFs of the nucleon. The 2N and 3N contributions to the current
density are parameter-free at this order, while the long-range one-loop corrections to



156 E. Epelbaum

Single-nucleon Two-nucleon Three-nucleon

Q-3

Q-1

Q0

Q1

depend on d2,5,6,15,23 

depend on 
z1,2,3,4

parameter-free

parameter-free

parameter-free

depend on CT 

(known)

depend on CT 

(known)

Figure 4: Chiral expansion of the nuclear axial currents. Red (blue) diagrams show
the contributions to the charge (current) operators. Wavy lines refer to external
axial-vector sources. For remaining notations see Fig. 2.

the 2N charge density depend on a number of poorly known LECs di. In addition,
there are four new short-range operators contributing to the 2N charge operator at
N3LO. Again, we emphasize that our results deviate from the (incomplete) calcula-
tion by Baroni et al. [77] using TOPT and refer the reader to Ref. [76] for a detailed
comparison.

3 High-precision chiral two-nucleon potentials

In the previous Section, I briefly reviewed the state of the art in the derivation of
nuclear forces and currents. These calculations are carried out using DR to reg-
ularize divergent loop integrals. As pointed out in the Introduction, the derived
nuclear potentials and current operators are singular at short distances and need
to be regularized. To the best of my knowledge, it is not known how to sub-
tract all ultraviolet divergences arising from iterations of the NN potential in the
Lippmann–Schwinger equation. Thus, the cutoff Λ has to be kept finite of the or-
der of the breakdown scale Λb [19–21]. In Ref. [56], this scale was estimated to
be Λb ∼ 600 MeV. This was confirmed in the Bayesian analysis of Ref. [78], which
found that it may even be somewhat larger, see Refs. [79,80] for a related recent work
along this line. In practice, even lower values of the cutoff Λ are preferred in order
to avoid the appearance of deeply bound states, which would complicate the numeri-
cal treatment of the nuclear A-body problem, and to keep the potentials sufficiently
soft in order to facilitate the convergence of many-body methods. It is, therefore,
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important to use a regulator, which minimizes the amount of finite-cutoff artifacts.
In Ref. [56], we argued that a local regularization of the pion-exchange contribu-
tions to the nuclear forces is advantageous compared to the nonlocal regulators used,
e. g., in Refs. [25, 81, 82] as it maintains the analytic properties of the potential and
does not induce long-range artifacts, see also Refs. [54, 83] for a related discussion.
In Refs. [56, 57], a coordinate-space cutoff was employed to regularize the one- and
two-pion exchange contributions. However, the implementation of such a regulator
in coordinate space has turned out to be technically difficult for the 3NF and current
operators. Thus, in Ref. [58], a momentum-space version of the local regulator was
introduced by replacing the static propagators of pions exchanged between different
nucleons via (~q 2 + M2

π)−1 −→ (~q 2 + M2
π)−1 exp

[
−(~q 2 + M2

π)/Λ2
]
, see Ref. [84] for

a similar approach. Obviously, the employed regulator does not induce long-range
artifacts at any finite order in the 1/Λ-expansion. Notice further that the long-range
part of the two-pion exchange NN potential, derived using the DR, does not need to
be recalculated using a new regulator. As shown in Ref. [58], the regularization of the
two-pion exchange can be easily accounted for using the spectral-function representa-
tion. For example, for the central two-pion exchange potential V (q), the regularization
is achieved via

V (q) =
2

π

∫ ∞

2Mπ

µdµ
ρ(µ)

~q 2 + µ2
+ ... −→ 2

π

∫ ∞

2Mπ

µdµ
ρ(µ)

~q 2 + µ2
e−

~q 2+µ2

2Λ2 + ... , (3)

where ρ(µ) is the corresponding spectral function and the ellipses refer to the contri-
butions polynomial in ~q 2 and Mπ. In addition, a final number of (locally regularized)
subtraction terms allowed by the power counting are taken into account to ensure
that the corresponding long-range potentials and derivatives thereof vanish at the
origin. For the contact NN interactions, a simple non-local cutoff of the Gaussian
type exp

[
−(~p 2 + ~p ′2)/Λ2

]
with ~p and ~p ′ denoting the initial and final center-of-mass

momenta was employed. Using this regularization scheme and adopting the pion-
nucleon LECs from the recent analysis in the framework of the Roy–Steiner equa-
tions [85,86], a family of new chiral NN potentials from LO to N4LO+was presented
in Ref. [58] for the cutoff values Λ =

{
350, 400, 450, 500, 550} MeV. The resulting

potentials at N4LO+ are currently the most precise chiral EFT NN potentials on the
market. For the medium cutoff choice of Λ = 450 MeV, the description of the neutron-
proton and proton-proton scattering data from the 2013 Granada database [87] below
Elab = 300 MeV is essentially perfect at N4LO+ as witnessed by the corresponding χ2

values of χ2/datum = 1.06 and 1.00, respectively. The N4LO+ potentials of Ref. [58]
thus qualify to be regarded as partial wave analysis (PWA). Distinct features of these
potentials in comparison with the other available chiral EFT interactions are summa-
rized in Ref. [88].

As a representative example, we show in Fig. 5 the description of the neutron-
proton scattering observables at Elab ≃ 143 MeV at various orders of the chiral
expansion. The truncation bands have been generated using the algorithm formulated
in Ref. [56]. For the application of the Bayesian approach for the quantification of
truncation errors to the potentials of Ref. [58], see Ref. [88]. One observes excellent
convergence of the chiral expansion and a very good agreement with the Nijmegen
PWA. These conclusions also hold true for other scattering observables and deuteron
properties.
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Figure 5: Neutron-proton scattering observables at Elab = 143 MeV calculated up to
N4LO+ using the chiral NN potentials of Ref. [58] for the cutoff Λ = 450 MeV. Data
for the cross section are at Elab = 142.8 MeV and are taken from Ref. [89] and those
for the analyzing power Ay are from Ref. [90]. Bands show the estimated truncation
error while open circles are the results of the Nijmegen PWA [91].

4 Three-nucleon force

The novel semi-local chiral NN potentials of Refs. [56–58] have already been explored
in nucleon-deuteron scattering and selected nuclei [61,62,92–94]. By calculating var-
ious few-nucleon observables using the NN interactions only, a clear discrepancies
between experimental data and theoretical results well outside the range of the esti-
mated uncertainties were observed. The magnitude of these discrepancies appears to
be consistent with the expected size of the 3NF, which start contributing at N2LO,
see Fig. 2.

To perform complete calculations at N2LO and beyond one needs to include the
3NF (and 4NF starting from N3LO). These have to be regularized in a way consis-
tent with the NN potentials. The precise meaning of the consistency in this context
will be addressed in the next section. In Ref. [95], we performed calculations of the
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Figure 6: Left: Determination of the LEC cD from various Nd scattering observables
as explained in the text for the coordinate-space cutoff R = 0.9 fm. The smaller (blue)
error bars correspond to the experimental uncertainty while the larger (orange) error
bars also take into account the truncation error at N2LO. Right: Nd cross section in
the minimum region (θ = 130◦) at EN = 70 MeV as function of the LEC cD. For
each cD value, the LEC cE is adjusted to the 3H binding energy. Dotted lines show
the statistical uncertainty of the experimental data from Ref. [99], while the yellow
band also takes into account the quoted systematic uncertainty of 2%.

nucleon-deuteron (Nd) scattering and of the ground and low-lying excited states of
light nuclei up to A = 16 up through N2LO using the semilocal coordinate-space reg-
ularized NN potentials of Refs. [56] together with the 3NF regularized in the same
way. Notice that the Faddeev equations are usually solved in the partial wave basis.
Partial wave decomposition of arbitrary 3NFs can be accomplished numerically using
the machinery developed in Refs. [96,97]. The leading 3NF at N2LO depends on two
LECs, cD and cE , which cannot be determined in the NN system. It is customary to
tune the short-range part of the 3NF in such a way that the 3H and/or 3He binding
energies (BEs) are reproduced. As for the second constraint, different options have
been explored including the neutron-deuteron spin-1/2 scattering length 2a, the BE
and/or radius of the α-particle, Nd scattering observables, selected properties of light
and medium-mass nuclei, equation of state for symmetric nuclear matter; see Ref. [98]
for a review. In Ref. [95], we have explored the possibility to determine both LECs
entirely from the three-nucleon system. Specifically, we used the triton BE to express
cE as a function of cD. To fix the cD value, a range of the available differential and
total cross section data in elastic Nd scattering and the doublet scattering length
were considered. Notice that the 3NF is well known to have a large impact on the
differential cross section in the minimum region (at not too low energies) [3]. Taking
into account the estimated theoretical uncertainty from the truncation of the chiral
expansion, very precise experimental data of Ref. [99] for the proton-deuteron differ-
ential cross section at EN = 70 MeV were found to impose the strongest constraint
on the cD value as visualized in Fig. 6. It is important to emphasize that contrary to
the scattering length 2a and the 4He BE, we do not observe any correlations between
the triton BE and the cross section minimum in elastic Nd scattering at the consid-
ered energies. In particular, we found that a variation of the 3H BE used in the fit
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effects the value of cE but has almost no effect on the value of cD. Having determined
the LECs cD and cE as described above, the resulting nuclear Hamiltonian was used
to calculate selected Nd scattering observables and low-lying states in nuclei up to
A = 16. The inclusion of the 3NF was found to improve the agreement with the data
for most of the considered observables.

While these results are quite promising, the theoretical uncertainty of the N2LO
approximation is still fairly large [95]. At higher chiral orders, the estimated trunca-
tion errors are, however, expected to become significantly smaller than the observed
deviations between the experimental data and theoretical calculations. This is espe-
cially true for the Nd scattering observables at intermediate energies, see Ref. [61,62]
for examples. Notice that the Nd scattering observables are known to be not very
sensitive to the off-shell behavior of NN interactions as shown by Faddeev calcula-
tions using a variety of essentially phase-equivalent, high-precision phenomenological
potentials [3]. This feature persists for the high-precision chiral NN potentials at
N4LO+. The large discrepancies between the theory and data for spin observables
in Nd scattering [100], therefore, seem to be universal and should presumably be
attributed to the deficiencies of the available 3NF models. The 3NF effects at N2LO
appear to be qualitatively similar to the ones of the phenomenological models such as
the Tucson–Melbourne [101] or Urbana IX [102] 3NFs and are insufficient to resolve
the above mentioned discrepancies. The solution of the long-standing 3NF challenge
is therefore likely to emerge from corrections to the 3NF beyond N2LO. Based on the
experience in the NN sector [58], the description of Nd scattering data will likely
require pushing the chiral expansion to (at least) N4LO.

5 Towards consistent regularization of nuclear forces
and currents

To take into account the chiral 3NF in few-body calculations, the resulting expres-
sions, derived using DR as discussed in Section 2, have to be regularized in the way
consistent with the NN force. As will be explained below, this poses a nontrivial
problem starting from N3LO, where the first loop contributions appear in the 3NF.

As already pointed out above, nuclear potentials and currents are not uniquely
defined due to inherent unitary ambiguities. Off-shell behaviors of the 2NF and 3NF
must be consistent in order to ensure that iterations of the Lippmann–Schwinger
(or Faddeev) equations reproduce the corresponding on-shell contributions to the
S-matrix (up to higher-order corrections), as exemplified in Fig. 7 for one particular
contribution to the 3N scattering amplitude. As already mentioned before, all ex-
pressions for the nuclear forces and current operators reviewed in Section 2, which
are derived using the method of UT and employing DR to regularize the divergent
loop integrals, are consistent with each other provided one also uses DR to regular-
ize the loops from iterations of the integral equation, see, e. g., the first diagram on
the right-hand side of the equation in Fig. 7. However, in practice, regularization of
the A-body Schrödinger equation in the context of nuclear chiral EFT is achieved by
introducing a cutoff rather than by using DR. This raises an important question of
whether the usage of nuclear potentials, derived in DR and subsequently regularized
with a cutoff, still yields results which are consistent in the above-mentioned sense. It
is easy to see that this is, generally, not the case by looking at the example shown in
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Figure 7: On-shell amplitude from the one-pion-two-pion-exchange Feynman diagram
(left) is represented in terms of iterations of the Faddeev equation (right). Gray-
shaded rectangles visualize the corresponding two- and three-nucleon potentials.

Fig. 7. The expressions for the two-pion-exchange 3NF proportional to g2A/mN in the
second diagram are given in Eqs. (4.9)–(4.11) of Ref. [46], while the expression for the
two-pion-one-pion exchange 3NF proportional to g4A in the last diagram, evaluated in
DR, can be found in Eqs. (2.16)–(2.20) of Ref. [45]. The one-pion exchange potential
regularized with a local momentum-space cutoff discussed in Section 3 is given in
Ref. [58]. Using the same regulator for the two-pion exchange 3NF, one finds that

the V 1π
2N G0 V

2π, 1/m
3N contribution in Fig. 7 contains linear divergent terms of the kind

∼ Λ
qi1q

j
3

~q 2
3 +M2

π

, ∼ Λ
qi3q

j
3

~q 2
3 +M2

π

. (4)

While the last divergence can be absorbed into the LEC cD, the first divergent term
violates the chiral symmetry, since it corresponds to a derivative-less coupling of
the exchanged pion. No such chiral-symmetry-breaking contribution appears in the
3NF at N2LO. On the other hand, the Feynman diagram on the left-hand-side of the
equation in Fig. 7 must, of course, be renormalizable not only in the DR but also using
the cutoff regularization (provided it respects the chiral symmetry). The issue with
the renormalization on the right-hand side of this equation is actually caused by using
different regularization schemes when calculating the reducible (i. e., iterative) and
irreducible contributions to the amplitude. Re-calculating V 2π−1π

3N using the cutoff
regularization instead of DR yields a linearly-divergent contribution, which cancels
exactly the problematic divergence given by the first term in Eq. (4), and restores the
renormalizability of the scattering amplitude (and the consistency). This example
shows that a naive cutoff regularization of the 3NFs, derived using DR, is, in fact,
inconsistent starting from N3LO. Similar problems appear in calculations involving
exchange currents, see Ref. [103] for the discussion and an explicit example.

It is important to emphasize that the above-mentioned problems do not affect
calculations in the NN sector (for the physical value of the quark masses). This is
because the chiral symmetry does not impose constraints on the momentum depen-
dence of the NN contact interactions. It is, therefore, always possible to absorb all
appearing ultraviolet divergences into a redefinition of the corresponding LECs. This
is different for the contact interactions involving pion fields, which are indeed strongly
constrained by the spontaneously broken chiral symmetry of QCD.
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Last but not least, it is important to keep in mind that introducing a cutoff in a
way compatible with the chiral and gauge symmetries is a rather nontrivial problem.
The so-called higher-derivative regularization introduced by Slavnov in [104] provides
one a possibility to implement a cutoff in the chirally invariant fashion already at the
level of the effective Lagrangian, see Refs. [105–107] for applications in the context of
chiral EFT.

6 Summary

There have been a remarkable progress in pushing the chiral EFT into a precision
tool. This theoretically well-founded approach is firmly rooted in the symmetries of
QCD and their breaking pattern. It allows one to address various low-energy hadronic
reactions involving pions, nucleons and external sources in a systematically improvable
fashion within a unified framework, thus putting nuclear physics onto a solid basis.

In this contribution, I focused mainly on the applications of chiral EFT in the few-
nucleon sector. During the past two and a half decades, two-nucleon forces have been
worked out completely up through N4LO while the expressions for the 3NF, 4NF as
well as the nuclear electromagnetic and axial currents are currently available at N3LO.
The last generation chiral NN potentials of Refs. [58, 59] benefit from the recent
analysis of pion-nucleon scattering in the framework of the Roy–Steiner equation [85],
which allows one to reconstruct the long-range part of the nuclear force in a parameter-
free way. The resulting N4LO+ potentials of Ref. [58] reach the same or even better
quality in reproducing the NN scattering data below the pion production threshold
as the phenomenological high-precision potentials, but have ∼40% less adjustable
parameters. This reduction signifies the importance of the two-pion exchange, which
is completely determined by the spontaneous chiral symmetry of QCD along with the
empirical information on the pion-nucleon system. Another important development
concerns establishing a simple and reliable approach for estimating truncation errors
[56,57,78–80], which usually dominate the error budget in chiral EFT, and exploring
the other sources of uncertainties [58, 108, 109].

These developments in the NN sector provide a solid basis for applications to
heavier systems and/or processes involving electroweak probes. In contrast to the
NN force, the 3NFs are still poorly understood, and large discrepancies between the
theory and data in the three-nucleon continuum pose a long-standing challenge in
nuclear physics [100]. While the leading 3NF at N2LO has already been extensively
investigated in Nd scattering and nuclear structure calculations and demonstrated to
yield promising results, it is certainly insufficient to resolve the observed discrepan-
cies. To include higher-order contributions to the 3NF (and the nuclear electroweak
currents beyond N2LO), one needs to introduce a regulator in a way consistent with
the 2NF, which poses a nontrivial problem starting from N3LO. Work along these
lines is in progress. Another challenge that will have to be overcome is the determi-
nation of the LECs accompanying short-range contributions of the 3NF at N4LO, see
Ref. [110] for an exploratory study.
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[63] S. Kölling, E. Epelbaum, H. Krebs and U.-G. Meißner, Phys. Rev. C 80, 045502
(2009).

[64] H. Krebs, E. Epelbaum and U.-G. Meißner, Few-Body Syst. 60, 31 (2019).

[65] H. Arenhovel and M. Sanzone, Few-Body Syst. Suppl. 3, 1 (1991).

[66] J. Golak et al., Phys. Rep. 415, 89 (2005).

[67] B. Kubis and U.-G. Meißner, Nucl. Phys. A 679, 698 (2001).

[68] M. R. Schindler, J. Gegelia and S. Scherer, Eur. Phys. J. A 26, 1 (2005).

[69] H. W. Fearing, T. R. Hemmert, R. Lewis and C. Unkmeir, Phys. Rev. C 62,
054006 (2000).

[70] A. Gasparyan and M. F. M. Lutz, Nucl. Phys. A 848, 126 (2010).

[71] N. Fettes, U.-G. Meißner, M. Mojzis and S. Steininger, Ann. Phys. (NY) 283,
273 (2000); Erratum: ibid. 288, 249 (2001).

[72] J. W. Chen, G. Rupak and M. J. Savage, Nucl. Phys. A 653, 386 (1999).



166 E. Epelbaum

[73] S. Pastore, R. Schiavilla and J. L. Goity, Phys. Rev. C 78, 064002 (2008).

[74] S. Pastore et al., Phys. Rev. C 80, 034004 (2009).

[75] S. Pastore, L. Girlanda, R. Schiavilla and M. Viviani, Phys. Rev. C 84, 024001
(2011).

[76] H. Krebs, Nuclear currents in chiral effective field theory, to be published in Eur.
Phys. J. A.

[77] A. Baroni et al., Phys. Rev. C 93, 015501 (2016); Erratum: ibid. 93, 049902
(2016) and ibid. 95, 059901 (2017).

[78] R. J. Furnstahl, N. Klco, D. R. Phillips and S. Wesolowski, Phys. Rev. C 92,
024005 (2015).

[79] J. A. Melendez, S. Wesolowski and R. J. Furnstahl, Phys. Rev. C 96, 024003
(2017).

[80] S. Wesolowski, R. J. Furnstahl, J. A. Melendez and D. R. Phillips, J. Phys. G
46, 045102 (2019).
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Abstract

We present No-Core Full Configuration results for the ground state energies
of all particle-stable p-shell nuclei, as well as the excitation energies of more than
40 narrow states, excluding isobaric analog states. We used the chiral LENPIC
nucleon-nucleon plus three-nucleon interaction at N2LO with semi-local coordi-
nate space regulators, and also the phenomenological Daejeon16 nucleon-nucleon
potential. With simple exponential extrapolations of the total energies of each
state, binding energies and spectra are found to be in good agreement with ex-
periment. Both interactions produce a trend towards some overbinding of nuclei
at the upper end of the p-shell.

Keywords: Ab initio nuclear structure; binding energies; spectra

1 Introduction

Recent advances in models of the strong internucleon interactions and in many-body
methods to solve, with high precision, the properties of light nuclei have opened new
frontiers of fundamental research opportunities. Extensive efforts are underway to
continue improving the effective interactions between nucleons based on the strong
interactions of QCD and to incorporate improved electroweak operators to better
understand the physics of the standard model in a data rich domain. These efforts are
also building a foundation for searching for new laws of physics that may be revealed,
for example, in experiments seeking to measure neutrinoless double-beta decay. We
report here on results for light nuclei that, with their quantified uncertainties, indicate
that highly accurate descriptions of the spectroscopy of light nuclei, which provide
good agreement with experiment, are becoming available.

We follow an established approach to solve the non-relativistic quantum many-
body problem of the structure of light nuclei with realistic strong interactions. The
method we adopt is called the No-Core Full Configuration (NCFC) approach [1] that
is based on the No-Core Shell Model (NCSM) [2, 3] with the improvement of extrap-
olating finite-basis results to the continuum limit. Both the NCSM and the NCFC

Proceedings of the International Conference ‘Nuclear Theory in the Supercomput-
ing Era — 2018’ (NTSE-2018), Daejeon, South Korea, October 29 – November 2,
2018, eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2019, p. 168.
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belong to a class of approaches grouped under No-Core Configuration Interaction
(NCCI) methods.

For our internucleon interactions, we select two recently developed models. On
the one hand, we select the Low Energy Nuclear Physics International Collabora-
tion (LENPIC) [4] nucleon-nucleon (NN) plus three-nucleon (3N) interactions de-
veloped within the framework of chiral effect field theory (χEFT) [5] through Next-
to-Next-to Leading Order (N2LO) [6–9]. These interactions were recently shown to
produce good 3N scattering properties as well as good binding energies of light nu-
clei [10–12]. On the other hand, we adopt the Daejeon16 NN interaction [13] which
is developed from a χEFT approach through Next-to-Next-to-Next-to Leading Order
(N3LO) [14–16] followed by additional two-body unitary phase-equivalent transfor-
mations (PET) [17–20] to reduce its high momentum components and to adjust its
off-shell properties to provide good descriptions of selected properties of light nu-
clei [13].

Our goal here is to compare NCFC results of these two internucleon interactions
with each other and with experiment. We focus on the energies of the ground and
narrow excited states of the p-shell nuclei, including states of both parities. Our
NCFC results show that, within our extrapolation uncertainties, both internucleon
interactions provide good descriptions of the energies of these light nuclei with a
noticeable tendency to overbind nuclei at the upper end of the p-shell. Some of the
LENPIC results presented here have appeared in Refs. [12, 21].

2 Ab initio nuclear structure calculations

A successful theory of atomic nuclei involves two major challenges. The first is to
accurately define the internucleon interactions so that results for NN , 3N and 4N
systems, which can be solved to high accuracy, are in good agreement with experimen-
tal data. The second is to develop accurate computational many-body methods to
enable calculations of properties of nuclei with atomic number A ≥ 5. We report here
on particular combinations of these two elements that provide encouraging results for
light nuclei. We begin with a brief description of the NCFC approach.

2.1 No-Core Full Configuration approach

In non-relativistic quantum mechanics, we define the dynamics through the many-
body Hamiltonian which consists of sums over the relative kinetic energy between
pairs of nucleons, the pairwise interactions, three-body interactions, etc., as

Ĥ =
∑

i<j

(~pi − ~pj)
2

2mA
+
∑

i<j

Vij +
∑

i<j<k

Vijk + ... (1)

where m is the nucleon mass taken here to be equal for protons and neutrons. We
then seek the solutions of the many-body eigenvalue equation

ĤΨ(~r1, ... , ~rA) = EΨ(~r1, ... , ~rA) (2)

which yields the eigenenergies E and the wave functions Ψ for each state.
In the NCCI nuclear structure calculations, the wave function Ψ of a nucleus

is expanded in an A-body basis of Slater determinants Φk of single-particle wave
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functions φnljm(~r). Here, n (l) is the radial (orbital) quantum number, j is the total
angular momentum resulting from orbital motion coupled to the intrinsic nucleon
spin, and m is the projection of the total angular momentum on the z-axis, the
axis of quantization. We construct the Slater determinant basis from separate Slater
determinants for the neutrons and the protons in order to retain charge dependence
in the basis.

The Hamiltonian Ĥ is then evaluated in this Slater determinant basis which results
in a Hamiltonian matrix eigenvalue problem. Beyond A = 4 with NN plus 3N
interactions, the Hamiltonian matrix becomes increasingly sparse as A grows and/or
the basis dimension increases. Upon diagonalization, the resulting eigenvalues can be
compared with the experimental total binding energies of nuclear states. The resulting
wave functions are then employed to evaluate additional observables for comparison
with experiments. Electromagnetic moments and transitions, along with weak decays,
are among the popular applications of these wave functions.

Following our common practice, we adopt a harmonic oscillator (HO) basis with
energy parameter ~ω for the single-particle wave functions. We truncate the complete
(infinite-dimensional) basis with a cutoff in the total number of HO quanta: the basis
is limited to Slater determinants with

∑
ANi ≤ N0 + Nmax, with N0 the minimal

number of quanta for that nucleus (the sum over the HO single-particle quanta 2n+ l
of the occupied orbitals) and Nmax the truncation parameter. Even (odd) values
of Nmax provide results for natural (unnatural) parity. Numerical convergence toward
the exact results for a given Hamiltonian is obtained with increasing Nmax, and is
marked by approximate Nmax and ~ω independence. In the NCFC approach we use
extrapolations to estimate the binding energy in the complete (infinite-dimensional)
space based on a sequence of calculations in finite bases [1, 22–27].

Here, we solve for the eigenvalues of a given nucleus in a sequence of basis spaces
defined by the cutoff Nmax and as a function of ~ω. Subsequently, we use a simple
three-parameter exponential form to extrapolate results at a sequence of three Nmax

values at fixed ~ω

E(Nmax) ≈ E∞ + a exp (−bNmax) (3)

around the variational minimum in ~ω. We employ the sensitivity of the extrapolant
to the highest Nmax value and its sensitivity to ~ω to estimate the extrapolation
uncertainty for each state’s energy, as detailed below where we present our results.

The rate of convergence depends both on the nucleus and on the interaction. For
typical realistic interactions, the dimension of the matrix needed to reach a sufficient
level of convergence is in the billions, and the number of nonzero matrix elements is
in the tens of trillions, which saturates available storage on current High-Performance
Computing facilities. All NCFC calculations presented here were performed on the
Cray XC30 Edison and Cray XC40 Cori at NERSC and the IBM BG/Q Mira at
Argonne National Laboratory, using the code MFDn [28, 29].

2.2 Chiral EFT NN + 3N interaction

The χEFT allows us to derive internucleon interactions (and the corresponding elec-
troweak current operators) in a systematic way [5–9,14–16]. The χEFT expansion is
not unique: e. g., different choices for the degrees of freedom, such as whether or not
to include ∆ isobars explicitly, lead to different χEFT interactions. In addition, there
is freedom to choose the functional form of regulators.
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We adopt the χEFT interactions of the LENPIC collaboration [10–12] which have
been developed to describe NN and nucleon-deuteron scattering and have been ap-
plied to the structure of light-mass and medium-mass nuclei. Specifically, we adopt the
semi-local coordinate-space regularized χEFT potentials of Refs. [8, 9]. The Leading
Order (LO) and Next-to-Leading Order (NLO) contributions are given by NN -only
potentials while 3N interactions appear first at N2LO in the χEFT expansion [6,7,16].
Four-nucleon forces are even more suppressed and start contributing at N3LO. The
χEFT power counting thus provides a natural explanation of the observed hierarchy
of nuclear forces.

The Low-Energy Constants (LECs) in the NN -only potentials of Refs. [8,9] have
been fitted to NN scattering data, without any input from nuclei with A > 2. The 3N
interactions at N2LO involve two LECs which govern the strength of the one-pion-
exchange-contact term and purely contact 3N interaction contributions. Convention-
ally, these LECs are expressed in terms of two dimensionless parameters cD and cE .
We follow the common practice [6, 30–32] and use the 3H binding energy as one of
the observables to provide a correlation between cD and cE .

A wide range of observables has been considered in the literature to constrain
the remaining LEC. In Ref. [12] different ways to fix this LEC in the 3-nucleon sec-
tor were explored, and it was shown that it can be reliably determined from the
minimum in the differential cross section in elastic nucleon-deuteron scattering at in-
termediate energies. This allows us to make parameter-free calculations for A ≥ 4
nuclei. Here, we present results obtained with the LENPIC interaction having a
semi-local coordinate space regulator with R = 1.0 fm. With this regulator, the LEC
values for the 3N interactions at N2LO are cD = 7.2 and cE = −0.671, as determined
in Ref. [12]. Application of these interactions to nucleon-deuteron scattering can be
found in Refs. [10,11] for NN -only potentials, along with selected properties of light-
and medium-mass nuclei, and in Ref. [12] including the 3N interactions at N2LO.

In order to reduce extrapolation uncertainties by achieving energies of nuclear
states closer to convergence in NCSM calculations, we have elected to employ the
LENPIC NN + 3N interaction that has been processed through Similarity Renor-
malization Group (SRG) evolution [33–35] to a scale of α = 0.08 fm4 which cor-
responds to λ = 1.88 fm−1. This LENPIC NN + 3N interaction is employed in
Ref. [12] and the sensitivity of the NCSM results (i. e. without extrapolation) to α
are shown to be reasonably small for selected nuclear properties including ground
state (gs) energies. Sensitivity of NCFC energies for 25 p-shell states to α with the
same LENPIC NN + 3N interaction is investigated in Ref. [21] and shown to be
comparable to or less than the extrapolation uncertainties for this value of the SRG
evolution parameter.

This SRG evolution provides a significant reduction in the strong off-diagonal
couplings in momentum space of the NN interaction while, at the same time, inducing
contributions to the 3N interaction. It is primarily these reductions in couplings to
higher momentum states that facilitate convergence in the NCSM calculations which
then lead to reduced uncertainties in the NCFC results.

2.3 Daejeon16 NN potential

Our second choice is a pure NN interaction, Daejeon16 [13], without the addition of
a 3N interaction. Daejeon16 was developed from an initial χEFT NN interaction at
N3LO [14–16] by SRG evolution to a scale of λ = 1.5 fm−1.
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In addition to SRG evolution, PETs [17–20] were applied so that the resulting
Daejeon16 NN interaction provides good descriptions of certain properties of light
nuclei. In particular, there are a total of 7 PET parameters chosen to fit estimates
of 11 nuclear properties that were obtained in finite basis space NCSM calculations.
The estimates of optimal NCSM results were made in anticipation of the corrections
that would arise from extrapolation to the full basis limit which would achieve the
estimated NCFC results. The selected observables included the binding energies of
3H, 4He, 6Li, 8He, 10B, 12C and 16O. In addition, the PET parameters were chosen to
fit the two lowest excited states in 6Li with (Jπ, T ) = (3+, 0) and (0+, 1) as well as the
first excited (1+, 0) in 10B and the first excited (2+, 0) in 12C. Some of these observ-
ables have been previously determined to be sensitive to 3N interactions, so achieving
their accurate descriptions without 3N interactions was a significant milestone.

Throughout the SRG and PET processes, the high-quality descriptions of the
two-body data are preserved due to the accurate treatment of unitarity at the level
of the NN interaction. Of course, the off-shell properties of the NN interactions
are modified through these transformations. The PETs that are fitted to properties
of light nuclei are attempts to minimize the effects of the neglected 3N and higher-
body interactions. Of course, this fitting process cannot completely eliminate the
effects of these additional interactions and one expects that nuclear observables will
be identified that require higher-body interactions for their accurate description.

3 Energies of light nuclei

Here we present our NCFC results for light nuclei from A = 4 through A = 16. We
select results for a total of 22 mostly particle-stable nuclei and include a selection of
excited states, both natural and unnatural parity states, that have been experimen-
tally determined to have reasonably narrow widths. Note that we do not anticipate
that we can produce NCFC results at the present time that will be as useful for
comparing with energies of broad nuclear resonances. Altogether, we report here the
energies, spins and parities of a selected set of 74 nuclear states, excluding isobaric
analog states. For comparison, we have reported NCFC results on a total of 57(120)
states in light nuclei from A = 6(3) through A = 16 in Ref. [36] (Ref [37]) with the
JISP16 interaction [38], though these JISP16 studies did include several isobaric ana-
log states. These extensive studies with JISP16 employed a variety of extrapolation
methods and also included electromagnetic observables. In addition, about half of the
states we include here were investigated with the LENPIC interactions in Refs. [12]
and/or [21] where the dependence on χEFT truncation order and SRG evolution scale
were also investigated.

While we present our theoretical results, along with their uncertainties, in graph-
ical form, it is important to note the limits on the range of Nmax values in the
NCSM calculations imposed by the available computational resources. These Nmax

limits depend on whether we employ an NN + 3N interaction or an NN -only inter-
action [39, 40]. We therefore choose Nmax limits based both on the limit of overall
available computational resources and on estimates of what is required for reasonably
small uncertainties. In Table 1 we list the actual Nmax values used for the results
presented here.

As mentioned above, we employ a simple three-parameter exponential form to ex-
trapolate the energies to the complete, but infinite-dimensional, basis using a sequence
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Table 1: Highest Nmax values used in NCSM calculations for NCFC results presented
in this work. The numbers in brackets correspond to the highest Nmax values for
states with unnatural parity.

Nucleus 3N Nmax NN Nmax Nucleus 3N Nmax NN Nmax

4He 14 20 11Be 8 (9) 11
6He 12 18 11B 8 10
6Li 12 18 12Be 8 10
7Li 12 16 12B 8 10
8He 12 16 12C 8 10
8Li 10 14 13B 8 10
8Be 10 14 13C 8 10
9Li 10 12 14C 8 10
9Be 10 (9) 12 (13) 14N 8 8
10Be 10 (9) 12 (11) 15N 8 8
10B 10 (9) 12 (11) 16O 8 8

of three highest Nmax values from Table 1 at fixed basis parameter ~ω,

E(Nmax, ~ω) ≈ E∞(~ω) + a(~ω) exp (−b(~ω)Nmax). (4)

We take as the NCFC extrapolated energy the result at the ~ω that minimizes the
amount of extrapolation, |E(N, ~ω) − EN

∞(~ω)|, with N signifying the highest Nmax

used in that extrapolation, typically at or slightly above the variational minimum
in ~ω. For an estimate of the extrapolation uncertainty, we take the maximum of the
following quantities:

• difference with the previous Nmax extrapolation: |EN−2
∞ − EN

∞|;

• 20% of the extrapolation: 0.2 ∗ |E(N, ~ω) − EN
∞(~ω)|;

• half of the variation in the extrapolated value, 0.5 ∗ |∆EN
∞(~ω)|, over a range

in ~ω around the optimal extrapolation; with the range of 7.5 MeV for Dae-
jeon16, and the range of 8 MeV (6 MeV if the extrapolation is at ~ω = 16 MeV)
for LENPIC.

While more extensive extrapolation studies have been performed [22–27], we have
observed that this simple procedure is reasonably accurate for a range of different
states and interactions. In addition, our main thrust here is to apply our methods not
only to the gs energies but also to the energies of the excited states. In all cases, we will
extrapolate the total energy of each state independent of, for example, the gs energy.
This already represents a significant undertaking yet still neglects important energy
correlation information. We anticipate that more complete extrapolation analyses
will be conducted with these same calculated energies in the future and will lead to
refined estimates of converged energies and improved uncertainty estimates.

We present in Figs. 1 and 2 the total energies, spins and parities of the gs and
selected excited states of nuclei ranging from A = 4 through A = 10 and from A = 11
to A = 16, respectively. All of these nuclei are particle-stable, with the exception of
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8Be; furthermore, all of the excited states shown are narrow, with a width that is less
than 300 keV, except for the 2+ and 4+ rotational excitations of the gs of 8Be.

For each state, we plot the total experimental energy (sometimes referred to as
the total interaction energy), and the NCFC energies for the the Daejeon16 potential
and for the complete LENPIC N2LO interaction at R = 1.0 fm, SRG evolved to a
scale of α = 0.08 fm4. The symbols represent the NCFC result from extrapolation to
the complete (infinite-dimensional) basis and the error bars represent the estimated
extrapolation uncertainty. States employed to determine PET parameters for Dae-
jeon16 [13] are indicated with open symbols: seven states from A = 4 to A = 10,
two states in 12C, and 16O. The grey bands indicate examples of uncertainty in the
gs energies from truncation at N2LO in the χEFT expansion [12]; all of the LECs
for the LENPIC interaction were fitted to A = 2 and A = 3 experimental data. The
inset in Fig. 1 presents more detail for selected excited states of 8Li and 8Be.

The first observation from the results in Fig. 1 is the overall good agreement be-
tween theory and experiment, within the theoretical uncertainties, for all the states
shown. Both interactions give the correct gs spin and parity for all 11 nuclei shown
in the lower p-shell. Furthermore, almost all experimental excited states have a cor-
responding theoretical state with each of the two interactions. The exception is the
first excited 0+ in 10Be: with Daejeon16 we do obtain this state in our calculated
low-lying spectrum, but not with the LENPIC N2LO interaction (see Fig. 3 below for
more details). More significantly, the level orderings of the theory results are nearly
all correct to within extrapolation uncertainties. Exceptions to the correct level or-
dering occur in the spectrum of 8Be above 15 MeV of excitation, and the cluster of
five states in a 300 keV window around 6 MeV excitation energy in 10Be.

Extrapolation uncertainties are considerably smaller for Daejeon16 energies than
for the LENPIC NN+3N energies. This difference arises from two sources. The most
important source is the difference in the NCSM basis spaces employed where results
for LENPIC NN+3N are obtained in smaller basis spaces than the Daejeon16 results
(see Table 1) due to the increased computational burden of 3N interactions [39, 40].
In addition, the difference in the SRG evolution scales favors the convergence rate
for Daejeon16 since Daejeon16 is based on an interaction that has been evolved to
a lower momentum scale (1.5 fm−1) compared to the SRG evolution scale of the
LENPIC NN + 3N interaction (1.88 fm−1).

Proceeding now to nuclei in the upper half of the p-shell, we see in Fig. 2 that both
interactions again give the correct gs spin and parity, with the possible exceptions of
the parity inversion in 11Be and the gs of 12B with the LENPIC N2LO interaction.
Furthermore, the theoretical level orderings for the low-lying narrow excited states
(up to 13C) are again in good agreement with experiment to within extrapolation
uncertainties, as shown in more detail below.

However, Fig. 2 also reveals the trend towards overbinding that emerges for the
LENPIC N2LO interaction starting at about 12B and for the Daejeon16 interaction
at about 15N. It had been established from the beginning that Daejeon16 slightly
overbinds 12C by almost 1% and overbinds 16O by about 3.8 MeV [13]. It is also
known that the LENPIC N2LO interaction overbinds starting around A = 12: for
both 12B and 12C this overbinding is only slightly larger than the estimated chiral
truncation error, but for 16O the overbinding is significantly more than the chiral
truncation error, and the origin of this overbinding is, as yet, unclear [12]. Note
however that the LENPIC interaction is entirely fixed by A = 2 and A = 3 systems,
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Figure 3: Calculated and experimental excitation energies, spins and parities of selected excited states of six nuclei from A = 9 to
A = 12. Experimental results are taken from Refs. [41–44].
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whereas the PET parameters of Daejeon16 were adjusted to fit estimates of p-shell
nuclei including 12C and 16O.

In order to examine the low-lying spectroscopy of selected A = 9 to A = 12 nuclei
in more detail and to highlight a few exceptional cases, we present their excitation
energies on an expanded scale in Fig. 3. To compare with the experimental excitation
energies, we have plotted the difference in the independently extrapolated theoretical
total energies and treated the the uncertainties of the extrapolated energy of the
gs and the excited state as independent; that is, the shown uncertainty is the root-
mean-square sum of the extrapolation uncertainties of the gs and the excited state.
This should be a conservative estimate of the uncertainty in the excitation energy
since NCSM excitation energies are known to be better converged than the total
energies [36].

We note the overall good agreement for most states between theoretical and ex-
perimental level orderings in Fig. 3 to within extrapolation uncertainties. Even the
appearance of low-lying unnatural parity states in these three nuclei appears well-
described with one notable and subtle exception, the gs parity of 11Be with the
LENPIC N2LO interaction discussed below. This overall good agreement indicates
that these interactions are successfully encapsulating an important aspect of the cross-
shell physics which is becoming important for accurately describing intruder states in
the low-lying spectra of light nuclei in the mid p-shell region.

The experimental gs spin of 10B has become a celebrated example of the reputed
importance of 3N interactions in nuclei [31,45]. The conclusion from calculations with
realistic NN interactions, but without 3N interactions, was, generally, a predicted gs
spin of 1+ with a low-lying excited 3+ state. However, the experimental information
has that order reversed with a 3+ ground state. The LENPIC NN + 3N interaction
at N2LO has already been shown to produce the correct level ordering in 10B [12]
concurring with established wisdom since the ordering was found to be incorrect at
N2LO without the 3N interaction [11].

This conventional wisdom on the critical need for a 3N interaction has previously
been called into question by the 10B results with Daejeon16 [13] and also by results
with JISP16 [37]. However, the extrapolation uncertainties for the JISP16 results
left room for doubt that it was the first interaction to serve as a counterpoint to this
conventional wisdom. Here, our extrapolation uncertainties are sufficiently small in
Fig. 3 that we confirm the results of Ref. [13] showing Daejeon16 does indeed serve
as a clear demonstration that subtle 3N effects can be accommodated in a realistic
NN interaction. This example serves as an important reminder that NN interactions
and their 3N counterparts are not unique and that unitary transformations can, in
principle, transform important properties back and forth between them.

Another celebrated example of subtle effects in light nuclei is the parity inversion

experimentally observed in 11Be with a Jπ = 1
2

+
gs. This parity inversion has been

attributed to the role of continuum physics [46] which is assumed to be absent in
calculations, such as ours, retaining the pure HO basis. Contrary to the claim of
the need for explicit continuum physics, we find, as shown in Fig. 3 and discussed
by Y. Kim at this meeting [47], that Daejeon16 generates the correct parity-inverted
gs for 11Be. At the same time, the LENPIC N2LO interaction appears to fail to
generate the correct parity-inverted gs. In fact, a closer look at Fig. 3 reveals that
all eight (two in 9Be, three in 10Be, two in 11Be, and one in 10B) unnatural-parity
states are too high in the spectrum with the LENPIC N2LO interaction, whereas with
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Daejeon16 they are significantly closer to the experimental data, and often within the
uncertainty estimates.

Less obvious, bot not necessarily less important, is the narrow first excited 0+

state in 10Be at about 6.2 MeV. With Daejeon16 we do find this state, close to the
experimental excitation energy, but with the the LENPIC N2LO interaction we do
not find an excited 0+ state in the low-lying spectrum. It is unclear whether this is
due to the more limited basis size with the 3N forces, or due to differences in the
interactions — to our knowledge, most other interactions, including JISP16, also fail
to reproduce this excited 0+ state in 10Be at the experimental excitation energy.

Finally, let us consider the important case of the lowest two states in 12B. Dae-
jeon16 produces the correct gs spin (1+) and the first excited state (2+). However, as
noted previously [12], the LENPIC N2LO interaction reverses the ordering of these
two states and we reaffirm that conclusion in Fig. 3 while noting that extrapolation
uncertainties are significant in this case. We also note that the Daejeon16 results for
the low-lying states of 12B all appear to be in good agreement with experiment.

4 Summary and Outlook

We have investigated the spectra of light nuclei from A = 4 to A = 16 in the NCFC
approach with two recent internucleon interactions, the LENPIC NN + 3N interac-
tion and the Daejeon16 NN interaction. We have presented extrapolated energies
and their uncertainties for 74 states in 22 nuclei including states of both parities,
excluding isobaric analog states. The extrapolation uncertainties are shown to be
sufficiently small that the theoretical results are found to be in good agreement with
experimental data for most states. Both these interactions overbind nuclei at the
upper end of the p-shell which suggests an area for future improvements to the inter-
nucleon interactions. Comparing results between Daejeon16 and LENPIC NN + 3N
shows the former interaction to have smaller extrapolation uncertainties and to pro-
duce somewhat better agreement with experiment, in particular in the upper half of
the p-shell. The experimental parity inversion in 11Be and the experimental 1+ gs
spin of 12B provide two examples of subtle effects where the Daejeon16 results agree
with experiment while the LENPIC NN + 3N results appear to be deficient. The
better performance of the Daejeon16 interaction should not be too surprising since
PETs used in its determination were selected to fit a set of properties of light nuclei.

Overall, we find that the extrapolation uncertainties for the spectroscopy of light
nuclei with realistic internucleon interactions have been sufficiently reduced in order
to make meaningful detailed comparison between theory and experiment and between
different internucleon interactions. As our quantum many-body methods continue to
improve and the available computational resources continue to increase, we anticipate
providing ever more precise diagnostics of state-of-the-art internucleon interactions
and increasingly robust predictive power.
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Abstract

Starting from the CD-Bonn potential, we have performed Gamow shell-
model calculations for neutron-rich oxygen isotopes, investigating excitation
spectra and their resonant properties. The Gamow shell model is based on
the Berggren ensemble, which is capable of treating the continuum effect rea-
sonably in weakly-bound or unbound nuclei. To calculate heavier-mass oxygen
isotopes, we choose 16O as a frozen core in the Gamow shell-model calculations.
The first 2+ excitation energies of the even-even O isotopes are calculated, and
compared with those obtained by the conventional shell model using the em-
pirical USDB interaction. The continuum effect is proved to play an important
role in the shell evolution near the drip line. We discuss also the effect of the
Berggren contour choice. We improve the approximation in the contour choice
to give more precise calculations of resonance widths.

Keywords: CD-Bonn interaction; Gamow shell model; drip-line nuclei; Berggren
ensemble; continuum; resonance

1 Introduction

Thanks to the radioactive isotope beam technique, the exploration of the neutron
drip line is no longer unachievable. A recent experiment performed at RIKEN-RIBF
investigated the extremely neutron-rich nucleus 26O by removing a proton from the
radioactive secondary beam of 27F [1]. The decay products, 24O and two neutrons,
were observed. This experiment confirmed that 24O is the last bound nucleus of
neutron-rich oxygen isotopes, and positioned the ground-state resonance of 26O at
about 18 keV above threshold. Another excited state in 26O was also observed at
1.28 MeV, which is believed to be the first 2+ state [1].

As a powerful method for studying atomic nuclei, including in the medium-mass
region, the shell model is very commonly used to investigate oxygen isotopes [2–4].
Shell model calculations using the USDB interaction have been successful in repro-
ducing the observables of sd-shell nuclei, such as the binding energies, spectra, and
transition rates [5–9]. However, the USDB interaction is constructed in the harmonic

Proceedings of the International Conference ‘Nuclear Theory in the Supercomput-
ing Era — 2018’ (NTSE-2018), Daejeon, South Korea, October 29 – November 2,
2018, eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2019, p. 183.
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oscillator (HO) basis. The HO basis always gives well-localized wave functions of nu-
clear states. However, these cannot describe the loosely-bound or unbound properties
of drip-line nuclei. For the drip-line nucleus 26O, the HO-basis shell-model calcula-
tion with the USDB interaction gives a 2+ excitation energy about 0.8 MeV higher
than the experimental data [1]. The three-body model calculations indicate that the
two-neutron decay channel may play an important role in the 26O system [10–12].

In the three-body model calculation, the three-body system 24O + n+ n is cor-
related by a density-dependent contact pairing interaction. The two-neutron decay
channel is taken into account by evolving the initial state, generated by removing a
proton from the calculated ground state of the 25F + n+ n system, with the Hamilto-
nian of the three-body system. The Hamiltonian is based on a one-body Woods–Saxon
(WS) potential with a finite depth, and the two-body pairing interaction [10–12]. Us-
ing a finite-depth one-body potential is crucial for the model, as it allows the particle
emissions.

The three-body model has been successful in reproducing the first 2+ state en-
ergy of 26O, as the decay channel can couple the bound and continuum single particle
(s.p.) states [10–12]. For describing the properties of weakly-bound or unbound nuclei
near the drip line, the continuum effect has already been proved to be very impor-
tant [13–19]. In the three-body model, a phenomenological pairing interaction is
applied. As was pointed out in Ref. [11], the pairing strength has to be finely tuned
to get a precise result. Fitting the pairing strength mixes different effects, like the
continuum effect and the three-body force, and the exact contribution from each of
them cannot be identified. Another problem is that the three-body model cannot give
the decay width directly and the method used to calculate the widths is parameter-
dependent [11].

To minimize the obscure mixing effects caused by the fitted interaction, as well as
to calculate the decay width self-consistently, we revisit the continuum effect in the
oxygen isotopes by the Gamow shell model (GSM) [18,20,21] with a realistic nuclear
force, the CD-Bonn interaction [22]. The GSM is based on the Berggren ensemble,
which is composed of s.p. bound states, resonant states and non-resonant continu-
ums [13, 18, 20, 21]. The continuum states in the Berggren ensemble are analytically
extended to the complex plain and discretized along a certain contour. The imaginary
parts of the resonant s.p. eigenenergies give the resonance widths of the s.p. states.
These s.p. widths integrate to the total widths of the many-body system through
the shell model. On the other hand, the CD-Bonn potential describes the nucleon-
nucleon interaction with high precision within a very wide range. To accelerate the
convergence of many-body calculations, the bare CD-Bonn interaction is renormalized
using the Vlow-k procedure [23]. For the shell-model calculation with a frozen core, we
adopt the Q-box folded-diagram perturbation method [24,25] to construct a realistic
effective model-space Hamiltonian, as done in Ref. [21].

As mentioned above, analytically extending the continuum states to the complex
plain is essential in the Berggren ensemble, which includes narrow resonant states,
and introduces an additional dimension to describe the resonance width. However, a
complex contour requires more discretizing points to reach convergence due to the ad-
ditional dimension. Since it is believed that the non-resonant continuum mainly cou-
ples with bound states through the resonances, and the direct coupling is assumed to
be less important, in most models based on the Berggren ensemble, only partial waves
that include narrow resonances are extended to the complex plain [18, 20, 21, 26–30].
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However the accuracy of this approximation is not yet well tested. In this paper,
we will discuss the Berggren contour choice in the oxygen chain by expanding the
extended partial waves from d3/2 to all sd partial waves.

In this paper, we perform a realistic-force GSM calculation for the neutron-rich
oxygen isotopes 18,20,22,24,25,26O to study how the continuum effect affects the shell
evolution in the drip-line region, as well as to investigate the continuum effect from
the non-resonant continuum in partial waves without narrow resonances.

2 Theoretical framework

The Berggren ensemble is a s.p. basis specialized for treating the continuum and
resonances. The one-body Schrödinger equation in the complex-k space gives the
Berggren states,

d2u (r)

dr2
=

(
l (l+ 1)

r2
+

2m

~2
VWS(r) − k2

)
u(r), (1)

where VWS is the WS potential with a spin-orbit coupling,

VWS(r) = −V0 f(r) − 4VSO
1

r

df(r)

dr
l · s, (2)

where l and s refer to the orbital angular momentum and spin of the particle, respec-
tively, and

f(r) = − 1

1 + e
r−r0A1/3

d

. (3)

The basis states include bound, resonant and continuum states due to the finite depth
of the WS potential. In the present calculations, the parameters of the WS potential
are V0 = 45.39 MeV, r0 = 1.347 fm, d = 0.70 fm, and VSO = 18.2 MeV. The sd-shell
s.p. energies are −5.31 MeV, −3.22 MeV and (1.06 − 0.09i) MeV for the 0d5/2, 1s1/2
bound states and 0d3/2 resonant orbit, respectively. The values are the same as the
universal parameters [31], except that the strength |V0| is reduced to reproduce the
experimental width extracted from 17O [21].

The completeness relation of the Berggren ensemble can be written as

∑

n∈{b,d}
un(r, kn)un(r′, kn) +

∫

L+

dk v(r, k) v(r′, k) = δ(r − r′), (4)

where b and d denote the bound states and decaying resonant states respectively,
and L+ denotes the integral contour of the continuum. The contour lies in the com-
plex plain. Only narrow resonances enclosed in the contours are included in the
summation of Eq. (4) according to Cauchy’s integral theorem. Since the orbital an-
gular momentum in the s.p. Hamiltonian is conserved, the contours of different partial
waves may differ. For a partial wave that does not contain narrow resonances, a con-
tour lying on the real-momentum axis is widely used.

The effective interaction in the Berggren ensemble is obtained by performing a
Q-box folded-diagram perturbation based on the CD-Bonn interaction. The matrix
elements, which are given originally in the HO basis, are projected to the Berggren
ensemble by overlapping the Berggren basis wave functions and those of the HO
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basis. In the present work, we are using the truncation Nshell = 22 for the HO basis.
The CD-Bonn interaction is renormalized by the Vlow-k procedure before projection
to the Berggren ensemble. To minimize the induced three-body force in the Vlow-k

renormalization, a hard cutoff of Λ = 2.6 fm−1 is chosen. In the Q-box calculation,
the starting energy is −6 MeV, which is approximately equal to the average sd-shell
s.p. energy of the one-body Woods-Saxon potential.

With the 16O core, the model space of the effective interaction is all sd-shell or-
bits including bound states 0d5/2 and 1s1/2, the narrow resonant state 0d3/2, and
the d3/2 non-resonant continuum states on the complex plain. As mentioned above,
a real-momentum continuum contour is commonly adopted for partial waves that
do not have narrow resonances. Because we are also investigating the continuum
effect contributed by partial waves that do not have narrow resonances, the results
with different contours in the s1/2 and d5/2 partial waves are compared. We change
these contours from the real-momentum axis to the same as that of the d3/2 par-
tial wave. In the calculation, we choose the contour {0.0 → 2.2} (in fm−1) in the
real axis and discretize it with 20 discrete points. The complex contour is taken
as {0.0 → (0.48 − 0.20i) → 0.62 → 2.2} (in fm−1) with 20 discrete points as well.

3 Calculations and discussion

The excitation energy of the first 2+ excited state is an indicator of the shell gap
in the sd shell. In this paper, we calculate the 2+1 excitation energies of oxygen iso-
topes, shown in Fig. 1. We see that both the CD-Bonn GSM and USDB HO-basis
SM calculations give good agreement with experimental 2+1 excitation energies, espe-
cially in the well-bound nuclei 18,20,22O, where both calculations reproduce the data
well. This indicates that, although based on a realistic force, the effective interac-
tion in the GSM has the same precision for the well-bound systems as the empirical
USDB interaction which fits the data of bound nuclei. However, for the 2+1 excitation
energy in the unbound 26O, the USDB interaction gives 2.11 MeV which is about
800 keV higher than the experimental data. The CD-Bonn GSM improves the results
of calculations significantly (see Fig. 1). Since the effective interaction in GSM is as
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Figure 1: Calculated 2+1
excitation energies in
18,20,22,24,26O compared
with the experimental
data [1, 32] and USDB
calculations. The USDB
calculation overestimates
the 2+ excitation energy in
26O, while the GSM calcu-
lation improves the result
by taking the continuum
effect into account.
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precise as the USDB interaction in the well-bound nuclei, we can thus conclude that
the improvement should be mainly due to the inclusion of the continuum.

The calculated 2+ excitations of 24O and 26O are lower than the experimental
data, which may be partially due to the lacking of the three-body force in the GSM
calculations. With an increasing number of valence neutrons, the effect of the three-
body force becomes significant. In our previous work [21], we proved that the three-
body force introduced by the Vlow-k process is weak when the hard cutoff of 2.6 fm−1

is used. However, the initial three-body force, which is not considered, would have a
non-negligible effect for neutron-rich isotopes with a large number of valence neutrons.
In the work studying the oxygen chain using the ab-initio coupled cluster method [28],
with both two-body and three-body interaction derived from the chiral effective field
theory [33], the initial three-body force has an effect of increasing the excitation
energies of the 2+ states in the even-even O isotopes. Although the 2+ state in 26O
was not calculated in Ref. [28], the direction of this effect should remain the same.
This conclusion supports our result that the 2+ state is lower in energy than the
experimental data if no three-body force is considered.

Another purpose of the present work is to investigate the influence of the contour
choice. We use different contours for the sd partial waves to calculate all well-bound
as well as weakly-bound and unbound nuclei. For convenience, we use the following
notations:
i) C0: the complex contour (i. e., a triangle shape below the real-momentum axis, see
Fig. 1 in Ref. [21], our previous paper) with 20 discrete points is employed in the d3/2
channel, which contains a narrow resonance, while the real-momentum contours with
only 8 discrete points are used in all other channels (including s1/2 and d5/2 channels),
which have no narrow resonances.
ii) C1: the same as C0 except that the number of discrete points for s1/2 and d5/2
partial waves is increased to 20.
iii) C2: the same as C1 except that the complex-momentum contour, like that in
the d3/2 partial wave, is employed in the s1/2 channel.
iv) C3: the same as C2 except that the same complex-momentum contour employed
also in the d5/2 channel.

Figure 2 displays the results of calculations of low-lying states in 22−26O. We see
that there is no meaningful changes of the results when the number of discretizing
points is increased from 8 to 20, except for the 24O where the energies become slightly
lower. An increase in the number of discretizing points leads to a remarkable increase
in the model dimension. Therefore, a reasonable but converged number of discretiz-
ing points is an issue that one should consider in the GSM calculations. From our
calculations for the sd-shell nuclei, 8 discretizing points should be reasonable in most
cases.

From Fig. 2, we can also analyze the results of calculations with different strategies
of the contour choice. Overall, the different strategies in the choices of contours give
almost the same results, except that C3 gives slightly higher energies for the 2+ and 3+

states in 22O. This means that for the partial waves with no narrow resonances, real-
momentum contours can be chosen without a loss of accuracy of the calculations. A
real-momentum contour with reasonable discretizing points can significantly reduce
the computational burden. This means that if there are no narrow resonances in the
channel, the continuum states on the real-momentum contour are good enough to
describe the continuum effect in the real part of the eigenenergies.
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Figure 3 plots the imaginary parts (i. e., resonance widths) of the obtained eigenen-
ergies of the resonant states in 24,25,26O, compared with the experimental data avail-
able currently [1, 32]. The calculated resonance widths are gently dependent on the
prescriptions of contour choice. The widths tend to be slightly smaller with more
partial waves taking complex-momentum contours, and closer to the experimental
values. However, the GSM calculation with a complex-momentum contour is much
more expensive in computation. The new experiment of 26O [1] mentioned in the
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introduction has also updated the resonance width of the unbound 25O ground state.
The experimental resonance width of the 2+ state in 26O [1] looks extremely large,
much larger than obtained in the GSM calculation. The experimental strength of the
2+ resonant state is relatively weak, and the FWHM is influenced a lot by continuum
states around. The present calculation predicts a much smaller resonance width for
this state.

In the present paper, we are investigating how to treat the continuum effect in
both energy and width of resonances. For the calculation of resonance energy, choos-
ing a real-momentum contour for a partial wave that has no narrow resonance is
good enough to give a convergent result. Taking a complex-momentum contour does
not change the result. For the calculation of resonance width, however, choosing
complex-momentum contours for all partial waves of the model space seems to be
more reasonable, and hence recommended. For partial waves belonging to the ex-
cluded space, couplings with valence particles are weak, and hence it should be safe
to use real-momentum contours for the respective channels.

4 Conclusion

In conclusion, we have applied the with-core GSM based on the CD-Bonn potential
to neutron-rich oxygen isotopes, investigating the continuum effect on both resonance
energy and width. These calculations were motivated with the recent experiment on
26O beyond the neutron drip line. The calculated 2+ excitation energies were com-
pared with shell-model calculations using the empirical USDB interaction, showing a
strong continuum effect in the spectra of drip-line nuclei. By choosing the different
prescriptions of contours in the Berggren coordinates for the GSM calculation, we
have discussed the convergence of the resonance spectrum. It is suggested that all
model-space partial waves, regardless of whether there is a narrow resonance, should
take the same complex-momentum contour to obtain a convergent resonance width.
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Abstract

We have studied neutron-rich calcium isotopes in terms of the nuclear shell
model employing a realistic effective interaction derived from realistic two- and
three-body potentials built up within the chiral perturbation theory. We focus
our attention on the shell-evolution properties of such an isotopic chain, namely
on the excitation energy of yrast Jπ = 2+ states and two-neutron separation
energies of even-A isotopes. The calculated results are in a good agreement with
the available experimental data up to 56Ca, but show different predictions for
heavier nuclei when including or not the three-body potential. In this context,
the N = 40 shell closure and the location of calcium dripline is also discussed.

Keywords: Nuclear shell model; effective interactions; nuclear forces

1 Introduction

Heavy calcium isotopes with mass number A > 48 are currently the subject of great
experimental and theoretical interest. With an N/Z ratio > 1.4 they lie far from
the stability valley and provide a good opportunity to explore the evolution of shell
structure when approaching the neutron drip line [1, 2]. In this context, it should be
mentioned that the question of the appearance of a shell closure at N = 34 traces
back to the work of Beiner and coworkers within the framework of the energy density
formalism [3]. A decade ago some shell-model (SM) calculations [4, 5] have revived
this issue indicating the existence of a large shell gap at N = 34, employing the
empirical SM Hamiltonian GXPF1A [5]. On the other hand, the results of other
SM calculations, obtained with different SM Hamiltonians, did not exhibit any shell
closure for 54Ca [6,7]. As a matter of fact, a decrease of the experimental 2+1 excitation
energy in 54Ca with respect the one in 56Ca was observed in 2013, that evidences a
lack of the N = 34 shell closure [8].

Proceedings of the International Conference ‘Nuclear Theory in the Supercomput-
ing Era — 2018’ (NTSE-2018), Daejeon, South Korea, October 29 – November 2,
2018, eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2019, p. 192.
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The contradictory theoretical predictions point to the crucial role played by the
SM Hamiltonian, and the weakening of predictive power of an empirical procedure to
derive them.

The realistic shell-model provides an approach that may overcome the ambiguity
of fitting the SM single-particle (SP) energies and two-body matrix elements (TBME)
to a chosen set of observables, namely deriving the effective Hamiltonian by way of the
many-body perturbation theory and starting from a realistic nuclear potential [9,10].

To this end, we have performed a perturbative expansion of a fp-shell effective
Hamiltonian Heff , arresting the series at the third order, and starting from a realistic
nuclear two-nucleon force (2NF) based on the chiral perturbation theory (ChPT) at
next-to-next-to-next-to-leading order (N3LO) [11]. We also include in our Heff , aside
the above two-body potential, a chiral N2LO three-body potential [12] whose effects
are considered at first-order in perturbation theory.

As mentioned before, we draw our attention to the shell evolution of calcium
isotopes, as can be inferred form the behavior of the yrast Jπ = 2+ states and
ground-state (g.s.) energies. In particular, we want also to stress the role played
by three-nucleon forces (3NF) to tackle this issue, so we will report results obtained
using realistic SM effective Hamiltonians that include or not 3NF contributions.

The relevance of 3NF for a successful SM description of the evolution of shell
closures traces back to the seminal papers of Zuker and coworkers [13, 14], who have
investigated the need of modifications of the monopole component of TBME obtained
from realistic SM Hamiltonians [15]. They also inferred that this should trace back to
the lack of a 3NF in the nuclear realistic potentials employed to derive the Heff [16].

Extensive direct investigations about the role of 3NFs in realistic Heff have been
carried out more recently by Schwenk and coworkers, who have performed studies
of calcium [17,18] isotopic chain starting from nuclear potentials built up within the
chiral perturbative expansion and softened by way of Vlow−k technique [19] or the
similarity renormalization-group (SRG) approach [20].

This paper is organized as follows. First, a brief description of the derivation ofHeff

within the perturbative approach is reported in Section 2. Section 3 is devoted to
the presentation of the results of our calculations of the excitation energy Eexc

2+ of the
yrast Jπ = 2+ states and two-neutron separation energies S2n for the calcium isotopes
ranging from N = 22 to N = 42, and compare them with the available data from
experiment. In Section 4 we discuss our results and make some concluding remarks.

2 Outline of calculations

As mentioned before, we consider as 2NF the chiral N3LO potential derived by En-
tem and Machleidt in Ref. [11], and as 3NF a chiral N2LO potential, which shares the
regulator function of a nonlocal form and some of the low-energy constants (LECs)
with the 2NF. It should be stressed that the N2LO 3NF is composed of three com-

ponents, namely the two-pion (2π) exchange term V
(2π)
3N , the one-pion (1π) exchange

plus contact term V
(1π)
3N , and the contact term V

(ct)
3N , and, consistently, the LECs c1,

c3, and c4 appearing in V
(2π)
3NF , are the same as those in the N3LO 2NF.

Besides this, the 3NF 1π-exchange and contact terms are own two extra LECs
(known as cD and cE , respectively), which need to be determined by reproducing
observables in systems with mass A > 2.
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For our calculations, we adopt the same cD and cE values as employed in Ref. [21],
namely, cD = −1 and cE = −0.34, that have been determined by way of no-core shell
model (NCSM) calculations [12].

The details about the calculation of our 3NF matrix elements in the harmonic-
oscillator (HO) basis can be found in Appendix of Ref. [21]. The Coulomb potential
is explicitly taken into account in our calculations.

In Ref. [21], it can be found also a detailed description of the derivation of our Heff

for one- and two-valence nucleon systems, starting from 2NF and 3NF, while here we
present only a brief summary.

Our Heff are derived in the model space spanned by the five orbitals, 0f7/2, 0f7/2,
1p3/2, 1p1/2, 0g9/2, outside the doubly-closed 40Ca. We have added the 0g9/2 orbital
to the standard fp ones in order to have a sounder description of neutron-rich systems
and to investigate the location of neutron dripline in calcium isotopes.

We introduce an auxiliary one-body potential U to break up the Hamiltonian H
for a system of A nucleons into a sum of a one-body term H0, which describes the
independent motion of the nucleons, and a residual interaction H1:

H =

A∑

i=1

p2i
2m

+

A∑

i<j=1

V 2NF
ij +

A∑

i<j<k=1

V 3NF
ijk = T + V 2NF + V 3NF

= (T + U) + (V 2NF − U) + V 3NF = H0 +H2NF
1 +H3NF

1 . (1)

In our calculation we use the HO potential, U = 1
2mω

2r2, with the oscillator param-

eter ~ω = 11 MeV, according to the expression ~ω = 45A−1/3 − 25A−2/3 for A = 40.
Once the H0 has been introduced, the reduced model space is defined in terms of a

finite subset of H0’s eigenvectors. The diagonalization of the many-body Hamiltonian
in Eq. (1) within the infinite Hilbert space is then reduced to the solution of an
eigenvalue problem for an effective Hamiltonian Heff in a finite space.

We employ the time-dependent perturbation theory to derive Heff [10,22]. Heff is
expressed through the Kuo–Lee–Ratcliff folded-diagram expansion in terms of the ver-
tex function Q̂-box, which is composed of irreducible valence-linked diagrams [23, 24].
We include in the Q̂-box one- and two-body Goldstone diagrams through the third
order in H2NF

1 and up to the first order in H3NF
1 . It is worth pointing out that the

input chiral 2NF and 3NF have not been modified by way of any renormalization
procedure, and the perturbative properties of the Q̂-box from N3LO 2NF potential
have been discussed in Ref. [22]. The folded-diagram series is then summed up to all
orders using the Lee–Suzuki iteration method [25].

The Heff derived for one valence-nucleon systems contains only one-body contri-
butions which provides the SP energies for the SM calculation, while the two-body
matrix elements are obtained from Heff derived from the two valence-nucleon systems
once the theoretical SP energies are subtracted from its diagonal matrix elements.

We have derived two Heff ; one has been obtained calculating Q̂-box diagrams with
2NF vertices only, and the other has been built up including also H3NF

1 first-order
contributions in the collection of Q̂-box diagrams (see Fig. 3 in Ref. [21]).

The neutron SP energies calculated with respect to 0f7/2 orbital are reported in
Table 1.

We observe that the ǫp3/2
−ǫf7/2 splitting provided by the 2NF only is too small

to secure the shell closure of 48Ca, so, when diagonalizing the SM Hamiltonians, we
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Table 1: Theoretical neutron SP energies (in MeV) derived starting from 2NF only
(first column), and including 3NF contributions too (second column).

orbital ǫ2NF
ν ǫ2NF+3NF

ν

0f7/2 0.0 0.0
0f5/2 4.6 5.8
1p3/2 0.6 2.8
1p1/2 2.0 4.3
0g9/2 1.9 6.7

consider the same set of SP energies, namely, the one calculated including also the
3NF contributions. We dub the Heff with TBME derived with the 2NF only H2NF

eff ,
and H3NF

eff is the one whose SP energies and TBME have been obtained by adding
also the 3NF.

3 Results

We start our study of calcium isotopes showing in Fig. 1 our results of their Eexc
2+ from

N = 22 up to N = 42 (blue triangles and black diamonds), and compare them with
available experimental data [8, 26] (red dots).

We observe that the behaviors obtained with both Heff are very similar up to
N = 38, the results with H3NF

eff are in a better agreement with experiment. The shell
closure at N = 28 is reproduced, as well as the subshell closure at N = 32 and the
slight excitation-energy decrease between N = 32 and N = 34.
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Figure 1: Experimental (red dots) and calculated excitation energies of the yrast
Jπ = 2+ states for calcium isotopes from N = 22 to 42. The results obtained with
H2NF

eff are reported with blue triangles, those with H3NF
eff are drawn as black diamonds.



196 L. Coraggio and Y. Z. Ma

22 24 26 28 30 32 34 36 38 40 42
N

-5

0

5

10

15

20

S 2n
  (

M
eV

)
Calcium isotopes

Expt

H
3NF

H
2NF

Figure 2: Experimental and calculated two-neutron separation energies for calcium
isotopes from N = 22 to 42. See text for details.

The comparison with the data for lighter isotopes are less satisfactory, these sys-
tems are largely affected by core-excitation components of 40Ca that have not been
taken explicitly into account.

The larger discrepancy between the results obtained with H2NF
eff and H3NF

eff appears
at N = 40, where the latter exhibits a strong closure of the 0f5/2 orbital. Since both
Hamiltonians share the same set of SP energies, this feature traces back to different
monopole component of the 0f5/2, 0g9/2 configuration. In particular, this monopole
component of H3NF

eff enhances the energy splitting between the effective single-particle
energies [27] of 0f5/2 and 0g9/2 orbitals when increasing the valence-neutron number,
generating a strong shell closure at N = 40.

These closure properties are also present in the calculation of the two-neutron
separation energies that are shown in Fig. 2 for the calcium isotopes up to N = 42. As
before, the results obtained with H2NF

eff are reported as blue triangle, while the H3NF
eff

ones are drawn as black diamonds. Data from experiment [1,2,28] are reported with
red dots. It should be pointed out that we have shifted the SP energies in Table 1 in
order to reproduce the experimental g.s. energy of 41Ca [28].

We have reported the results up to N = 42 since H3NF predicts 60Ca as the last
bound isotope.

As can be seen, both experimental and theoretical S2n show a rather flat behavior
up to N = 28, then a sudden drop occurs at N = 30 that is a signature of the shell
closure due to the 0f7/2 filling. Another decrease appears at N = 34 because at that
point the valence neutrons start to occupy the 1p1/2 and 0f5/2 orbitals.

The results obtained with H3NF
eff follow closely the behavior of the experimen-

tal S2n, while those obtained with H2NF
eff provide a less satisfactory agreement

from N = 28 on. This supports the crucial role of 3NF contributions to reproduce
the observed shell evolution.

As in the case of the calculated Eexc
2+ , the difference obtained with H2NF

eff and H3NF
eff

between the monopole component of 0f5/2, 0g9/2 configuration is responsible for dif-
ferent slopes towards different neutron driplines. As a matter of fact, H2NF

eff pro-
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vides bound calcium isotopes up to N = 50, while according to the SM calculations
with H3NF

eff the calcium dripline should be located at 60Ca.

4 Concluding remarks

We have presented the results of SM calculations for the calcium isotopic chain, which
have been performed employing the SM effective Hamiltonian derived from realistic
two- and three-body potentials built up within the chiral perturbation theory.

The outcome of our calculation is manifold.

a) Single-particle energies obtained from the effective SM Hamiltonian starting
from the 2NF are not able to provide satisfactory shell-closure properties, espe-
cially the one at N = 28.

b) The 3NF contributions to the SP energies are crucial to reproduce the 48Ca
shell closure corresponding to the filling of the 0f7/2 orbital.

c) The monopole component associated with the two-body matrix elements are
rather different when including or not the 3NF. In particular, when adding
the three-body potential to the starting Hamiltonian, we predict a strong shell
closure at N = 40. This is at variance with the case when the effects of the
three-body potential are neglected.

d) The difference observed in the monopole component of the 0f5/2, 0g9/2 configu-
ration leads to different predictions for the dripline, which is located at N = 40
when including the contributions of the three-body potential.

The last mentioned feature is quite intriguing, since the recent experimental ob-
servation of 60Ca [29] and a study of the calcium isotopes by way of a Bayesian model
averaging analysis [30] have revived the issue of the calcium dripline location.
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Abstract

The fermion self-energy is calculated from the rainbow-ladder truncation of
the Dyson–Schwinger equation (DSE) in quantum electrodynamics (QED) for
spacelike momenta and in the complex momentum plane close to the timelike
region, both using Pauli–Villars regularization. Specifically, the DSE is solved in
the complex momentum plane by rotating either the energy component of the
four-momentum or the magnitude of Euclidean four-momentum to reach the
timelike region in Minkowski space. The coupling constant is appropriately cho-
sen to ensure the singularities of the fermion propagator located in the timelike
region while producing significant differences from the perturbative solutions.
For simplicity, we choose the Feynman gauge, but the method is applicable in
other covariant gauges as well. We demonstrate that the approximate spectral
representation based on the fermion self-energy near the timelike region is con-
sistent with the solution of the DSE directly in the Euclidean space.

Keywords: QED; fermion Dyson–Schwinger equation; Minkowski space calcu-
lations; rainbow-ladder truncation

1 Motivation

The measurable quantities associated with the structure of a hadron state in the full
possible kinematical range, which would be obtained by solving, e. g., quantum chro-
modynamics (QCD), require the knowledge of matrix elements of physical operators
with timelike momenta. This poses a challenge to methods based on a purely Eu-
clidean formulation of QCD, using either discretization methods such as lattice gauge
theories, or continuum methods like the Dyson–Schwinger (DSE) and Bethe–Salpeter
equations (BSE) [1]. To extract physical observables defined in Minkowski space,
these methods have to rely on an analytic continuation from Euclidean space such
that, e. g., the momenta of physical hadrons are on-shell (in the timelike region). This
is straightforward to do for mesons as bound states of a quark and anti-quark [2, 3],
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ing Era — 2018’ (NTSE-2018), Daejeon, South Korea, October 29 – November 2,
2018, eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
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and can also been done for baryons. Furthermore, Poincaré-invariant form factors
can be obtained [4, 5] in a limited momentum region without any ambiguity. How-
ever, starting from a purely Euclidean formulation, it is far from trivial to access
observables defined on the light-front, such as the the parton distribution functions
and their generalizations.

Here we remind the readers that with these continuum methods, it is essential to
take into account the nonperturbative dressing of quark propagators and vertices, in
particular for light mesons: the pions represent the Goldstone bosons associated with
dynamical chiral symmetry breaking, and their Bethe–Salpeter amplitudes are closely
related to the self-energies of the light quarks [6]. Thus, if one aims to explore the
rich kinematical range associated with observable hadron structure, it is desirable to
obtain the solution of the BSE with dressed quark propagators in Minkowski space.

To make progress with the DSEs applied to QCD, it is therefore necessary to
obtain the dressed propagators in Minkowski space. The DSE for the fermion self-
energy within a QED-like model and rainbow-ladder truncation has been studied
extensively. Early investigations based on analytic continuation of the Euclidean
DSE suggested the existence of a pair of mass-like singularities at complex-conjugate
momenta [7–9]. Subsequently, the DSE was studied in Minkowski metric using the
Nakanishi integral representation (NIR) [10] in Refs. [11–13]. Their results showed
a complicated analytic structure of the self-energies in the timelike region, which
deserves to be studied further. More recently, the solutions for DSE for the fermion
propagator in Minkowski space with on-shell renormalization within quenched QED
were obtained in Ref. [14].

Efforts in solving the two-boson BSE in Minkowski space with bare particles using
the NIR have been undertaken since the pioneering works in Refs. [15,16], which relied
on the uniqueness of the Nakanishi weight function in the nonperturbative domain
of bound states. These techniques were further developed by the introduction of
the light-front projection allied to the NIR to solve the BSEs for bosons [17–20] and
for fermions [21–23]. Recently we obtained the approximate two-boson Minkowski
Bethe–Salpeter amplitude from the solution of the Euclidean BSE by numerically
‘un-Wick rotating’ the homogeneous integral equation towards Minkowski space [24].
The solutions found with this new approach reveal the rich analytic structure of the
Bethe–Salpeter amplitude, consistent with the one obtained in Minkowski space via
the Nakanishi integral representation.

Motivated by the success of the un-Wick rotation method developed for solving the
BSE, and the challenge to obtain the self-energy in the timelike region, this approach
is extended here to investigate the fermion self-energies both in the spacelike and
the timelike regions. We use the rainbow-ladder truncation of the fermion DSE with
a massive or massless exchange vector boson. In Section 2, the truncated DSE is
presented with its representations both in the Minkowski metric and in the Euclidean
metric. Here we restrict ourselves to the Feynman gauge, but the method is applicable
in any covariant gauge. We rely on the Pauli–Villars (PV) regularization to eliminate
ultraviolet divergences; for simplicity we do not apply any renormalization condition,
so our numerical results depend on the PV mass.

We solve the truncated DSE in the complex momentum plane using two different
implementations:

1. the complex-rotation of the fourth component of the Euclidean four-momenta
towards the zeroth component (energy component) of the four-momenta in the
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Minkowski metric (‘un-Wick rotation’);

2. and an analytic continuation of the magnitude of the Euclidean four-momenta
to rotate the Euclidean DSE on the spacelike axis towards the pure timelike
axis in the Minkowski metric,

as described in Section 3. Both implementations give (within their numerical un-
certainty) the same results in a large region of the complex momentum plane. The
numerical results for the self-energies are discussed in Section 4. In this preliminary
study, the coupling constant is chosen below the critical value for dynamical chiral
symmetry breaking, but large enough to allow for nonperturbative effects. We also
demonstrate that the obtained results close to the timelike axis can be used as a good
approximation to the spectral representation of the self-energy.

2 DSE in Minkowski and Euclidean metric

In the Minkowski metric, we can write the inverse fermion propagator S−1 as

S−1(p) = p/A(p2) −B(p2) = A(p2)
(
p/−M(p2)

)
, (1)

with M(p2) = B(p2)/A(p2). For convenience we also define Z(p2) = 1/A(p2). With
this notation, the fermion propagator S can be written as

S(p) =
A(p2) p/+B(p2)

A2(p2) p2 −B2(p2) + iǫ
= Z(p2)

p/+M(p2)

p2 −M2(p2) + iǫ
, (2)

where we have introduced the iǫ prescription to select the correct Riemann sheet when
the denominator in the spectral representation vanishes. For simplicity, however, we
will suppress the explicit iǫ’s unless that could cause ambiguities.

Next, consider DSE for the fermion propagator in the rainbow (ladder) truncation
by coupling to a vector boson with mass µ and PV regularization with mass Λ,

S−1(p) = p/−m0 − ig2
∫

d4k

(2π)4
γµ S(k) γν [Dµν(q;µ) −Dµν(q; Λ)], (3)

with the bare fermion mass m0 and q = p − k. The (massive) vector boson in the
covariant gauge can be written as [25]

Dµν(q;m) =
−1

q2 −m2 + iǫ

[
gµν − (1 − ξ)

qµqν
q2 − ξ m2 + iǫ

]
, (4)

where ξ is the gauge parameter. The Landau gauge is defined by ξ = 0, while ξ = 1
defines the Feynman gauge. For simplicity, we will only consider Feynman gauge here.
Projecting out the equations for A and B we arrive at

B(p2) = m0 + ig2
∫

d4k

(2π)4
4B(k2)

k2A2(k2) −B2(k2)

Λ2 − µ2

(q2 − µ2)(q2 − Λ2)
, (5)

A(p2) = 1 + ig2
∫

d4k

(2π)4
2 p · k
p2

A(k2)

k2A2(k2) −B2(k2)

Λ2 − µ2

(q2 − µ2)(q2 − Λ2)
, (6)

with implicit iǫ prescriptions for various propagator poles.
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Solving the DSE numerically directly in Minkowski space poses the following chal-
lenges:

• the integration
∫
d4k in Minkowski metric;

• the known singularities in the denominators (q2 − µ2) and (q2 − Λ2);

• the unknown but expected singularity in the denominator k2A2(k2) −B2(k2).

The first challenge can be dealt with by integrating over k0 and ~k separately:

∫
d4k

(2π)4
=

∫ ∞

−∞

dk0
2π

∫
d3~k

(2π)3
. (7)

The latter two could be overcome by using an explicitly nonzero iǫ in the propagator
denominators. However, numerically this is not necessarily stable, in particular since
the location of the singularity in the fermion propagator is determined by the solution
of the DSE.

Indeed, the common practice is to perform a formal Wick rotation to Euclidean
space, avoiding the singularities altogether. Of course, the DSE can only be solved
for Euclidean momenta after such a procedure, corresponding to spacelike momenta
in Minkowski metric. Specifically, after applying the formal Wick rotation, we obtain
the fermion DSE using Euclidean four-vectors pE and kE,

B(−p2E) = m0 + g2
∫
d4kE
(2π)4

4B(−k2E)

k2EA
2(−k2E) +B2(−k2E)

Λ2 − µ2

(q2E + µ2)(q2E + Λ2)
. (8)

A(−p2E) = 1 + g2
∫
d4kE
(2π)4

A(−k2E)

k2EA
2(−k2E) +B2(−k2E)

2 pE · kE (Λ2 − µ2)

p2E (q2E + µ2)(q2E + Λ2)
. (9)

Note that in the Euclidean metric, p2E runs from 0 to +∞, and that results for
Euclidean p2E ≥ 0 are equivalent to the results for spacelike momenta p2 = −p2E ≤ 0
in Minkowski metric. In the next Section we discuss how one can obtain the solution
of the DSE for timelike momenta.

3 Solving the DSE numerically

In the Euclidean space, we can perform the integrations using 4-dimensional hyper-
spherical coordinates:

∫
d4kE
(2π)4

=

∫ ∞

0

k3E dkE
(2π)4

∫ π

0

sin2(θ) dθ

∫ π

0

sin(φ) dφ

∫ 2π

0

dα. (10)

The unknown functions A and B of the fermion propagator depend only on k2, and
there is only one nontrivial angle in the integrand, namely the angle between k and p.
Thus we can perform two of the three angular integrations analytically, with the
remaining angular integral to be evaluated numerically

∫
d4kE
(2π)4

I(k, p) = 2

∫ ∞

0

k3E dkE
(2π)3

∫ π

0

sin2(θ) dθ I
(
k2E, p

2
E, cos(θ)

)
. (11)
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This leads to a set of coupled nonlinear integral equations in one dimension for space-
like values of p2E ≥ 0,

B(−p2E) = m0 +
2 g2

(2π)3

∫ ∞

0

k3E dkE
4B(−k2E)

k2EA
2(−k2E) +B2(−k2E)

×
∫ π

0

sin2 θ dθ
Λ2 − µ2

(q2E + µ2)(q2E + Λ2)
, (12)

A(−p2E) = 1 +
2 g2

(2π)3

∫ ∞

0

k3E dkE
A(−k2E)

k2EA
2(−k2E) +B2(−k2E)

×
∫ π

0

sin2 θ dθ
2 kE cos θ

pE

Λ2 − µ2

(q2E + µ2)(q2E + Λ2)
. (13)

It is straightforward to solve these coupled nonlinear integral equations iteratively
using a suitable discretization of the integrals and an initial guess for the functions A
and B.

3.1 Un-Wick rotating from the Euclidean solution

Instead of using 4-dimensional hyperspherical coordinates, we can also integrate over
the fourth (or energy) component separately, and use 3-dimensional spherical coordi-
nates for the remaining 3 dimensions,

∫
d4kE
(2π)4

=

∫ ∞

−∞

dk4
2π

∫
d3~k

(2π)3
=

1

(2π)3

∫ ∞

−∞
dk4

∫ ∞

0

k2v dkv

∫ π

0

sin(φ) dφ, (14)

where kv = |~k|. In this case, it is convenient to write the inverse of the fermion
propagator A and B as functions of two variables, p4 and pv. After doing so, we
arrive at

B(p4, pv) = m0 +
g2

(2π)3

∫ ∞

−∞
dk4

∫ ∞

0

k2v dkv
4B(k4, kv)

(k24 + k2v)A2(k4, kv) +B2(k4, kv)

×
∫ π

0

sin(φ) dφ
Λ2 − µ2

(q2E + µ2)(q2E + Λ2)
, (15)

A(p4, pv) = 1 +
g2

(2π)3

∫ ∞

−∞
dk0

∫ ∞

0

k2v dkv
A(k4, kv)

(k24 + k2v)A2(k4, kv) +B2(k4, kv)

×
∫ π

0

sin(φ) dφ
2 (p4k4 + pvkv cosφ)

p24 + p2v

Λ2 − µ2

(q2E + µ2)(q2E + Λ2)
, (16)

where q2E = (p4 − k4)2 + (~p− ~k)2 = p24 − 2p4k4 + k24 + p2v − 2pvkv cos(φ) + k2v. We can
now solve for A and B as functions of two variables, p4 and pv, and up to numerical
precision, we should get the same results for A(p24 + p2v) and B(p24 + p2v) as above.

We can now undo the Wick rotation by applying the transformation

p4 → e−iδp4, k4 → e−iδk4, dk4 → e−iδdk4, (17)
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while keeping p4 and k4 real, analogous to the method used in Ref. [24] to obtain the
Minkowski space Bethe–Salpeter amplitudes from the Euclidean BSE. As long as the
contribution from the integral along the arcs at |k4| = ±∞ vanishes, true in the case
of PV regularization, we only need to keep the integration over k4 from −∞ to ∞.

In the limit of δ → π/2 this transformation becomes

p4 → −ip4 ≡ p0, k4 → −ik4 ≡ k0, dk4 → −idk4 ≡ dk0, (18)

which recovers the DSEs in the Minkowski metric, for both the spacelike and the
timelike region. Indeed, applying this transformation to Eqs. (15) and (16), we obtain

B(p0, pv) = m0 + i
g2

(2π)3

∫ ∞

−∞
dk0

∫ ∞

0

k2v dkv
4B(k0, kv)

(k20 − k2v)A2(k0, kv) −B2(k0, kv)

×
∫ π

0

sin(φ) dφ
Λ2 − µ2

(−q20 + q2v + µ2)(−q20 + q2v + Λ2)
, (19)

A(p0, pv) = 1 + i
g2

(2π)3

∫ ∞

−∞
dk0

∫ ∞

0

k2v dkv
A(k0, kv)

(k20 − k2v)A2(k0, kv) −B2(k0, kv)

×
∫ π

0

sin(φ) dφ
p0k0 − pvkv cosφ

p20 − p2v

Λ2 − µ2

(q20 − q2v − µ2)(q20 − q2v − Λ2)
, (20)

where q20 = (p0 − k0)2 and q2v = (~p− ~k)2. Now we can recognize p20 − p2v as p2 in the
Minkowski metric, and similarly for k20−k2v and q20−q2v, and thus we arrive at the DSE
in Minkowski space, Eqs. (5) and (6). Of course, in these expressions for the DSEs
in Minkowski metric for both timelike and spacelike momenta, there are singularities
in the propagators under the integral, which are understood in conjunction with iǫ
prescription.

With δ ∈ (0, π/2), the transformation given by Eq. (17) acts as the tool to interpo-
late the DSEs between the Euclidean and Minkowski metrics. In the limit of δ → π/2,
the Minkowski space invariant p2 = p20 − p2v is real and runs from −∞ to +∞. But
for 0 < δ < π/2 the ‘invariant’ p2 = −e−2iδp24 − p2v covers a slice in the upper com-
plex p2 plane. As δ approaches π/2, it covers almost the entire upper complex mo-
mentum plane, and ‘collapses’ onto the real axis only in the limit δ → π/2. As long
as there are no singularities in the upper complex p2 plane, we can continuously con-
nect the solution of the DSEs near the timelike region to the solution in the spacelike
region. As a consistency check, for any value of 0 ≥ δ ≥ π/2, we should obtain the
same (spacelike) solution for p4 = 0.

In Fig. 1 we present solutions of the DSE in the Feynman gauge obtained by un-
Wick rotating p4. When un-Wick rotating p4 from the Euclidean metric, we solve the
DSE on a slice in the complex p2 = ei 2δp24 + p2v plane; the boundaries of this slice are
given by (p4 = 0, pv), which corresponds to the spacelike axis, and by (p4, pv = 0),
which approaches the timelike axis in the limit δ → π/2. The results for A(p4 = 0, pv)
and B(p4 = 0, pv), i. e., on the spacelike axis, are indeed independent of the angle δ
and purely real, as is shown in the left panel of Fig. 1. In the right panel, we show
our results as a function of p4 for pv = 0, in which case we do see a dependence on the
angle δ, as expected; furthermore, both A and B develop an imaginary part, which
increases in magnitude with increasing δ. However, as we approach δ = π/2, the
numerics becomes unstable due to singularities in the propagators, which prevents us
from actually reaching the timelike axis.
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Figure 1: Real and imaginary parts of the inverse propagator functions A (solid)
and B (dashed) at different angles δ, obtained by un-Wick rotating the Euclidean
solution as a function of pv at p4 = 0, corresponding to the spacelike p2 axis (left)
and as a function of p4 at pv = 0, along a line in the complex p4e−i δ plane (right);
δ = π/2 would be the timelike axis. On the right we also show our results of rotating
the magnitude of p from the spacelike region towards the timelike region, which are
indistinguishable at the scale shown. Parameters are m0 = 0.5, µ = 1.0, Λ = 10.0,
and α = 0.5.

3.2 Rotating the spacelike region to the timelike region

Alternatively, we can rotate the DSE from the Euclidean spacelike axis towards the
timelike axis by applying the transformation

p→ e−iδp, k → e−iδk, dk → e−iδdk (21)

on the magnitude of the (Euclidean) four-vectors, while continuing to use 4-dimensional
hyperspherical coordinates, as was done in, e. g., Refs. [8, 9]. With this technique we
keep p and k real (and positive), and we retain the 4-dimensional symmetry. As long
as the contribution along the arc at k = ∞ vanishes (and with the explicit PV regu-
larization it does), we can neglect the contribution along this arc, and keep only the
integration over k from 0 to ∞.

In the limit of δ = π/2 this transformation becomes

p2E → −p2E = p2, k2E → −k2E = k2, k3E dkE → k3E dkE = k3 dk, (22)

and effectively this gives us the DSEs on the pure timelike axis with p2 ≥ 0,

B(p2) = m0 −
2 g2

(2π)3

∫ ∞

0

k3 dk
4B(k2)

k2A2(k2) −B2(k2)

×
∫ π

0

sin2 θ dθ
Λ2 − µ2

(q2 − µ2)(q2 − Λ2)
, (23)

A(p2) = 1 − 2 g2

(2π)3

∫ ∞

0

k3 dk
A(k2)

k2A2(k2) −B2(k2)

×
∫ π

0

sin2 θ dθ
2 k cos θ

p

Λ2 − µ2

(q2 − µ2)(q2 − Λ2)
. (24)
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Note, Eqs. (23) and (24) are for timelike momenta only, p2 ≥ 0, k2 ≥ 0,
and q2 = (p− k)2 ≥ 0 — they are different from the DSEs in the Minkowski met-
ric, Eqs. (5) and (6). Again, singularities under the integrals are specified by the iǫ
prescription.

For any 0 < δ < π/2, this method gives the DSE along the line from 0 to ∞ in the
upper complex p2 plane, rather than on the slice of the upper complex momentum
plane. Furthermore, it remains an integral equation in one variable, rather than in
two variables as with the method described in the previous subsection. This method is
therefore numerically easier to implement, and leads to a better numerical precision.

In the right panel of Fig. 1, we also include our results obtained with this method.
Not surprisingly, the results of the two methods are essentially indistinguishable, at
least at the scale shown. However, the method of rotating the magnitude of p is much
more accurate (for a similar numerical effort) than the explicit un-Wick rotation of
the fourth component, because when we un-Wick rotate the fourth component, we
break the 4-dimensional symmetry by treating the fourth component and the 3-vector
components differently. Furthermore, we solve the propagator functions A and B
as functions of two independent real variables, p4 and pv, for a given angle δ (or,
equivalently, as a function of one complex variable p2 = p24ei 2δ + p2v), whereas, if
we rotate the magnitude of p, the functions A and B remain functions of only one
essentially real variable. In particular, as δ approaches π/2, in the case of the un-
Wick rotation we solve the DSE in the entire upper p2 plane, whereas, if we rotate
the magnitude of p, we solve the DSE along a line from 0 to ∞ close to the timelike
axis. Clearly, the latter approach is more efficient numerically.

4 Results for the self-energy in the timelike region

In order to discuss our results as we approach the timelike region, it is more convenient
to use θ = π/2−δ; with this notation the timelike axis corresponds to the limit θ → 0.
For moderate values of the coupling (well below those corresponding to dynamical chi-
ral symmetry breaking), we can achieve accurate results down to θ = π/256 ≈ 0.7◦ by
rotating the magnitude of p, whereas if we decrease θ below about θ = π/16 ≈ 11◦,
the un-Wick rotation becomes numerically challenging, requiring an efficient imple-
mentation on parallel high-performance computing systems.

In Fig. 2 we see that the imaginary parts of A(p2) and B(p2) become nonzero along
the timelike axis. Furthermore, both the real parts and the imaginary parts of A(p2)
and B(p2) develop kinks, that is, discontinuities in their derivatives. The location of
these kinks is determined by the physical thresholds for the production of an exchange
particle; these kinks occur at (mphys+µ)2 and (mphys+Λ)2, where the pole mass mphys

is determined from the zero of the inverse propagator, at M(p2) =
√
p2.

These kinks are generally attributed to the integration over the propagator poles
in Eqs. (5) and (6), where one (or more) denominator becomes zero. Mathematically,
the kinks are caused by a pinch singularity due to the zeros of the exchange boson
propagator and the fermion propagator in Eqs. (5) and (6).

4.1 Analytic structure and pole mass

In Fig. 3 we show our results for M2(p2) and Z(p2) = 1/A(p2) in the infrared re-
gion. The fermion propagator has a singularity at p2 = M2(p2) = m2

phys in the
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Figure 2: Real and imaginary parts of the inverse propagator functions A (dashed)
and B (solid) at different angles θ close to the timelike axis. Both figures are
with m0 = 0.5 and the PV mass Λ = 10; the exchange mass µ = 1.0 and α = 0.5
(left) and the massless vector boson and α = 0.1 (right).

timelike region. With a nonzero mass for the exchange boson, this singularity is a
simple mass-pole (at least in the Feynman gauge) — but neither the inverse propaga-
tor functions A2(p2) and B(p2), nor the dynamical mass function M(p2) shows any
discontinuity or kink at this mass-pole.

The first kink or branch-point in the inverse propagator functions is located
at (mphys + µ)2 ≥ m2

phys, as marked by the vertical dotted line in Fig. 3. At this
kink, both the propagator itself and the inverse propagator functions have a branch-
point, at which point the imaginary part becomes nonzero. With a nonzero exchange
mass µ, this kink occurs well beyond the mass-pole at p2 = M2(p2), and both the
propagator and the inverse propagator functions are finite at this branch-point. How-
ever, in the limit of µ→ 0, this branch-point coincides with the mass-pole singularity,
as can be seen in the right panel of Fig. 3. Consequently, the propagator exhibits a
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Figure 3: Real and imaginary parts of the dynamical mass squared, M2(p2) (solid),
and wave function renormalization, Z(p2) = 1/A(p2) (dashed), in the spacelike and
close to the timelike axis, again withm0 = 0.5 and the PV mass Λ = 10. The extracted
pole masses and residues are: m = 0.759 and Z(m2) = 0.82 for the mass µ = 1.0
and α = 0.5 (left) and m = 0.58 and Z(m2) = 0.34 for the massless vector boson
and α = 0.1 (right).
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more complicated singularity instead of a simple mass-pole, at which point the inverse
propagator is zero, and a branch-cut starts along the timelike axis. The sign of the
imaginary part is a consequence of the iǫ prescription — or, in the case of the un-Wick
rotation, of the direction of the rotation.

Due to the PV regularization, the (inverse) propagator has a second kink along
the timelike axis, located at (mphys + Λ)2, beyond which the imaginary parts fall off
to zero, and the real parts of the (inverse) fermion propagator approach their bare
(tree-level) values, see Fig. 2.

4.2 Spectral representation of the self-energy

With the PB regularization, the integral representation for the scalar and vector self-
energies can be written as

B(p2) = m0 +

∫ ∞

0

ds
ρB(s)

p2 − s+ iε
with ρB(s) = −Im [B(s)/π], (25)

A(p2) = 1 +

∫ ∞

0

ds
ρA(s)

p2 − s+ iε
with ρA(s) = −Im [A(s)/π], (26)

following the standard spectral representation of the propagators [25]. In principle,
the spectral functions ρA,B fully determine the scalar and vector self-energies, and
thus the propagator.

We show in the left panel of Fig. 4 approximations to the spectral functions ρA,B

obtained from the imaginary parts of A and B at different angles θ close to the
timelike axis. (Note that the angle θ is defined as the rotation angle for p0 or the
magnitude of p; in terms of the variable s used in the spectral representation, this
corresponds to an angle 2θ.) The right panel confirms that in the limit of θ → 0,
these approximate spectral functions can indeed reproduce the Euclidean (spacelike)
to high accuracy. With a more careful analysis and using a Mellin transformation, we
can use these ‘approximate spectral representations’ at nonzero values of θ to calculate
the self-energies in the entire slice of the upper complex p2 plane, bounded by the
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Figure 4: Left: Approximate spectral functions ρA,B obtained at different angles θ
close to the timelike axis for m0 = 0.5, µ = 1.0, Λ = 10.0, and α = 0.5. Right:
Spacelike self-energies obtained from the approximate spectral functions, compared
to the Euclidean solution.
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real spacelike axis (negative p2) and the line p2ei 2θ. More details will be presented in
Ref. [26].

5 Conclusion and outlook

This contribution presents a preliminary study of the nonperturbative fermion propa-
gator in both the spacelike and near the timelike regions by investigating the fermion
DSE in rainbow-ladder truncation in the Feynman gauge in a QED-like theory. Two
methods to solve the Pauli–Villars regulated DSE were implemented to obtain the
self-energies near the timelike axis, both relying on an analytic continuation of the
Euclidean DSE into the complex momentum plane. In the first approach the energy
component of the four-momenta are complex-rotated to bring the Euclidean formu-
lation towards the Minkowski metric, while in the second method the magnitude of
the four-vector p is complex-rotated to rotate the spacelike axis towards the timelike
axis. Both methods were used to compute the Dirac scalar and vector self-energies of
the fermion near the timelike region. The second method showed to be much more
accurate allowing calculations with angles as small as θ = π/256 ≈ 0.7◦, quite close
to the timelike axis. This is natural as with a fixed angle, in the first method the
DSE has to be solved as function of two real variables, while in the second approach
the scalar and vector self-energies depend on only one real variable, allowing a finer
grid in this one variable.

The coupling constant was chosen sufficiently large for the solutions to allow for
noticeably nonperturbative effects, while below the value for the dynamical chiral
symmetry breaking. With a massive vector boson, the obtained nonperturbative
fermion propagator has a mass-pole at p2 = M2(p2) = m2

phys on the timelike axis,

followed by a branch-cut starting at p2 = (mphys +µ)2. With massless bosons, µ = 0,
this branch-cut starts at the physical mass, and the mass-pole becomes a more com-
plicated singularity. Finally, the imaginary part of the self-energies along the timelike
axis were used to obtain the spectral densities, from which the spacelike self-energies
were computed in good agreement with the Euclidean self-energies.

In the future, we intend to explore in more detail the analytic structure of the
fermion propagator in the complex plane by, e. g., generalizing the spectral represen-
tation with finite θ associated with the study the solutions of Laplace equations using
Mellin transform [26]; we also plan to extend these investigations to other gauges, in
particular the Landau gauge, and to other theories. The next step will be to use these
nonperturbative propagators in the Minkowski metric for bound state calculations and
to explore hadron structure directly in the Minkowski space.
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[20] T. Frederico, G. Salmè and M. Viviani, Phys. Rev. D 89, 016010 (2014).

[21] J. Carbonell and V. A. Karmanov, Eur. Phys. J. A 46, 387 (2010).

[22] W. de Paula, T. Frederico, G. Salmè and M. Viviani, Phys. Rev. D 94, 071901
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Bound States of Relativistic Nature
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Abstract

Bethe–Salpeter equation for massless exchange and large fine structure con-
stant α > π/4, in addition to Balmer series, provides another (abnormal) series
of energy levels which are not given by the Schrödinger equation. So strong
field can be created by a point-like charge Z > 107. The nuclei with this charge,
though available, are far from being point-like that weakens the field. Therefore,
the abnormal states of this origin do hardly exist.

We analyze a more realistic case of exchange by a massive particle when the
large value of coupling constant is typical for the strong interaction. It turns
out that this interaction still generates a series of abnormal relativistic states.
The properties of these solutions are studied. Their existence in nature seems
to be possible.

Keywords: Bethe–Salpeter equation; massive ladder exchange; relativistic bound
states

1 Introduction

The Bethe–Salpeter (BS) equation [1] is a relativistic counterpart of the Schrödinger
equation. In the spinless case, for a two-body system, it reads

Φ(k, p) =
i2[

(p2 + k)2 −m2 + iǫ
][

(p2 − k)2 −m2 + iǫ
]
∫

d4k′

(2π)4
iK(k, k′, p) Φ(k′, p),

(1)
p is the total four-momentum, k is the relative one. The bound state mass sqared
is M2 = p2 = (2m−B)2 and B is the (positive) binding energy. The kernel in Eq. (1)
in the case of exchange by a particle with mass µ has the form

iK(k, k′, p) =
i(−ig)2

(k − k′)2 − µ2 + iǫ
. (2)

Soon after its derivation, the BS equation was studied by Wick [2] and Cutkosky [3] in
the model of two spinless particles interacting by a massless scalar exchange (µ = 0),
since known as Wick–Cutkosky model. Solving Eq. (1) in the limit of small binding

Proceedings of the International Conference ‘Nuclear Theory in the Supercomput-
ing Era — 2018’ (NTSE-2018), Daejeon, South Korea, October 29 – November 2,
2018, eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2019, p. 212.

http://www.ntse.khb.ru/files/uploads/2018/proceedings/Karmanov.pdf.
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energies (B/m << 1), these authors reproduced the Coulomb spectrum, i. e., the
Balmer series,

Bn =
α2m

4n2
, (3)

given also by the Schrödinger equation with the potential V (r) = −α
r , where

α = g2/(16πm2). (Wick and Cutkosky [2, 3] used another definition of the coupling
constant: λ = α

π ). According to Ref. [3], when α → 2π, the ground state of mass M
determined by Eq. (1) tends to 0. When α > 2π, there is no physical solution for the
ground state: M2 becomes negative.

To solve the BS equation, Cutkosky has represented the BS amplitude for the
S-wave states in the following integral form:

Φn(k, p) =

n−1∑

r=0

∫ 1

−1

grn(z) dz

[m2 − 1
4M

2 − k2 − p · k z − ıǫ]2+n
, n = 1, 2, ... (4)

After substituting Eq. (4) into Eq. (1) and some manipulations, one finds that
the functions grn(z) satisfy coupled integral equations with an exception of g0n which
satisfies a decoupled homogeneous equation. Other functions grn, 0 < r ≤ (n− 1), are
then determined from g0n through the remaining equations. Denoting henceforth g0n
by gn, one obtains the equation for gn,

g′′n(z) +
2(n− 1)z

(1 − z2)
g′n(z)− n(n− 1)

(1 − z2)
gn(z) +

α

π

1

(1 − z2)(1 − η2 + η2z2)
gn(z) = 0, (5)

where η = M
2m = 1 − B

2m and the boundary conditions are gn(±1) = 0. For a given n,
this homogeneous equation has another infinite spectrum Mnk distinct from the ordi-
nary relativistic generalization of the Balmer series, corresponding to bound states gnk
with binding energies Bnk = 2m −Mnk depending on the second integer quantum
number k = 1, 2, 3, ... . In the limit of small binding energies, Bnk is independent of n,
namely:

Bnk ≈ Bk = m exp

(
− 2π3/2k√

α− π/4

)
, (6)

For k = 0 and arbitrary n, the levels are still given by the Balmer series (3) corre-
sponding to the so-called normal ones. The abnormal solutions gnk(z) have k nodes
in z. The solutions gnk(z) are symmetric in z → −z for even k and antisymmetric
for odd k. The corresponding BS amplitudes in the rest frame are symmetric or an-
tisymmetric relative to k0 → −k0. It was shown in Ref. [4] that the antisymmetric
solutions do not contribute to the S-matrix and therefore they are hardly observable.
Therefore we will consider the symmetric (normal and abnormal) states only.

To summarize, for the massless exchange, in addition to the Balmer series, the BS
equation predicts for each n another series of states with binding energies Bnk given
by Eq. (6) in the limit B/m << 1. These states exist only if α > π

4 . Their binding
energies tend to zero when α → π

4 . They are absent in the spectrum of non-relativistic
Schrödinger equation, and therefore they were called “abnormal”.

Wick and Cutkosky found analytical solutions of Eq. (5) in the limit η = M
2m → 1.

We solved this equation numerically for arbitrary η. The examples of normal and
abnormal symmetric solutions g(z) are shown in Figs. 1 and 2 respectively. These
solutions correspond to n = 1 and differ by the k values: k = 0 and k = 2.
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Figure 1: Normal solution g(z) of Eq. (5) (µ = 0) corresponding to n = 1, k = 0,
B = 0.2, α = 1.786.

The aim of our research is to answer the question: can the abnormal states exist
in the nature or not? In the case of the massless exchange considered by Wick and
Cutkosky and sketched above, the answer seems to be negative. The required coupling
constant α > π

4 is too large to be reached in practice. Indeed, since the value α = 1
137

corresponds to Z = 1, α > π
4 corresponds to the charge Z > π

4 /(
1

137 ) ≈ 107. Nuclei

with this and larger charges, though do not exist in nature, were created in a labora-
tory (Z = 107 corresponds to bohrium). However, they are far from being point-like.
Since the charge is distributed in a large volume, the strength of the electric field is
reduced. Therefore, to create an abnormal state, one needs even larger (maybe, much
larger) value of Z. This makes the problem unrealistic.

However, the value α = π
4 ≈ 0.78 is normal when dealing with strong interac-

tions. The latters are modeled by a massive particle exchange. Therefore, in our
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Figure 2: Abnormal symmetric solution g(z) of Eq. (5) (µ = 0) corresponding to
n = 1, k = 2, B = 0.2, α = 17.19.
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research, we will replace the massless exchanged particle by a massive one, and we
will study whether or not the abnormal states will still survive. It turns out that the
most peculiar properties of the abnormal states in the Wick–Cutkosky model (the
existence of the critical coupling constant αc = π

4 determining the existence of the
abnormal states; the simultaneous appearance and disappearance of infinite series of
levels when the coupling constant crosses the critical value) are a consequence of the
zero exchanged mass. One could then expect that these properties do not exist any-
more in the massive case. However, this does not forbid the existence of the abnormal
states at all, though a definite answer requires some research.

2 Non-zero exchanged mass

For solving this problem, it is still convenient to use an integral representation for the
BS amplitude similar to Eq. (4), namely:

Φ(k, p) =

∫ ∞

0

dγ

∫ 1

−1

g(γ, z) dz
[
γ +m2 − 1

4M
2 − k2 − p · k z − ıǫ

]3 . (7)

This representation has been proposed by Nakanishi [5]. To simplify the notations,
we omit here the indices n, k. In contrast to Eq. (4) for the massless case, the weight
function g(γ, z) in Eq. (7) depends on an additional variable γ and, correspondingly,
the integral in Eq. (7) is double. The massless exchange corresponds to a particular
situation where the function g(γ, z) can be expressed, concerning its γ dependence,
as a superposition of the delta function and (n− 1) its derivatives in γ:

g(γ, z) = gn(γ, z) =

n−1∑

r=0

δ(r)(γ) grn(z), n = 1, 2, ... . (8)

Substituting Φ(k, p) in the BS equation (1) by its expression (7), one can derive an
equation for g(γ, z). Some properties of the solutions will be still studied analytically
whereas the spectrum and corresponding solutions will be found numerically.

For the ladder BS kernel, the equation for the weight function g(γ, z) was firstly
derived in Ref. [6], though in a little bit complicated form. For an arbitrary BS kernel,
the equation for g(γ, z) was derived in Ref. [7], though in the form containing integrals
in both sides of equation. It reads:

∫ ∞

0

g(γ′, z) dγ′
[
γ′ + γ + z2m2 + (1 − z2)κ2

]2 =

∫ ∞

0

dγ′
∫ 1

−1

dz′ W (γ, z; γ′, z′) g(γ′, z′), (9)

where κ2 −m2 − 1
4M

2. In the canonical form,

g(γ, z) =

∫ ∞

0

dγ′
∫ 1

−1

dz′ V(γ, z; γ′, z′) g(γ′, z′), (10)

for the ladder BS kernel, the equation for g(γ, z) was derived in Ref. [8]. In this work,
the expression for the kernel V(γ, z; γ′, z′) corresponding to the ladder BS kernel, was
found.
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It was noticed in Ref. [9] that the l.h.s. of Eq. (9) is the generalized Stieltjes
transform which can be inverted analytically. In this way, the equation for g(γ, z)
in the canonical form valid for arbitrary BS kernel, was derived. For the ladder BS
kernels, the kernels V(γ, z; γ′, z′) in Eq. (10) found in Ref. [9] and [8], coincide with
each other. A useful research of the non-relativistic limit of the BS equation was done
in Ref. [10].

We will analyze the equation in the form (10) with the kernel derived in Ref. [8]
from the ladder kernel (2). This kernel reads

V(γ, z; γ′, z′) = +
αm2

2π
×
{
h(γ,−z; γ′,−z′) if −1 ≤ z′ ≤ z ≤ 1,
h(γ, z; γ′, z′) if −1 ≤ z ≤ z′ ≤ 1,

(11)

with the function

h(γ, z; γ′, z′) = θ(η)P (γ, z, γ′, z′) +Q(γ′, z′), (12)

where

P (γ, z, γ′, z′) =
B

γA∆

1 + z

(1 + z′)
− C(γ, z, γ′, z′)

with

A(γ′, z′) =
1

4
z′

2
M2 + κ2 + γ′, B(γ, z, γ′, z′) = µ2 + γ′ − γ

1 + z′

1 + z
,

C(γ, z, γ′, z′) =

∫ y+

y−

χ(y) dy, Q(γ′, z′) =

∫ ∞

0

χ(y) dy,

∆(γ, z, γ′, z′) =
√
B2 − 4µ2A.

The functions C and Q contain the function

χ(y) =
y2

[y2 +A+ y(µ2 + γ′) + µ2]
2

and the integration limits in C are given by y± = −B±∆
2A . The argument η of the

θ-function in the first term of Eq. (12) is

η = −B − 2µ
√
A = γ

1 + z′

1 + z
− µ2 − γ′ − 2µ

√
1

4
z′2M2 + κ2 + γ′.

The results of solving numerically Eq. (10) with the parameters µ = 0.15 and
B = 0.2 are displayed in Fig. 3. The coupling constant α = 2.1 and corresponds
to the “normal” state. They have been obtained in a recent work [11] by using the
same spline techniques as in Ref. [7]. The Nakanishi weight function g has been
computed by several authors in the past either by solving Eq. (9) or its equivalent
normal form of Eq. (10). None of them put in evidence a striking behavior of this
quantity manifested in Fig. 3 — it is a step-like function on variable γ but has a flat
behavior in some domain as a function of variable z. The numerical difficulties in
finding solution appear, on one hand, because of the g numerical instabilities related
to the ǫ-trick introduced in Ref. [7], and, on the other hand, because of describing a
flat behavior by a Gaussian-like basis expansion employed in Refs. [8, 12–14]. This
behavior has been also proved analytically in Ref. [11] and will be discussed below in
Section 4.
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Figure 3: Nakanishi weight function g(γ, z) corresponding to m = 1, µ = 0.15, B = 0.2
and α = 2.1 as a function of γ for a fixed z (top) and as a function of z for a fixed γ
(bottom).

3 Non-relativistic limit

The “relativistic world” differs from the non-relativistic one by the existence of the
limiting value of speed of any object or signal, which is identified with the speed of
light c. Calculating via a relativistic equation the binding energy corresponding to
a normal state and taking the limit c → ∞, we should obtain the non-relativistic
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binding energy. The abnormal states, not existing in the non-relativistic limit, should
disappear when c→ ∞. The relativistic equations presented above implied c = 1. To
study the limit c→ ∞, we should now restore the speed of light c in these equations.

The strategy is the following. We should introduce c in the parameters which
are used as an input in the equation. This, of course, automatically has an influence
on the parameters which are the “output” (found from the equation), therefore we
should leave their value untouched. This means that we should replace m by mc2. As
for the total mass, it is not an independent parameter (not an input), it is expressed
as M = 2mc2 − B. Therefore one should not make the replacement M → Mc2. The
same is valid for B since it is also not an input, but it is found from the equation
(already containing mc2) as an eigenvalue. Therefore one also should not make the
replacement B → Bc2, one should keep instead the binding energy B as it is. Since
the coupling constant in QED is α = e2/(~c), the c value should appear in the coupling
explicitly. Therefore α should be replaced by α/c.

In the last replacement, there was no any reference to the mass of the exchange
particle. Therefore it is valid not only in QED, but also in the Yukawa model with a
massive particles exchange. A subtle point is the replacement of the exchanged mass µ.
The ladder exchange results in the Yukawa potential with the factor ∼ exp(−µr).
Restoring c in this factor, we get exp

(
−µc2r

~c

)
. We get a zero-range potential in

the limit c → ∞, the Yukawa potential shrinks to a delta-function. However, in the
present research, we study how the energies found from a relativistic equation are
transformed into the energies determined by the Schródiger equation with a given
potential V (r), and we are not interested in the effects resulting from the variation
of V (r) with c. The shrink is avoided if we replace µ→ µc, not µ→ µc2.

With these replacements made in the kernel V , we solve Eq. (10) numerically and,
varying c, we study the behavior of two energy levels. More precisely, for a fixed
binding energy B, we study the behavior of the coupling constant α as a function of c
in the interval 1 ≤ c ≤ 10. We use m = 1, µ = 0.15 and B = 0.1. For one of the states,
which we associate with the “normal” solution, we found α(c = 1) ≈ 1.45. For another
state, which we associate with the “abnormal” solution, we found α(c = 1) ≈ 10. The
results for α(c) for these two states are shown in Figs. 4 and 5. These curves have
opposite behaviors (decreasing and increasing) as functions of c.

We see in Fig. 4 that in the non-relativistic limit (c → ∞) α decreases and tends to
the limiting finite value α ≈ 0.9. This value is just the coupling constant of the Yukawa
potential providing the binding energyB = 0.1 in the Schrödinger equation. Therefore
we associate this solution with the “normal” one which has the non-relativistic limit.
The decrease of α with c seen at Fig. 4 can be easy explained qualitatively. As it was
noticed in many papers, the relativistic effects added to the non-relativistic dynamics,
result in an effective repulsion. Therefore, when we go to the non-relativistic limit (c
increases), we decrease this repulsion. Hence, we need a smaller coupling constant α
to keep the fixed value of the binding energy B = 0.1.

According to the curve α(c) shown in Fig. 5, the value of α increases with c,
at least in the interval 1 ≤ c ≤ 10. The disappearance of the abnormal states
as c increases means that the corresponding energy levels are “pushed out” into the
continuum spectrum. That is, they move up and cross the value B = 0. To prevent
this movement and to keep these levels at a constant value, say, at B = 0.1, like in
Fig. 5 at c = 1, one should increase the attraction. Hence, when c increases, we need
a larger coupling constant α as is observed in Fig. 5. Therefore we associate this
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coupling constant for the Yukawa potential in the Schrödinger equation.

solution with the “abnormal” one.

These results demonstrate the existence of the abnormal states in the solution
of the BS equation with the massive ladder kernel (we assume that the qualitative
behavior of α as a function of c can be extrapolated to larger c values). At least one
of them is found and the corresponding α(c) function is shown in Fig. 5.

Coming back to the zero-mass exchange, we can make the replacements m→ mc2

and α → α/c in the Eq. (6) describing the binding energy Bk. Then, solving this
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Figure 5: The coupling constant α vs the speed of light c for the parameters m = 1,
µ = 0.15, B = 0.1 for the “abnormal” solution.
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equation with respect to α, we find:

α = c

(
π

4
+

4π3k2

log2 Bk

mc2

)
. (13)

This formula gives an analytical example of the dependence α(c) which has no finite
limit at c→ ∞, that serves as an undoubted property of the abnormal state.

We remind that for the massless exchange, there exists another criterion to select
an abnormal state: it is the existence of nodes in the solution g(z) (see Fig. 2).
Though for distinguishing an abnormal state it is sufficient to fit only one of these
two criterions, it is useful to establish both. For the massive exchange, we discussed
so far only one criterion for the selection of an abnormal solution: the absence of a
finite limit of α as c → ∞. Below we will formulate another criterion, also based on
an analysis of nodes of the solution g(γ, z).

4 Properties of the z-dependence

of the solution g(γ, z)

In the case of massless exchange discussed in Section 1, a normal solution g(z) has
no nodes (see Fig. 1). However, for massive exchange, this property cannot be used
to distinguish a normal solution. In Fig. 6 we show the solution g(γ, x) (with the
parameters m = 1, µ = 0.15, B = 0.1, α = 1.4375) for the fixed value γ = 0.17
as a function of x = 1

2 (1 + z). Instead of z, we introduced for convenience the new
variable x varying in the limits 0 ≤ x ≤ 1. This is a normal solution since the
dependence α(c) corresponding to this solution, is shown in Fig. 4.

In spite of the fact that this solution is normal, it has nodes as a function of x for a
fixed γ. However, it turns out that the behavior of g(γ, x) is qualitatively different in
different parts of the domain of its definition. There is an area where g(γ, x) = const.
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γ ≤ γ0(x) ∼
{
µx if 0 ≤ x ≤ 1

2 ,
µ(1 − x) if 1

2 ≤ x ≤ 1.
(14)

The domain (0 ≤ γ <∞, 0 ≤ x ≤ 1) is shown in Fig. 7, the shaded area corresponds
to Eq. (14).

Let us fix the γ = 0.005 from the area defined by Eq. (14) and consider the x
dependence of g(γ = fixed, x). This corresponds to the variation of x along the
vertical line crossing the triangle in Fig. 7. Solving numerically Eq. (10) for the
normal solution of the type shown in Fig. 6 for γ = 0.17, we now obtain Fig. 8. We
see that in the interval x1 < x < x2 where the vertical line in Fig. 7 is inside the
shaded triangle, the function g(γ = 0.005, x) is indeed constant, as expected. Outside
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this interval, when x is close to 0 or to 1, g(γ = 0.005, x) varies. However, it has
no nodes. In this respect, the behavior of the normal solution g(γ = 0.005, x) is
analogous to the behavior of normal g(z) for the massless exchange. The latter has
nodes nowhere except for the points x = 0 and 1, where the nodes are imposed by
the boundary conditions.

The symmetric abnormal solution for the same parameters (though, of course, for
a different binding energy) is shown in Fig. 9. It is still constant when x is inside
the domain defined by Eq. (14) and has nodes outside this domain, in contrast to the
normal solutions. Like for the massless exchange, this gives us another criterion

(
in

addition to the limit α(c → ∞)
)

to distinguish, in the case of the massive exchange,
the abnormal solutions from the normal ones.

We emphasize that these results are based on the numerical calculations. It would
be useful to derive them analytically.

5 Conclusion

Like the Dirac equation predicting antiparticles, the BS equation predicts bound
states having a purely relativistic origin: these are the so-called “abnormal” states,
not given by the Schrödinger equation.

We have found that such states, previously obtained in the Wick–Cutkosky model
(scalar massless exchange) in the case of a large coupling constant, exist also for
the interaction provided by massive exchange with values of the coupling constant
typical for the strong interaction. It is worth conjecturing that these states could be
manifested in some processes in nature. One should analyze from this point of view
systems which is difficult to describe as ordinary bound states and and which require
exotic speculations. Maybe, some of these systems are “abnormal” ones.

For a deeper understanding of the abnormal states, it would be useful to calculate
corresponding electromagnetic form factors, to compare them with the “normal” form
factors and to calculate also the transition form factors of the type normal ↔ abnormal
states.
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A clarification of the content of the “abnormal” state vector, i. e., of the contribu-
tions to its norm of the Fock components with different numbers of particles, is still an
intriguing problem. Preliminary results look as follows. For the normal state, when
the binding energy tends to zero, the contribution of the two-body sector dominates
in the norm of the state vector. On the contrary, for the abnormal state, when the
binding energy tends to zero (α→ π

4 ), the contribution of the two-body sector to the
norm of the state vector decreases.
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Abstract

We present the first application of the Basis Light-Front Quantization method
to study a simple chiral model of the nucleon-pion system via an ab initio, non-
perturbative, Hamiltonian approach. As a test problem, we consider the physical
proton as a relativistic bound state of the nucleon-pion system. Based on the
chiral model of the nucleon-pion system, we construct the mass-squared matrix
of the system within our light-front basis representation. We obtain the proton’s
mass and the corresponding light-front wave function by solving the eigenvalue
problem of the mass-squared matrix. With the resulting boost-invariant light-
front wave function, we also compute the proton’s parton distribution function.

Keywords: Ab initio; non-perturbative; basis light-front quantization; chiral
nucleon-pion model

1 Introduction

Developing a relativistic methodology that is broadly applicable to nuclear physics
is important. Progress in this direction will be useful for studying high-momentum
experiments of nuclear targets using exclusive, nearly exclusive or inclusive processes
[1–3]. One of the promising methods for such investigations is the Basis Light-Front
Quantization (BLFQ) method [4].

BLFQ is a non-perturbative, ab initio method, which treats relativistic quan-
tum field theory via the Hamiltonian approach within the light-front (LF) formalism.
BLFQ has been shown to be a promising tool in a range of applications, such as the
electron anomalous magnetic moment [5, 6], the positronium spectrum [7], and the
heavy quarkonium structure and radiative transitions [8–12]. More recently, BLFQ
has been applied successfully to the properties of the light mesons [13], which are
then extended to higher scales by QCD evolution [14]. This Hamiltonian approach
has also been extended to develop a non-perturbative scattering framework through
time-dependent BLFQ (tBLFQ) [15–17].

Proceedings of the International Conference ‘Nuclear Theory in the Supercomput-
ing Era — 2018’ (NTSE-2018), Daejeon, South Korea, October 29 – November 2,
2018, eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2019, p. 224.

http://www.ntse.khb.ru/files/uploads/2018/proceedings/Zhao.pdf.
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The LF quantization procedure for treating a chiral nucleon-pion (Nπ) model
was first proposed by Miller [18, 19] in studying the Nπ scattering and the nucleon-
nucleon scattering via the perturbative approach. In this work, we present the first
non-perturbative, ab initio treatment of the same chiral model. As a test problem,
we consider the physical proton as the relativistic bound state of the Nπ system.
Using the BLFQ method, we compute the mass-squared matrix element of the Nπ
system within the LF basis representation. We then solve the eigenvalue problem
of the resulting mass-squared matrix and obtain the proton’s mass and LF wave
function (LFWF). The proton’s LFWF is boost-invariant and can be directly applied
to compute the observables such as the parton distribution function (PDF).

The outline of this paper is the following. We begin with the theory part in
Section 2, which introduces the elements of BLFQ, such as the derivation of the LF
Hamiltonian density, our choice of the basis construction and truncation schemes,
the derivation of the mass-squared matrix element in the basis representation, and
the formalism of the observables in this work. We present the results of the proton’s
mass, LFWF and PDF in Section 3. We conclude in Section 4, where we also discuss
our future plans.

2 BLFQ approach to a chiral model

2.1 Hamiltonian dynamics

The dynamical Nπ system can be evaluated from the eigenvalue equation

PµPµ|Ψ〉 = M2|Ψ〉, (1)

where Pµ is the energy-momentum four-vector operator. In the LF coordinates, the
mass-squared operator,

HLC ≡ P 2 = PµPµ = P+P− − (P⊥)2, (2)

is analogous to the Hamiltonian in non-relativistic quantum mechanics. The details
of the LF convention and notation in this work can be found in Refs. [10,15,20]. Since
P+ and (P⊥)2 are kinematical, the P−,

P− =
(P⊥)2 +M2

P+
, (3)

is also referred to as LF Hamiltonian that generates the LF time-evolution (dynamics).
In principle, P− can be obtained from a Lagrangian with a Legendre transformation.

HLC can be numerically evaluated when expressed as a matrix eigenvalue problem
in a complete set of basis functions as in BLFQ. In principle, the set of basis functions
has an infinite dimension. In practice, one limits the basis size by introducing a
truncation scheme(s). The resulting finite-dimensional eigenvalue problem can be
evaluated numerically as a function of cutoff(s) in the truncation scheme(s). By
extrapolation to the continuum limit, the physical observables can be obtained.

2.2 LF Hamiltonian density by Legendre transformation

Treating the chiral Lagrangians via the LF formalism (see, e. g., Refs. [21–24] and
references therein) would usually result in the difficulty in solving the constraint
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equation of the nucleon field. In order to solve this difficulty, Miller [18,19] suggested
a chiral transformation of the field variables to obtain the chiral Lagrangian of the
Gürsey-type linear representation [25]. In this work, we follow Refs. [18,19] and adopt
a chiral model of the Nπ system. The Lagrangian reads

L =
1

4
f2Tr

(
∂µU ∂µU †

)
+

1

4
M2

πf
2Tr
(
U + U † − 2

)

+ χ̄
{
γµi∂

µ −MN −MN (U − 1)
}
χ, (4)

which is a linear realization of the chiral symmetry. f is chosen to be the pion decay
constant (set as 93 MeV in this work). MN and Mπ are the nucleon mass and pion
mass, respectively. χ denotes the bi-spinor field of the nucleon. U is the unitary
matrix for the chiral transformation, in which the pion field is introduced. If one
works up to the order of 1/f2, U takes the form [18, 19]

U = 1 + iγ5
~τ · ~π
f

− 1

2f2
π2 + O

( 1

f3

)
, (5)

where ~τ denotes the Pauli matrices τa (a = 1, 2, 3), while ~π represents the scalar pion
fields πa (a = 1, 2, 3).

The corresponding constraint equation of the nucleon field is

χ− =
1

p+
γ0
[
γ⊥ · p⊥ +MNU

]
χ+, (6)

where the kinematic (dynamical) nucleon field component is χ− (χ+).
By Legrendre transformation, we obtain the LF Hamiltonian density from Eq. (4).

In this work, we keep only the terms that correspond to the processes of single-pion
emission/absorption (up to the order of 1/f). The resulting LF Hamiltonian density is

P− =
1

2
∂⊥πa · ∂⊥πa +

1

2
M2

ππaπa + χ†
+

(p⊥)2 +M2
N

p+
χ+

+ χ†
+

[
− γ⊥ · i∂⊥ +MN

] 1

p+
MN

[
iγ5

~τ · ~π
f

]
χ+

+ χ†
+MN

[
− iγ5

~τ · ~π
f

] 1

p+

[
γ⊥ · i∂⊥ +MN

]
χ+ + O(1/f2). (7)

Higher-order contributions to P− are expected to be corrections to the current cal-
culation.

2.3 Basis construction and truncation schemes

2.3.1 Symmetries

The methodology of constructing the basis for carrying out the matrix eigenvalue
solution of the LF mass-squared operator HLC within a basis representation, BLFQ,
is discussed in Refs. [4, 7, 15]. In constructing the basis, we need to pay a specific at-
tention to the symmetries of the LF Hamiltonian P−. These symmetries are: (1) the
translational symmetry in the longitudinal direction, which results in the conserva-
tion of the total longitudinal momentum P+; (2) the rotational symmetry in the
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transverse direction, which means that the longitudinal projection of the total an-
gular momentum is conserved; (3) the conservation of the net fermion number; and
(4) the transverse boost invariance. In this work, we also assume rotational symmetry
in isospin space, where the longitudinal projection of the isospin of the constituent
system is conserved. We construct the LF basis set according to these symmetries.

2.3.2 Single particle basis

We start with constructing the single-particle (s.p.) basis. In the longitudinal direc-
tion, we employ the discretized plane wave basis {|p+〉}. In particular, we constrain a
particle in a longitudinal box of length x+ = L and apply the periodic (anti-periodic)
boundary condition to boson (fermion). The longitudinal momentum is discretized as

p+ =
2π

L
j, (8)

where j = 1, 2, 3, ... for bosons and j = 1
2 , 3

2 , 5
2 , ... for fermions. Note that we

exclude the “zero modes” (j = 0) for bosons (pions in this work).
It is useful to define the longitudinal momentum fraction x in terms of the total

longitudinal momentum P+ as

x ≡ p+

P+
=

j

K
, (9)

where the dimensionless parameter K is related to P+ via the relation P+ = 2π
L K.

In the transverse direction, we employ the two dimensional harmonic oscillator
(2DHO) basis. This choice of basis is useful to insure the transverse boost invariance
of the LF kinematics [4, 26]. The generating operator for the 2DHO basis can be
expressed as [7]

PΩ
+ =

(p⊥)2

2p+
+

1

2
Ω2p+(r⊥)2 =

1

2
Ω
[ (p⊥)2

xP+Ω
+ xP+Ω(r⊥)2

]
, (10)

where the oscillator energy Ω is related to the energy scale of the 2DHO basis set as

b =
√
P+Ω. (11)

In the following, we refer to b as the basis strength.
For the convenience in evaluating integrals involving 2DHO basis, we further in-

troduce the momentum fraction weighted variables [27] as

q⊥ ≡ p⊥√
x
, s⊥ ≡ √

x r⊥, (12)

where [s⊥i , q
⊥
j ] = iδij (i, j = 1, 2). The generating operator of the 2DHO basis in

terms of the conjugate variables (s⊥, q⊥) can be rewritten as

PΩ
+ =

1

2
Ω
[( q⊥√

P+Ω

)2
+
(√

P+Ωs⊥
)2]
. (13)

In the momentum representation, the 2DHO wave function is

〈q⊥|nm〉 = Ψm
n (q⊥) =

1

b

√
4πn!

(n+ |m|)! ρ
|m|e−

1
2ρ

2

L|m|
n (ρ2) eimφ, (14)
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where the transverse momentum in the complex representation is

q⊥ = bρeiφ, (q⊥)∗ = bρe−iφ (15)

with φ = arg q⊥, |q⊥| = bρ. n, m are the quantum numbers for the radial part and
angular part of the wave function, respectively. They are related to the eigenenergy
of the corresponding 2DHO wave function

Enm = (2n+ |m| + 1)Ω. (16)

In addition to the momentum space, we also have the the spin and isospin degrees
of freedom for the Nπ model. The s.p. basis can thus be classified according to the
following set of quantum numbers

|α〉 = |x, n,m, s, t〉, (17)

where s denotes the helicity and t denotes the longitudinal projection of the isospin
of the particle. It is understood that the nucleons are of spin 1

2 and isospin 1
2 , while

pions are of spin 0 and isospin 1.

2.3.3 Multi-particle basis

The multi-particle basis is constructed as a direct product of the s.p. bases func-
tions (⊗|α〉). According to the symmetries of P− for the Nπ system, we require
the quantum numbers for all the constituent particles (labeled by i) in the retained
multi-particle basis states to satisfy the following relations:

∑

i

p+i = P+,
∑

i

mi +
∑

i

si = MJ ,
∑

i

ti = Tz,
∑

i

ni = Nf . (18)

The first identity requires all the basis states to have the same total longitudinal
momentum. It is equivalent to

∑

i

ji = K or
∑

i

xi = 1 (19)

according to Eqs. (8) and (9) for the fixed box-length L and the total longitudinal
momentum P+. The second identity in Eq. (18) states the conservation of the lon-
gitudinal projection of the total angular momentum MJ , which is produced by the
helicity si and the longitudinal projection of the orbital angular momentum mi of
each constituent particle. (Note, however, the total angular momentum J is not a
good quantum number in the LF basis states.) The third identity in Eq. (18) states
that the longitudinal projection of the total isospin Tz or, equivalently, total charge
for the system is conserved. The last identity in Eq. (18) refers to the conservation
of the net fermion number Nf , with ni = 1 for a nucleon and ni = 0 for each pion.

2.3.4 Truncation scheme

We apply three truncations in this work. First, the number of Fock sectors for the
Nπ system is truncated at the nucleon plus one-pion sector

|Nphys〉 = a|N〉 + b|Nπ〉, (20)
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with the amplitudes being a = 〈N |Nphys〉 and b = 〈Nπ|Nphys〉. It is also possible to
include higher Fock sectors, e. g., |Nππ〉. However, we will postpone this to future
work. According to the Fock sector truncation Eq. (20), we have the net fermion
number Nf = 1 for all the basis states.

Second, we cut off the total longitudinal momentum for the many-body basis state

K = Kmax, (21)

which makes the number of the longitudinal modes finite [28]. The longitudinal
continuum limit can be approached at the limit ofKmax → ∞ for a given box length L.

Third, we truncate the number of the modes in the transverse direction for the
many-body basis states by restricting the number of maximal excitation quanta,
Nmax, as

∑

i

(2ni + |mi| + 1) ≤ Nmax, (22)

where i denotes the constituent particles. By taking Nmax → ∞, the continuum limit
in the transverse direction is realized.

2.3.5 UV and IR cutoffs

There are intrinsic ultraviolet (UV) and infrared (IR) cutoffs imposed by the trunca-
tion in the transverse direction. For the 2DHO basis, the UV cutoff in momentum
space is around p⊥max ∝ b

√
Nmax, while the IR cutoff is around p⊥min ∝ b/

√
Nmax.

2.3.6 Factorization

The application of the 2DHO s.p. basis in the transverse direction with Nmax trunca-
tion admits an exact factorization of the LFWF into the “intrinsic” and the “center
of mass” (CM) components [4, 29, 30]. Taking advantage of this factorization, the
spurious CM excitation due to the adoption of the 2DHO s.p. basis can be eliminated
by the use of a Lagrange multiplier term as explained below. The analogous factoriza-
tion scheme has been adopted in the studies of nuclear structures (c. f., Ref. [29,30]),
where the three dimensional harmonic oscillator basis is adopted.

2.4 Mode expansions

The pion field can be expressed in terms of the creation and annihilation operators

πa(x) =
∑

k+

λ=1∑

λ=−1

1

2π
√

2Lk+

∫
d2k⊥

(2π)2

[
a(k, λ) εa(λ) e−ikx + a†(k, λ) ε∗a(λ) eikx

]
, (23)

where we introduce the following polarization vectors to track the isospin degree of
freedom of the scalar pion field πa (a = 1, 2, 3):

ε(+1) =
1√
2




1
i
0


, ε(0) =




0
0
1


, ε(−1) =

1√
2




1
−i
0


, (24)
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with ε†(λi) ε(λj) = δλi,λj and ε(−λ) = ε∗(λ). The subscript “a” indicates the com-
ponent of the polarization vector ε(λ), λ denotes the longitudinal projection of the
isospin of the physical pions, i. e., π± and π0.

Similar to the pion field, the nucleon field can be represented with the creation
and annihilation operators,

χ+(x) =
∑

p+

∑

s,t

1

2π
√

2L
ζ(s)T (t)

∫
d2p⊥

(2π)2

[
b(p, s, t) e−ipx + d†(p,−s,−t) eipx

]
, (25)

where

ζ
(
+

1

2

)
= (1, 0, 0, 0)T , ζ

(
−1

2

)
= (0, 1, 0, 0)T , (26)

T
(
+

1

2

)
= (1, 0)T , T

(
−1

2

)
= (0, 1)T . (27)

With the discretized longitudinal momentum [Eq. (9)], the commutation and an-
ticommutation relations are

[a(k, λ), a†(k′, λ′)] = (2π)2 δ(2)(k⊥ − k′⊥) δλ,λ′ δx,x′ , (28)

{b(p, s, t), b†(p′, s′, t′)} = (2π)2 δ(2)(p⊥ − p′⊥) δs,s′δt,t′ δx,x′, (29)

{d(p, s, t), d†(p′, s′, t′)} = (2π)2 δ(2)(p⊥ − p′⊥) δs,s′ δt,t′ δx,x′ . (30)

Note with our Fock space expansion [Eq. (20)], the independent field for the anti-
nucleon is not included. The canonical anti/commutation relations of the field oper-
ators are

[πa(x), πb(y)]x+=y+ = − i

4
ǫ(x− − y−) δ(2)(x⊥ − y⊥) δab, (31)

{χ+(x), χ†
+(y)}x+=y+ =

1

2
γ0 γ+ δ(x− − y−) δ(2)(x⊥ − y⊥). (32)

ǫ(x) = θ(x) − θ(−x) is the antisymmetric step function, where the step function is

θ(x) = 0 for x ≤ 0; θ(x) = 1 for x > 0. (33)

The relations ∂ǫ(x)
∂x = 2δ(x) and |x| = xǫ(x) hold. For the representation of the

gamma matrices in this work, we follow the convention of Refs. [10, 15, 20].
The creation and annihilation operators in the 2DHO basis with the momentum

fraction weighted variables are

a(x, k⊥, λ) =
1√
x

∑

n,m

Ψm
n

( k⊥√
x

)
α(x, n,m, λ), (34)

b(x, p⊥, s, t) =
1√
x

∑

n,m

Ψm
n

( q⊥√
x

)
β(x, n,m, s, t), (35)

with the anti/commutation relations being

[α(x, n,m, λ), α†(x′, n′,m′, λ)] = δx,x′ δn,n′ δm,m′ δλ,λ′ , (36)

{β(x, n,m, s, t), β†(x′, n′,m′, s′, t′)} = δx,x′ δn,n′ δm,m′ δs,s′δt,t′ . (37)
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2.5 Mass-squared operator

The adoption of the 2DHO s.p. basis in the transverse direction results in the inclusion
of the spurious CM excitation within the mass spectrum. In order to eliminate the CM
excitation in the BLFQ approach, we introduce a Lipkin–Lawson Lagrange multiplier
term [31,32] to the mass-squared operator HLC [Eq. (2)]. The modified mass-squared
operator is

H = HLC + Λ(HCM − 2b2I), (38)

where Λ > 0 is the Lagrangian multiplier. The intrinsic motion in the solutions is not
influenced by this Lawson term (HCM − 2b2I) due to the factorization of the LFWF
in the 2DHO basis with Nmax truncation. Since the mass spectrum of the intrinsic
motion is only determined by the intrinsic part of the LFWF, it is independent of Λ.
The CM motion is governed by

HCM =
(
P⊥)2 + b4

(
R⊥)2, (39)

where the CM momentum and coordinate in the transverse direction are respectively

P⊥ =
∑

i

p⊥i , R⊥ =
∑

i

xir
⊥
i . (40)

In terms of momentum fraction weighted variables [Eq. (12)], these CM variables are

P⊥ =
∑

i

√
xiq

⊥
i , R⊥ =

∑

i

√
xis

⊥
i . (41)

HCM satisfies the eigenequation

HCM|nm〉 = (2n+ |m| + 1)2b2|nm〉, (42)

where |nm〉 is the eigenvector that corresponds to the eigenvalue Enm = (2n + |m|
+1)2b2. Based on Eq. (42), it is easy to see that the states with CM excitation (i. e.,
states with n 6= 0 and m 6= 0) are lifted in the spectrum; only the states with the
lowest CM mode (i. e., states with n = m = 0) remain unshifted [27]. In general, the
spectrum of H is a set of equally spaced approximate copies1 (named as subspectra),
with the spacing characterized by 2Λb2 for every additional excitation quanta in the
CM degree of freedom. In practice, we choose Λ to be sufficiently large such that the
subspectra with different CM modes are well separated.

Making use of the LF Hamiltonian density P− [Eq. (7)] and the mode expansions
for pion and nucleon fields [Eqs. (23) and (25)], we calculate the LF Hamiltonian P−

and hence the mass-squared operator [Eq. (2)] as

HLC = P+
(
P−
KEN

+ P−
KEπ

+ P−
int

)
︸ ︷︷ ︸

P−

−
(
P⊥)2, (43)

where P−
KEN

and P−
KEπ

are the contributions from a free nucleon and a free pion,

respectively. P−
int is the interaction term that describes the contributions from the

one-pion absorption and emission processes.

1These copies are not the exact copies since the addition of available quanta to the CM motion
means the loss of available quanta in the relative motion.
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2.6 Observables

In terms of the LF basis set {|ξ〉}≡{|xN , nN ,mN , sN , tN ;xπ, nπ,mπ, sπ =0, tπ≡λ〉},
the matrix of the modified mass-squared operator for the Nπ system (Eq. (38)) can
be constructed. By solving the eigenequation (via numerical matrix diagonalization)

H |Ψi〉 = M2
i |Ψi〉, (44)

we obtain the eigenmass Mi and the corresponding eigenvector

|Ψi〉 ≡
∑

ξ

Ci(ξ) |ξ〉, (45)

with Ci(ξ) = 〈ξ|Ψi〉 being the LF amplitude corresponding to the basis state |ξ〉. The
summation is taken over the LF basis set {|ξ〉}. The LFWF is made up by the LF
amplitudes {〈ξ|Ψi〉}.

We can apply the LFWF to compute observables for the hadronic structure, such
as the PDF, the elastic electric and magnetic form factors, and the spin decomposition.
As an illustration, we calculate the PDF in this work. The investigation of other
observables will be presented in the future work.

2.6.1 PDF

The probability to find a constituent nucleon with the longitudinal momentum frac-
tion xN in the current Nπ model is

f(xN ) =
∑′

C∗(ξ)C(ξ), (46)

where it is understood that xπ = 1 − xN due to the conservation of the longitudinal
momentum. The primed sum in Eq. (46) denotes that the sum is over all quantum
numbers except xN .

3 Results and discussions

In this work, we adopt the Fock-sector-dependent renormalization (FSDR) [33–36]
scheme. We numerically diagonalize the matrix of the modified mass-squared oper-
ator H [Eq. (38)], in which process the bare nucleon mass is tuned in the matrix
elements within the single nucleon sector. This process is iterative and continues
until the square-root of the eigenvalue of the ground state (identified as the physical
proton) matches the mass of the physical proton (taken as 938 MeV in this work).

The mass counterterm is introduced only to the single-nucleon sector. In the FSDR
scheme, we expect the mass counterterm to compensate for the mass correction due
to the radiative processes: the quantum fluctuation from the single-nucleon sector
to the Nπ sector and back again. On the other hand, the nucleon mass in the Nπ
sector remains as the physical value. We fix the pion mass at 137 MeV in the FSDR
procedure.
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Figure 1: Model space dependence of the spectrum of the Nπ system computed via the
BLFQ approach. The masses corresponding to the lowest 6 eigenstates are plotted as
functions of Nmax (set to be Kmax − 1

2 ). The basis strength is fixed as b = 250 MeV.
The dashed line (at 1075 MeV) shows the threshold of the continuum of the Nπ
system. The ground (bound) state is identified as the physical proton.

3.1 Mass spectrum of the Nπ system

We first study the dependence of the mass spectrum of the Nπ system on the model
space, which is determined by the truncation parameters, Nmax and Kmax, and the
basis strength, b. For convenience, we set Kmax to be Nmax + 1/2 throughout this
work.

In Fig. 1, we show the lowest 6 states in the mass spectrum of the Nπ system as
functions of Nmax, where we choose b = 250 MeV as an example. We identify the
ground (and also bound) state as the physical proton, of which the eigenvalue has
been renormalized to 938 MeV by the FSDR procedure. The corresponding LFWF is
boost invariant; it encodes all the information of the intrinsic structure of the proton.
The other states appear to be the scattering states and their eigenvalues lie above the
threshold of the continuum, which is the sum of the physical pion and proton masses
adopted in this work (i. e., 1075 MeV).

We find all the eigenenergies of these 6 states seem to converge as Nmax increases.
The proof of the convergence is complicated and demanding in computing power; we
will save the proof for the future work. As Nmax increases, a better representation of
the scattering states of the Nπ system is anticipated. This can be inferred from the
increasing level density of the scattering states as Nmax increases.

3.2 Proton’s LFWF

To compute the proton’s LFWF, we need to fix the basis strength b besides fixing the
bare nucleon mass via the FSDR procedure for each choice ofNmax (Kmax=Nmax+1/2
as a reminder). This is achieved by varying b to fit the r.m.s. charge radius of a
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Table 1: Model space parameters employed to obtain the proton’s LFWFs. Note, we
set Nmax = Kmax − 1

2 .

Nmax 6 8 10
b [MeV] 176.95 245.54 279.55

proton
√
〈r2p,E〉, which is 0.844 fm (see, e. g., Ref. [37]). Overall, we fit for each Nmax

both the mass and the r.m.s. charge radius to respective physical values in order to
determine the mass counterterm and b in computing the proton’s LFWF. In Table 1,
we list the resulting model space parameters (Nmax and b) to obtain the proton’s
LFWFs in this work.

3.3 Proton’s PDF

We apply the proton’s LFWF to compute its PDF, which encodes the distribution of
the longitudinal momentum carried by its constituents. In this work, such PDF also
represents the probability that the proton fluctuates into the constituent nucleon (of
the longitudinal momentum fraction xN ) and pion (of the longitudinal momentum
fraction xπ).

In Fig. 2, the proton’s PDF, f(xN ), is shown as a function of xN and the model
space (with parameter settings shown in Table. 1). Note, we rescale the the x-axis
as xπ = 1−xN in the plot. We do not show the results for f(xN = 1) in Fig. 2, which
represents the probability to find a bare nucleon in the physical proton. For the cases
with Nmax = 6, 8 and 10, such probabilities are 0.83, 0.69, and 0.62, respectively.

Figure 2: The proton’s PDF, f(xN ), as a function of the longitudinal momentum
fraction of the constituent nucleon xN (note, we rescale the x-axis as 1 − xN = xπ in
the plot) and of the model space (defined by Nmax and b). See text for details.
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For each Nmax, we verified that f(xN ) satisfies both the normalization condition
and the momentum sum rule. As Nmax increases, f(xN ) seems to converge (as indi-
cated by the spacing between the curves and the positions of the peaks in the plot).
Our results of f(xN ) peak at about xπ = 0.45 (or xN = 0.55) for the model spaces with
Nmax = 8 and 10. In the future, we plan to study f(xN ) where large/complete model
spaces and high Fock sectors are applied. Also, the internal degrees of freedom of the
constituents will be included to study the flavor asymmetry of the proton [38–41].

4 Conclusions and outlook

In this work, we apply, for the first time, the Basis Light-Front Quantization (BLFQ)
method [4] to study a chiral model of the nucleon-pion (Nπ) system via an ab initio
non-perturbative Hamiltonian approach. We demonstrate the approach with a test
problem, in which the physical proton is treated as a relativistic bound state of the
Nπ system.

Starting from the Lagrangian density for the chiral model of the Nπ system [18,19],
we proceed with a Legendre transformation to obtain the corresponding light-front
(LF) Hamiltonian density. In this work, we keep only the Fock sectors |N〉 and |Nπ〉.
Correspondingly, we restrict the interaction terms in the LF Hamiltonian density
and keep only the terms that correspond to the single-pion emission and absorption
processes.

We then show the construction and truncation schemes of our LF basis. As for
the basis set in the momentum space, we employ the discretized plane wave basis
in the longitudinal direction and the two dimensional harmonic oscillator basis in
the transverse direction. Besides, we also discuss our basis construction in the spin
and isospin degrees of freedom. We prune and truncate our basis according to the
symmetry principles of our test problem.

We compute the matrix element of the mass-squared operator within our choice of
the LF basis representation, where we decouple the center of mass excitation by the
Lipkin–Lawson method [31,32]. We obtain the mass spectrum of the Nπ system and
the corresponding boost-invariant light-front wave function (LFWF) by solving the
eigenvalue problem of the resulting mass-squared matrix, in which process the mass
counterterm is incorporated by the Fock-sector-dependent renormalization (FSDR)
scheme [33–36].

The mass spectrum of the Nπ system in our solution includes both the bound
and the scattering states. We study the model space dependence of this spectrum.
In particular, we investigate the eigenvalues of the lowest 6 states as a function of the
model space, which is determined by the truncation parameters Nmax, Kmax, basis
strength b, and the choice of Fock sectors. With increasing model space dimension,
all the eigenvalues of these 6 states seem to converge, while the scattering states of
the Nπ system produce improving representations of the continuum. Meanwhile,
the eigenvalue of the ground state produces the physical proton mass for each model
space with proper choice of the mass counterterm; such ground state is identified as
the (physical) proton state. Note that larger Fock space would be necessary in order
to verify the real convergence. We will postpone this verification to the future work.

To study the proton’s parton distribution function (PDF), we compute the pro-
ton’s LFWFs in a sequence of model spaces where both the proton’s mass and its
r.m.s. charge radius are fitted to respective physical values. For the resulting PDF,
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we investigate its dependencies on the model space and on the longitudinal momentum
fraction of the constituent nucleon (xN ). We find that the proton’s PDF seems to con-
verge with increasing model space dimension (scaled by Nmax). For the model spaces
with Nmax = 8 and 10, the computed PDFs peak at about xN = 0.55 (or xπ = 0.45).
Further inclusion of the quark distribution functions of the constituent nucleon and
pion could reveal the pion cloud’s role in the light quark flavor asymmetry of the
proton (see, e. g., Ref. [41]).

This work can progress into multiple paths in the future. We attempt to connect
the current chiral model to the modern chiral effective theory (see, e. g., [42, 43]
and references therein). This work is currently ongoing. After this connection is
accomplished, we plan to extend the current calculation (up to next-to-leading Fock
sector) to incorporate systematically the contributions from higher Fock sectors, where
we will examine the basis space dependence as well as the convergence of the Fock-
sector expansion [44,45]. We expect such investigations to be demanding in computing
power. We plan to incorporate the technology of high performance computing (see
Ref. [46] and references therein).

The current framework can be straightforwardly extended to investigate more
nucleonic observables of great experimental interest, such as the transverse momentum
distribution, and various categories of form factors. In addition, this framework can
be extended to study more complicated nuclear systems, such as the deuteron, where
the role of the relativistic dynamics is important but still unclear.
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Abstract

We investigate the electromagnetic form factors of the nucleon in the frame-
work of basis light-front quantization. We compute the form factors using the
light-front wavefunctions obtained by diagonalizing the effective Hamiltonian
consisting of the holographic QCD confinement potential, the longitudinal con-
finement, and a one-gluon exchange interaction with fixed coupling. The nucleon
electromagnetic radii are also computed.

Keywords: Form factors; light-front quantization; nucleon

1 Introduction

Electromagnetic form factors are critical to understanding nucleon structure. There
are many experiments and theoretical studies on these form factors and they remain
a very active field of research. We refer to the articles [1–5] for detailed reviews.
It is well known that the matrix element of electromagnetic current for the nucleon
requires two form factors, namely, Dirac and Pauli form factors,

Jµ
had(q2) = ū(p′)

(
γµF1(q2) +

iσµνqν
2M

F2(q2)
)
u(p), (1)

where q2 = (p′ − p)2 = −2p′ · p + 2M2 = −Q2 is the square of the momentum
transferred to the nucleon and M is the nucleon mass. The normalizations of the
form factors are given by F p

1 (0) = 1, F p
2 (0) = κp = 1.793 for the proton and

Fn
1 (0) = 0, Fn

2 (0) = κn = −1.913 for the neutron. Cates et al. [6] first decomposed
the nucleon form factors into their flavor components. Writing the hadronic current
as the sum of quark currents one can decompose the nucleon electromagnetic form
factors into flavor-dependent form factors. Neglecting the strange quark contribution,
the hadronic matrix element for electromagnetic current can be expressed as

Jµ
had(q2) = 〈N(p′)|(euūγµu+ edd̄γ

µd)|N(p)〉, (2)

Proceedings of the International Conference ‘Nuclear Theory in the Supercomput-
ing Era — 2018’ (NTSE-2018), Daejeon, South Korea, October 29 – November 2,
2018, eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2019, p. 239.

http://www.ntse.khb.ru/files/uploads/2018/proceedings/Mondal.pdf.
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where eu and ed are the charges of u and d quarks in the units of positron charge (e).
Under the charge and isospin symmetry 〈p|ūγµu|p〉 = 〈n|d̄γµd|n〉, it is straightforward
to write down the flavor form factors in term of the nucleon form factors as

Fu
i (Q2) = 2F p

i (Q2) + Fn
i (Q2),

F d
i (Q2) = F p

i (Q2) + 2Fn
i (Q2), (i = 1, 2),

(3)

with the normalizations Fu
1 (0) = 2, Fu

2 (0) = κu and F d
1 (0) = 1, F d

2 (0) = κd, where
the anomalous magnetic moments for the up and the down quarks are κu = 2κp + κn
= 1.673 and κd = κp + 2κn = −2.033. It was shown in Ref. [6] that though the ratio
of Pauli and Dirac form factors for the proton F p

2 /F
p
1 ∝ 1/Q2, the Q2 dependence

above 1 GeV2 is almost constant for the ratio of the quark form factors F2/F1 for
both u and d. The Sachs form factors for the nucleon are written in terms of Dirac
and Pauli form factors as

GN
E(Q2) = FN

1 (Q2) − Q2

4M2
FN
2 (Q2), (4)

GN
M(Q2) = FN

1 (Q2) + FN
2 (Q2), (5)

and the electromagnetic radii are defined by

〈r2E〉N = −6
dGN

E(Q2)

dQ2

∣∣∣
Q2=0

, (6)

〈r2M 〉N = − 6

GN
M(0)

dGN
M(Q2)

dQ2

∣∣∣
Q2=0

. (7)

The basis light-front quantization (BLFQ) approach has been developed for solv-
ing many-body bound state problems in quantum field theories [7–10]. It is a Hamil-
tonian formalism incorporating the advantages of the light-front dynamics [11, 12].
This formalism has been successfully applied to quantum electrodynamics (QED)
systems including the electron anomalous magnetic moment [10] and the strong cou-
pling bound-state positronium problem [8]. It has also been applied to heavy quarko-
nia [13] and Bc mesons [14] as QCD bound states. Recently, the BLFQ approach
using a Hamiltonian that includes the color singlet Nambu–Jona–Lasinio interaction
to account for the chiral dynamics has been applied to the light mesons [15,16]. In this
work, we study the electromagnetic form factors of the nucleon using the light-front
wavefunctions (LFWFs) obtained by diagonalizing the effective light-front Hamilto-
nian in the constituent valence quark representation with the potential including the
light-front holographic QCD in the transverse direction [17], longitudinal confine-
ment [9], and one-gluon exchange interaction with a fixed coupling in the framework
of BLFQ.

2 Effective light-front Hamiltonian

The structures of the bound states are encoded in the LFWFs which are obtained as
the eigenfunctions of the light-front Schrödinger equation,

Heff |Ψ〉 = M2|Ψ〉, (8)
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where Heff is the effective Hamiltonian of the system with the mass squared, M2,
eigenvalue. In general, |Ψ〉 is the eigenvector in the Hilbert space spanned by all
Fock sectors. In the valence Fock sector, the effective Hamiltonian for the nucleon
wavefunctions that we adopt is given by

Heff =
∑

a

~k2a⊥+m2
a

xa
+

1

2

∑

a,b

[
κ4T xa xb (~ra⊥− ~rb⊥)2 − κ4L

(ma +mb)2
∂xa(xaxb∂xb

)

]

+
1

2

∑

a,b

CF 4π αs(Q
2
ab)

Q2
ab

ūs′a(k
′
a) γµ usa(ka) ūs′b(k

′
b) γ

ν usb(kb) dµν , (9)

where
∑

a xa = 1 and
∑

a ka⊥ = 0; ma/b is the mass of the quark and κL (κT ) is

the strength of the longitudinal (transverse) confinement; ~ζ⊥≡ √
xaxb ~r⊥ is the holo-

graphic variable [17], where ~r⊥ = ~ra⊥− ~rb⊥ is the transverse separation between two

quarks, ∂xf(x, ~ζ⊥) = ∂ f(x, ~ζ⊥)/∂ x|~ζ ; Q2
ab=−q2=−(1/2)(k′a − ka)2−(1/2)(k′b − kb)

2

is the average momentum transfer squared; CF = −2/3 is the color factor; dµν is the
gluon polarization tensor which reduces to the metric tensor gµν by summing over the
dynamical one-gluon exchange and the instantaneous gluon exchange, and αs is the
running coupling which can be replaced by a constant for simplicity. Note that we
use different quark masses in the kinetic energy term and in the one-gluon exchange
interaction of the effective light-front Hamiltonian to simulate the effects of higher
Fock components and the other QCD interactions. Upon diagonalization of the re-
sulting effective Hamiltonian matrix in a chosen basis representation, one obtains the
mass spectrum and the corresponding wavefunctions of the system.

In the BLFQ, Eq. (8) is expressed in a truncated basis representation of the valence
Fock space, and the resulting finite-dimensional matrix is diagonalized numerically.
The choice of basis is arbitrary as long as it is orthogonal and normalized. We choose
the two-dimensional harmonic oscillator (2D-HO) basis in the transverse direction
and the discretized plane-wave basis in the longitudinal direction [7–10]. Each single-
particle basis state can be identified using four quantum numbers, ᾱ = {k, n,m, λ}.
The longitudinal momentum of the particle is characterized by the first quantum
number k. In the longitudinal direction x−, we constrain the system to a box of
length 2L, and impose (anti-) periodic boundary conditions on (fermions) bosons. As
a result, the longitudinal momentum p+ = 2πk/L is discretized, where the dimen-
sionless quantity k = 1, 2, 3, ... for bosons and k = 1

2 ,
3
2 ,

5
2 , ... for fermions. The zero

mode for bosons is neglected. In the many-body basis, all basis states are selected to
have the same total longitudinal momentum P+ =

∑
i p

+
i , where the sum is over the

particles in a particular basis state. One then parameterizes P+ using a dimensionless
variable K =

∑
i ki such that P+ = 2π

L K. For a given particle i, the longitudinal
momentum fraction x is defined as

xi =
p+i
P+

=
ki
K
. (10)

K determines the “resolution” in the longitudinal direction, and thus the resolution
of parton distribution functions. The longitudinal continuum limit corresponds to the
limit L,K → ∞. The next two quantum numbers, n and m, denote radial excitation
and angular momentum projection, respectively, of the particle within the 2D-HO
basis in the transverse direction. The choice of the 2D-HO basis for BLFQ is made
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because the HO potential is a confining potential, and therefore its wavefunctions
should form an ideal basis for systems subjected to QCD confinement. Since we
assume harmonic confinement in the transverse direction, these transverse basis states
are also computationally convenient.

In order to numerically diagonalize Heff , the infinite dimensional basis must be
truncated down to a finite dimension. In BLFQ, two levels of the truncation scheme
are implemented. First, the number of Fock sectors in the basis is restricted. This
truncation is based on physical as well as practical considerations. For instance, the
nucleon is expected to be fairly well described by the lowest few sectors. For example,
the nucleon state can be expressed schematically as

|N〉phys = a|qqq〉 + b|qqqg〉 + c|qqqqq̄〉 + ... (11)

In this work, we limit ourselves to the leading Fock sector |qqq〉 only.

Second, within each Fock sector, further truncation is still needed to reduce the
basis to a finite dimension. We introduce a truncation parameter Kmax on the lon-
gitudinal direction such that

∑
l kl ≤ Kmax, where kl is the longitudinal momen-

tum quantum number of l-th particle in the basis state. Note that systems with
larger Kmax have simultaneously higher ultra-violet (UV) and lower infra-red (IR)
cutoffs in the longitudinal direction. In the transverse direction, we require that the
total transverse quantum number Nα =

∑
l(2nl + |ml| + 1) for multi-particle basis

state |α〉 satisfies Nα ≤ Nmax, where Nmax is a chosen truncation parameter. The
transverse continuum limit corresponds to Nmax → ∞. The 2D-HO basis may be
defined by two parameters, mass M and frequency Ω. We adopt a single HO parame-
ter b =

√
MΩ, since our transverse modes depend only on b rather than on M and Ω

individually. Here, we choose the value of b = 0.45 GeV, the same as the confining
strength κL (κT ). Nmax and b define both the transverse IR and UV regulator in
BLFQ. In addition, our many body states have well defined values of the total angu-
lar momentum projection MJ =

∑
i(mi +λi), where λ is the fourth quantum number

which corresponds the helicity of the particle.

3 Electromagnetic form factors in BLFQ

In the light-front formalism for a spin 1
2 composite system, the Dirac and Pauli form

factors F1(q2) and F2(q2) are identified with the helicity-conserving and helicity-flip
matrix elements of the J+ current [18],

〈
P + q, ↑

∣∣∣∣
J+(0)

2P+

∣∣∣∣P, ↑
〉

= F1(q2), (12)

〈
P + q, ↑

∣∣∣∣
J+(0)

2P+

∣∣∣∣P, ↓
〉

= −(q1 − iq2)
F2(q2)

2M
, (13)

where M is the nucleon mass and the arrow indicates the helicity of the nucleon. The
physical nucleon state with momentum P can be expanded in terms of multi-particle
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light-front wavefunctions [19]:

|P, Sz〉 =
∑

n

∫ n∏

i=1

dxi d
2k⊥i

16π3
√
xi

16π3 δ

(
1 −

n∑

i=1

xi

)
δ2

(
n∑

i=1

k⊥i

)

× ψSz
n (xi, k⊥i, λi) |n, xiP+, xiP⊥ + k⊥i, λi〉. (14)

Here xi = k+i /P
+ and k⊥i represent the relative transverse momentum of the i-th

constituent and n is the number of particles in a Fock state; the physical transverse
momenta are p⊥i = xiP⊥+k⊥i; λi and Sz are the light-cone helicities of the quark and
nucleon, respectively; the boost invariant light-front wave functions ψn depend only
on xi and k⊥i and are independent of the total momentum of the state P+ and P⊥.
In the overlap representation, the electromagnetic form factors are then expressed as

F q
1 (q2) =

∑

n,λi

∫ n∏

i=1

dxi d
2k⊥i

16π3
16π3 δ


1 −

∑

j

xj


 δ2




n∑

j=1

k⊥j




× ψ↑∗
n (x′i, k

′
⊥i, λi)ψ

↑
n(xi, k⊥i, λi), (15)

−(q1 − iq2)

2M
F q
2 (q2) =

∑

n,λi

∫ n∏

i=1

dxi d
2k⊥i

16π3
16π3 δ



1 −
∑

j

xj



 δ2




n∑

j=1

k⊥j





× ψ↑∗
n (x′i, k

′
⊥i, λi)ψ

↓
n(xi, k⊥i, λi), (16)

where for the struck parton x′1 = x1, k′⊥1 = k⊥1 + (1 − x1)q⊥ and x′i = xi,
k′⊥i = k⊥i − xiq⊥ for the spectators (i = 2, ... , n). We consider the frame where
q = (0, 0,q⊥), thus Q2 = −q2 = q2

⊥. Since we restrict ourselves to the leading Fock
sector, the nucleon basis state can be written as

|NSz

phys〉 = |kq1, nq1,mq1, λq1〉 ⊗ |kq2, nq2,mq2, λq2〉 ⊗ |kq3, nq3,mq3, λq3〉. (17)

We obtain the light-front wavefunctions numerically by diagonalizing the effective
Hamiltonian given in Eq. (9) with the basis representation given by Eq. (17). Using
the resulting light-front wavefunctions ψn, we evaluate the electromagnetic form fac-
tors of the nucleon. The parameters are tuned to fit the electromagnetic properties of
the nucleons. Following the convention of Ref. [20], we fix the normalizations of the
Dirac and the Pauli form factors as

F q
1 (Q2) = nq

F
(BLFQ)q
1 (Q2)

F
(BLFQ)q
1 (0)

, F q
2 (Q2) = κq

F
(BLFQ)q
2 (Q2)

F
(BLFQ)q
2 (0)

, (18)

so that F q
1 (0) = nq and F q

2 (0) = κq, where nu = 2, nd = 1 and the anomalous
magnetic moments for the u and d quarks are κu = 1.673 and κd = −2.033. The
advantage of the modified formulae in Eq.(18) is that, irrespective of the values of
the parameters, the normalization conditions for the form factors are automatically
satisfied.

In Fig. 1, we show the Q2 dependence of the Dirac and the Pauli form factors
of u and d quark. We set the confining strengths κL = κT = 0.45 GeV in both the
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Figure 1: BLFQ results for the Dirac (a) and Pauli (b) form factors of u and d quarks
with confining strength κL = κT = 0.45 GeV and fixed coupling αs = 0.5. The quark
mass in the kinetic energy term is mq/KE = 0.5 GeV, whereas the quark mass in the
one-gluon-exchange interaction is mq/OGE = 0.3 GeV. The bands correspond to the
range for Nmax = 6−8 with Kmax = 10. We choose the value of the HO parameter b
the same as κL(κT ), i. e., b = 0.45 GeV. mg (= 0.01 GeV) is a small gluon mass
regulator used for numerical convenience. The experimental data are taken from
Refs. [6, 21, 22].

longitudinal and transverse confinements and the coupling constant αs = 0.5. The
bands represent the range of our results due to increasing the basis from Nmax = 6
to Nmax = 8 with Kmax = 10. We use different quark masses, i. e., in the kinetic
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Figure 2: The ratio of the Pauli and Dirac form factors of the proton with the same
parameters as mentioned in Fig. 1 and with basis truncationNmax = 8 andKmax = 10.
The ratio is divided by κp. The experimental data are taken from Refs. [23–27].

energy term mq/KE = 0.5 GeV and in the one-gluon exchange interaction mq/OGE

= 0.3 GeV in order to minimize the effect of higher Fock component and the other
QCD interactions. Figure 1 shows that the BLFQ results for the flavor Pauli form
factors are in reasonable agreement with the experimental data. The Dirac form
factor for the u quark is also in reasonable agreement with the data. However, the
theoretical d quark form factor is somewhat over estimated compared to the data.

The nucleon form factors can be obtained from the flavor dependent form factors.
The ratio of Pauli and Dirac form factors of the proton for Nmax = 8 and Kmax = 10
is shown in Fig. 2. We find that at low Q2 our result agrees well with the experimental
data. The Sachs form factors for the proton are presented in Fig. 3 where we find a
good agreement between theory and experiment. In Fig. 4, we show the Sachs form
factors for the neutron. Our results for the neutron magnetic form factor are in a
reasonable agreement with experimental data, however, for the charge form factor is
overestimated as compared to the data. The deviations of the neutron charge form
factor from the experimental data can be attributed to the fact that the d quark form
factor F d

1 does not have the correct behavior in this model. From the Sachs form
factors we also compute the electromagnetic radii of the nucleons. We quote the radii
in Table 1, the experimental values are taken from the Ref. [37]. Here again, we find
a reasonable agreement with experiment.

4 Conclusions

The electromagnetic form factors for the nucleon and their flavor decomposition have
been presented using the BLFQ approach. The form factors have been evaluated from
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Figure 3: BLFQ
results for the
Sachs form factors
GE(Q2) (a) and
GM (Q2) (b) of
the proton with
the same parame-
ters as mentioned
in Fig. 1 and with
the basis trunca-
tion Nmax = 8 and
Kmax = 10. The
experimental data
are taken from
Refs. [23–25, 28–30]
and Refs. [25, 31],
respectively.

Table 1: Electromagnetic radii of nucleons.

Quantity BLFQ Measured data [37]

rpE 0.804 fm 0.877 ± 0.005 fm

rpM 0.917 fm 0.777 ± 0.016 fm

〈r2E〉n −0.1214 fm2 −0.1161 ± 0.0022 fm2

rnM 1.007 fm 0.862+0.009
−0.008 fm
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Figure 4: BLFQ
results for the
Sachs form factors
GE(Q2) (a) and
GM (Q2) (b) of
the neutron with
the same parame-
ters as mentioned
in Fig. 1 and
with basis trunca-
tion Nmax = 8 and
Kmax = 10. The
experimental data
are taken from
Refs. [23–25, 28–30]
and Refs. [32–36],
respectively.

the overlaps of the light-front wavefunctions which were obtained by diagonalizing the
effective Hamiltonian. In our model, we consider the holographic QCD confinement
potential, longitudinal confinement, and a one-gluon exchange interaction with fixed
coupling in the effective light-front Hamiltonian. We observed a reasonable agreement
of our results for the proton and u quark form factors with the experimental data,
however, the Dirac form factor of d quark and the neutron charge form factors deviate
from the data for the basis truncation Nmax = 8 and Kmax = 10. We also presented
the electromagnetic radii for the nucleon.
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Abstract

No-core configuration interaction (NCCI) calculations for p-shell nuclei give
rise to rotational bands, identified by strong intraband E2 transitions and by
rotational patterns for excitation energies, electromagnetic moments, and elec-
tromagnetic transitions. However, convergence rates differ significantly for dif-
ferent rotational observables and for different rotational bands. The choice of
internucleon interaction may also substantially impact the convergence rates.
Consequently, there is a substantial gap between simply observing the qualitative
emergence of rotation in ab initio calculations and actually carrying out detailed
quantitative comparisons. In this contribution, we illustrate the convergence
properties of rotational band energy parameters extracted from NCCI calcula-
tions, and compare these predictions with experiment, for the isotopes 7–11Be,
and for the JISP16 and Daejeon16 interactions.

Keywords: Nuclear rotation; no-core configuration interaction (NCCI); Be iso-
topes

1 Introduction

Ab initio nuclear theory aims to describe nuclei, with quantitative precision, from
the underlying internucleon interactions. Light nuclei are known to display rotational
band structure (see, e. g., Refs. [1–4]). Therefore, we should at least aspire for ab initio
theory to be able to predict rotational band structure. However, there are challenges
to obtaining converged calculations of the relevant observables, both energies and
electromagnetic transition strengths [5–8].

There are thus a few basic questions to be asked about the emergence of rotation
in ab initio calculations of light nuclei:
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(1) Is there a qualitative emergence of rotational “features” in the calculated re-
sults? These features include rotational energy patterns and transition patterns.

(2) Can robust quantitative predictions be made for rotational observables? These
observables include rotational band energy parameters or intrinsic matrix elements.
Here we must have good convergence of the results of the many-body calculation,
at which point we can then explore the robustness of the predictions across possible
internucleon interactions.

(3) Once the ab initio description for nuclear rotation is solidly established, what
can it tell us about the structure of these rotational states? This understanding
may come in the form of identifying, e. g., many-body symmetries [9–12] or cluster
structure [2, 4, 13] underlying the rotation.

Regarding the first, qualitative question, no-core configuration interaction
(NCCI) [14] calculations for p-shell nuclei give rise to rotational bands, identified
by strong intraband E2 transitions and by rotational patterns for excitation energies,
electromagnetic moments, and electromagnetic transitions [15, 16] (see also Ref. [17]
for a pedagogical review). However, convergence rates differ significantly for different
rotational observables and for different rotational bands, as well as in calculations
based on different internucleon interactions [17]. Consequently, there is a substantial
gap between simply observing the qualitative emergence of rotation in ab initio calcu-
lations and actually obtaining detailed quantitative predictions for comparison with
experiment.

In this contribution, we focus on quantitative predictions of rotational band energy
parameters. We first illustrate the convergence properties of rotational parameters
extracted from NCCI calculations, taking 11Be as an example (Section 2). We then
obtain ab initio predictions for rotational band parameters across the isotopes 7–11Be.
We explore the robustness of these predictions with respect to the choice of internu-
cleon interaction (JISP16 [18] and Daejeon16 [19]) and compare these predictions with
experiment (Section 3).

2 Illustration: Rotational bands in 11Be

2.1 Excitation spectrum and bands

To illustrate the nature of the rotational bands obtained in NCCI calculations, let
us take 11Be as an example. In this nucleus, we encounter bands with qualitatively
different termination and convergence properties.

A calculated eigenvalue spectrum for 11Be is shown in Fig. 1.1 The detailed results
depend upon the particular choice of the internucleon interaction (here, JISP16 [18]
plus Coulomb interaction between protons) and truncated space (here, up toNmax = 8
excitation quanta, and with oscillator basis length scale given by ~ω = 20 MeV), as
we shall explore in subsequent Sections, but the example calculation in Fig. 1 provide
a representative illustration of the general rotational features.

Band members are expected to have energies following the rotational formula
E(J) = E0 + AJ(J + 1), where the rotational energy constant A ≡ ~2/(2J ) is
inversely related to the moment of inertia J of the rotational intrinsic state, and the
intercept parameter E0 = EK − AK2 is related to the energy EK of the rotational

1The NCCI calculations shown here are obtained using the code MFDn [20–22].



252 M. A. Caprio, P. J. Fasano, J. P. Vary, P. Maris and J. Hartley

11
Be JISP16

Natural (P=-)
-60

-55

-50

-45

-40

-35

-30

-25

❊

(M
e
V
)

1/2 5/2 7/2 9/2 11/2
❏

E
(M

eV
)

Figure 1: Calculated energy eigenvalues (squares) for states in the natural (negative)
parity space of 11Be, with the JISP16 interaction; the three lowest calculated un-
natural (positive) parity states are also shown (diamonds, displaced horizontally for
clarity). Energies are plotted with respect to angular momenta scaled as J(J + 1).
Solid symbols indicate band members, as identified by strong E2 transitions and other
supporting observables. Lines indicate rotational fits (1) to the calculated energies of
the band members. Calculated with Nmax = 8 (or Nmax = 9 for unnatural parity)
at ~ω = 20 MeV.

intrinsic state [23, 24].2 The level energies in Fig. 1 are therefore plotted against
angular momenta scaled as J(J + 1), so that the energies within a band follow a
linear pattern. For K = 1/2 bands, the Coriolis contribution to the kinetic energy
significantly modifies this pattern, yielding an energy staggering which is given, in
first-order perturbation theory, by

E(J) = E0 +A
[
J(J + 1) + a(−)J+1/2(J + 1

2 )
]
, (1)

where the Coriolis decoupling parameter a depends upon the structure of the rota-
tional intrinsic state.

Rotational band members are shown in Fig. 1 by filled symbols. These identifica-
tions are based not simply on the level energies, but rather on strong E2 connections
(for illustration, see Figs. 6, 10, and 14 of Ref. [17]).

The lowest filling of harmonic oscillator shells possible for 11Be, consistent with
Pauli exclusion, has an odd number of nucleons in the negative-parity p shell. Thus,
the “natural” parity for 11Be, as would be obtained in a traditional 0~ω shell model
description or an Nmax = 0 NCCI calculation, is negative. In Fig. 1, we focus on the

2Under the assumption of axial symmetry, each band is characterized by a projection K of the
angular momentum on the intrinsic symmetry axis, and the rotational band members have angular
momenta J ≥ K.
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natural (negative) parity states (indicated by squares) and show only the lowest three
“unnatural” (positive) parity states for comparison (diamonds).

In this particular calculation (Fig. 1), the lowest positive parity state (1/2+) lies
slightly above the lowest negative parity state (1/2−). However, experimentally, the
ground state of 11Be is 1/2+, lying 0.320 MeV below a 1/2− excited state [25]. (Such
a reversal of the ground state parity relative to the natural parity is known as parity
inversion.) Different rates of convergence between the natural and unnatural parity
states makes it challenging to predict the level ordering when the separation of energies
is so small.

The lowest negative-parity band has KP = 1/2− and apparently terminates with
the 7/2− state. This angular momentum J = 7/2 (indicated by the dashed vertical
line in Fig. 1) is the highest which can be obtained in a p-shell description of 11Be,
that is, in the shell model 0~ω valence space or in an NCCI Nmax = 0 calculation.

On the other hand, the excited negative-parity KP = 3/2− band extends past the
maximal valence angular momentum. The J ≤ 7/2 band members lie in a region of
the excitation spectrum with a comparatively high level density and are thus subject
to mixing with the “background” non-rotational states. Such mixing occurs when
an approximate accidental degeneracy of the rotational state and background states
leads to a small energy denominator for mixing. Since we found that the energies of
these states converge differently with Nmax and ~ω, mixing for any given rotational
state might arise in one truncated calculation but not the next. For instance, in the
particular calculation shown here, the E2 strengths suggest that the excited 7/2−

band member is actually fragmented over three states, as indicated by the filled
symbols. Starting with J = 9/2, this band becomes yrast, and the band members are
comparatively well-isolated.

The lowest calculated positive parity states are the 1/2+, 3/2+, and 5/2+ members
of a KP = 1/2+ band. This band continues to much higher angular momentum than
shown here, as may be seen in Fig. 3(e) of Ref. [16].

2.2 Dependence of the calculated bands on Nmax truncation

While Fig. 1 illustrates the qualitative features of the rotational patterns which arise
in NCCI calculations, it represents an approximate calculation of the spectrum, as
obtained in a truncated space. It is thus only an unconverged “snapshot”, along the
path towards the true results which would be obtained if the many-body problem
could be solved in the full, untruncated many-body space.

To see how the rotational pattern evolves, as we progress through calculations
truncated to successively higher numbers of oscillator excitations, let us focus on the
rotational band members in the negative parity space of 11Be. We trace out the
energies obtained for Nmax = 6, 8, and 10 in Fig. 2 (top). These energies are far from
converged. Each level moves downward by several MeV for each step in Nmax.

However, the energies of levels within a band move downward nearly in lockstep.
Thus, if we look instead at excitation energies, as in Fig. 2 (bottom), here taken
relative to the lowest (1/2−) negative parity state, the energies of the KP = 1/2−

band members are comparatively stable. In fact, only the excitation energy of the
terminating 7/2− band member changes noticeably at an MeV scale.

The KP = 3/2− band is still converging downward relative to the KP = 1/2−
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Figure 2: Convergence of calculated energy eigenvalues (top) and excitation ener-
gies (bottom) with Nmax, for rotational band members in the natural (negative) parity
space of 11Be. Successively larger symbols indicate successively higher Nmax values
(Nmax = 6, 8, and 10). The open symbols indicate exponentially extrapolated level
energies. Lines indicate rotational fits (1) to the calculated (or extrapolated) energies
of these band members. Calculated with the JISP16 interaction at ~ω = 20 MeV.

band with increasingNmax, reflected in the decreasing excitation energies in Fig. 2 (bot-
tom). It is not obvious where we could expect these excitation energies to settle, if
we could solve the nuclear many-body problem in the full, untruncated space.

However, we can attempt to estimate the full-space result by assuming a functional
form for the convergence of the calculated energy eigenvalues. For instance, the
sequence of eigenvalues computed at successive Nmax appears to follow a roughly
geometric convergence pattern, suggestive of a decaying exponential in Nmax [6,26,27]:

E(Nmax) = c0 + c1 exp(−c2Nmax). (2)
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Since calculated energies at three Nmax values are required to fix the three parame-
ters in Eq. (2), this functional form provides a three-point extrapolation formula for
energies, giving the estimate E → c0 as Nmax → ∞. This is only an ad hoc phe-
nomenological prescription, but it provides an idea of what might be plausible for the
full-space results.

Extrapolated energies for the 11Be band members are shown in Fig. 2 (open
symbols): as eigenvalues (top), and then as excitation energies, taken relative to
the extrapolated 1/2− eigenvalue (bottom). While the extrapolated energies of the
KP = 3/2− band members still lie above those of the KP = 1/2− band at lower
angular momenta, the lower slope of the excited band, combined with the Coriolis
staggering of the KP = 1/2− band members, leads to nearly degenerate extrapolated
energies for the 7/2− members of these two bands. If such a degeneracy were to arise,
we could expect significant two-state mixing to occur between the two rotational con-
figurations in the 7/2− band members (similar to the mixing of the excited 7/2− with
the background states seen already at higher excitation energy, in Fig. 1). The level
repulsion induced by this mixing would be highly non-perturbative and would thus
frustrate any simple attempt at extrapolating the energies from low-Nmax calculations
where the mixing is not yet in effect.

2.3 Stability of calculated rotational energy parameters

Rotational energy parameters extracted from calculations for the 11Be bands are
examined, as functions of Nmax and ~ω and for different interactions, in Figs. 3–5.
There are several questions to be answered for these extracted parameter values:

(1) Are the calculated values stable against the parameters Nmax and ~ω of the
truncated space?

(2) If so, are the predictions consistent across the different internucleon interac-
tions?

(3) How do these predictions then compare to experiment?

Recall that these parameters are the inertial (or slope) parameter A, energy
(or intercept) parameter E0, and Coriolis decoupling (or staggering) parameter a
(for K = 1/2). The excitation energy Ex of bands relative to each other is then mea-
sured by the difference in their band energy parameters E0 (we use the KP = 1/2−

band as our reference for excitation energies).3

It is instructive to examine and compare the convergence behaviors of the pa-
rameters A, a, and Ex for the various bands, and subject to different interactions.
Successive curves in each plot in Figs. 3–5 represent calculations at successively
higher Nmax, obtained for different oscillator basis length scales given by ~ω.4 Each

3Translating differences of band energy parameters into differences in intrinsic excitation energies
would require that we also take into account the correction ∝ K2 (Section 2.1).

4These rotational parameters are extracted from the energies of the “cleanest” band members,
least subject to mixing with nearby states. Thus, the parameters for the KP = 1/2− band in Fig. 3
are extracted from the three lowest-energy band members (1/2−, 3/2−, and 5/2−), and similarly for
the KP = 1/2+ band in Fig. 5. On the other hand, for the KP = 3/2− band, the lower-energy band
members are in a region of higher level density and subject to mixing with background states, which
can perturb their energies and make it more difficult to trace their evolution across calculations with
different Nmax and ~ω. Therefore, we take energy parameters defined by a straight line through
the 9/2− and 11/2− band members for the analysis in Fig. 4 (the rotational fit lines in Figs. 1 and 2
were instead obtained as a combined fit to the 3/2−, 5/2−, 9/2− and 11/2− band members).
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Figure 3: Dependence of the extracted rotational energy parameters, for
the KP = 1/2− band of 11Be, on the truncation parametersNmax and ~ω of the NCCI
space in which the calculations are carried out. Successive curves are for successively
higher Nmax values (Nmax = 6, 8, and 10, noted alongside curve). Experimental
values (horizontal lines) are shown for comparison (A = 0.51 MeV and a = 0.52).
The vertical dashed lines indicate the approximate location of the variational energy
minimum, in ~ω, of the calculated ground state energy (see text).

figure then includes results based on the JISP16 (left) and Daejeon16 (right) interac-
tions.5 The ~ω range is centered on the approximate location of the variational energy
minimum for the computed ground state energy, which occurs at ~ω ≈ 20 MeV for
JISP16 and ~ω ≈ 15 MeV for Daejeon16 (vertical dotted lines). Experimental values
for the rotational band parameters [29], extracted from the observed level energies,
are shown for comparison (horizontal lines).6

5The JISP16 interaction [18] is a two-body interaction derived from nucleon-nucleon scattering
data by J-matrix inverse scattering, then adjusted via a phase-shift equivalent transformations to
better describe light nuclei with A ≤ 16. The Daejeon16 interaction [19] is instead obtained from
the Entem–Machleidt (EM) N3LO chiral interaction [28], softened via a similarity renormalization
group (SRG) transformation to enhance convergence, and then likewise adjusted via a phase-shift
equivalent transformation to better describe light nuclei with A ≤ 16.

6 The experimental band parameter values for the bands in 11Be are based on fits of the rotational
energy formula to the experimental levels, as summarized in Table III of Ref. [29]: for the 1/2− band,
the 1/2− at 0.320MeV, 3/2− at 2.654MeV, and 5/2− at 3.889MeV; for the 3/2− band, the 3/2−

at 3.955MeV and 5/2− at 5.255MeV; for the 1/2+ band, the 1/2+ ground state, 3/2+ at 3.400MeV,
and 5/2+ at 1.783MeV. These assignments of levels to bands in 11Be follow Refs. [3, 30], while
energies are from Ref. [25]. However, there are conflicting spin-parity assignments in the litera-
ture. For instance, the level at 3.4MeV was assigned as 3/2− in (t, p) [31], (3/2−) in β decay [32],
and (3/2, 5/2)+ in breakup [33], and is evaluated as (3/2− , 3/2+) [25]. The level at 3.9MeV, was
assigned as 3/2+ in (t, p) [31] but as 5/2− in β decay [32], corroborated as negative parity in transfer
reactions [34], and evaluated as 5/2− [25].
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Figure 4: Dependence of the extracted rotational energy parameters, for the ex-
cited KP = 3/2− band of 11Be, on the truncation parameters Nmax and ~ω of the
NCCI space in which the calculations are carried out. Successive curves are for suc-
cessively higher Nmax values (Nmax = 6, 8, and 10, noted alongside curve). The band
excitation energy Ex is taken relative to the KP = 1/2− band. Experimental values
(horizontal lines) are shown for comparison (A = 0.26 MeV and Ex = 2.77 MeV).
The vertical dashed lines indicate the approximate location of the variational energy
minimum, in ~ω, of the calculated ground state energy (see text).

The slope parameter A follows entirely from relative energies within a band, which
were already seen from Figs. 1 and 2 to be comparatively well-converged. From the
top panels in Figs. 3–5, the calculated A parameter is essentially converged for the
Daejeon16 calculations (in the vicinity of the variational minimum ~ω), while there
is still some residual dependence on Nmax (at the few-percent level) and ~ω for the
JISP16 calculations. There is remarkable consistency across these two interactions, as
well as with the experimental values. A shallower slope corresponds in the rotational
picture to a larger moment of inertia. Note that the excited KP = 3/2− band, by this
measure, has a moment of inertia roughly twice that of the KP = 1/2− band, both
in calculations and experiment (this greater moment of inertia may be understood in
terms of α cluster structure and the molecular orbitals occupied by the neutrons [13]).

Even though the Coriolis decoupling parameter a [Figs. 3 (bottom) and 5 (mid-
dle)] is likewise determined only from relative energies within a band, it is found to be
much more sensitive to the truncation of the calculation. (This parameter is extracted
essentially as a second difference in level energies, and numerical second derivatives
are known to be sensitive to uncertainties or fluctuations in the inputs.) For instance,
in the JISP16 calculations for the KP = 1/2− band [Fig. 3 (bottom,left)], although
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Figure 5: Dependence of the extracted rotational energy parameters, for the
unnatural-parity KP = 1/2+ band of 11Be, on the truncation parameters Nmax

and ~ω of the NCCI space in which the calculations are carried out. Successive curves
are for successively higher Nmax values (Nmax = 7, 9, and 11, noted alongside curve).
The band excitation energy Ex is taken relative to the KP = 1/2− band. Experi-
mental values (horizontal lines) are shown for comparison (A = 0.40 MeV, a = 1.80,
and Ex = 0.22 MeV). The vertical dashed lines indicate the approximate location of
the variational energy minimum, in ~ω, of the calculated ground state energy (see
text).

the Coriolis decoupling parameter is deceptively independent of Nmax at ~ω = 20 MeV
(vertical dashed line), there is still a strong ~ω dependence, which means that it is not
yet possible to extract a converged value. On the other hand, a seems to be compar-
atively well converged in the Daejeon16 calculations for this same band [Fig. 3 (bot-
tom,right)] and in close agreement with experiment (a ≈ 0.5). For the KP = 1/2+

band, although the a parameter obtained for both interactions is developing a plateau
(or shoulder) as a function of ~ω, indicative of convergence [Fig. 5 (middle)], there is
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still Nmax dependence at about the 10% level. The calculated values are consistent
with the much larger decoupling parameter (a ≈ 1.8) experimentally found for this
band.

Finally, the excitation energy of the KP = 3/2− band [Figs. 4 (bottom)] is poorly
converged, as already found in Section 2.2. The excitation energy of the unnatural
parity KP = 1/2+ band [Figs. 5 (bottom)] is still highly ~ω-dependent (though again
deceptively Nmax independent at ~ω = 20 MeV) for the JISP16 interaction, while the
excitation energy obtained in the Daejeon16 calculation is approaching convergence
at the ∼0.1–0.2 MeV level and appears consistent with experiment. More detailed
comparisons must rely upon extrapolation, as considered in the following discussion
of band parameters along the Be isotopic chain (Section 3).

3 Rotational energy parameters for the Be isotopes

A variety of rotational bands were identified across the Be isotopes in Ref. [16].
These include examples of “short” bands (terminating at the maximal valence angular
momentum) and “long” (non-terminating) bands, as well as unnatural parity bands,
akin to those discussed above for 11Be (Section 2).

We survey the rotational energy parameters extracted from ab initio calculations in
Fig. 6. While the calculations in Ref. [16] made use of the JISP16 interaction without
Coulomb contribution, and thus could not be directly compared to experiment, the
present JISP16 and Daejeon16 calculations include Coulomb interaction and thus may
be directly compared to experiment, convergence permitting. We do not attempt to
display the sensitivity of the extracted parameters to the basis parameter ~ω, but
rather confine ourselves to the values obtained at the approximate variational energy
minimum in ~ω. However, we do show the sequence of extracted values for four
successive Nmax truncations, as a more limited indicator of convergence. We also
show the band parameters obtained from exponentially extrapolated energies.

The first notable feature of the predicted band parameters in Fig. 6 is the overall
global consistency between predictions with the JISP16 and Daejeon16 interactions,
across the set of bands considered. Despite the caveat that significant remaining ~ω-
dependence of some of the extracted band parameters leaves their converged values
in doubt (see Section 2.3), the values for both the A and a parameters obtained at
the variational minimum in ~ω are generally largely Nmax-independent at the MeV
scale considered here. In contrast, relative excitation energies of different bands are
poorly converged, but even here the extrapolated energies are largely consistent across
interactions.

The overall pattern of rotational band parameters closely matches experiment.
Where discrepancies arise, the tendency is for the ab initio calculations to be consis-
tent with each other rather than with experiment. Here it should be noted that there
can be significant ambiguities in identification of the experimental band members
(see, e. g., footnote 6), as well as fundamental uncertainties in comparing energies
obtained in a bound-state formalism, such as NCCI, with those from experimental
resonant scattering analysis.
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Figure 6: Band energy parameters for 7–11Be, extracted from calculated energy eigen-
values: rotational constant A (top), Coriolis decoupling parameter a (middle), and
band excitation energy Ex (bottom), for the JISP16 (left) and Daejeon16 (right) in-
ternucleon interactions. Successively larger symbols indicate successively higher Nmax

values. Parameter values are also shown based on exponentially extrapolated level
energies (paired triangles). Experimental values for the band energy parameters (hor-
izontal lines) are shown for comparison [29]. The nuclide, band (KP ), and highest
Nmax value calculated are noted at the bottom of the plot. Results are obtained from
calculations at ~ω = 20 MeV for JISP16 and ~ω = 15 MeV for Daejeon16.

4 Conclusion

We have explored the dependences of rotational band energy parameters on the trun-
cation parameters of an oscillator-basis NCCI calculation for the illustrative case of
11Be (Figs. 3–5) and, more generally, across the Be isotopes (Fig. 6). We find that ab
initio calculations can provide quantitatively robust predictions for rotational band
energy parameters in light (p-shell) nuclei. Even subject to the present limitations
on ab initio many-body calculations, numerically robust predictions can be made for



Robust ab initio predictions for nuclear rotational structure 261

rotational band parameters in the Be isotopes. The results obtained with two interac-
tions of significantly different pedigree (the JISP16 interaction from J-matrix inverse
scattering and the Daejeon16 interaction originating from chiral perturbation theory)
yield highly consistent results. These results are also, overall, remarkably consistent
with the experimentally observed band parameters.
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Abstract

Superallowed 0+ → 0+ nuclear β-decay provides an important test of funda-
mental symmetries underlying the Standard Model of particle physics, namely,
the conserved vector-current (CVC) hypothesis and the unitarity of the Cabibbo–
Kobayasi–Maskawa (CKM) quark-mixing matrix. These applications require
theoretical corrections to β-decay rates, accounting for electroweak interactions
between emitted leptons and hadrons (radiative corrections) and for the loss of
the analogue symmetry between the parent and the daughter states (isospin-
symmetry breaking correction).

In this work, we present large-scale shell-model calculations of the isospin-
symmetry breaking correction to 0+ → 0+ β-decay in the p, sd and pf -shell.
We exploit accurate charge-dependent Hamiltonians and evaluate Fermi transi-
tion matrix elements using spherical Woods–Saxon (WS) radial wave functions.
Calculations are performed beyond the closure approximation, which requires a
large number of intermediate states. We address the question of convergence of
nuclear charge radii and of the radial-overlap part of the correction as a function
of intermediate states, testing, in particular, the splitting of the correction into
two terms (the so-called separation ansatz). We show that the developed ad-
justment procedure, under available experimental constraints, leads to a rather
consistent set of corrections for different shell-model interactions and WS pa-
rameterizations. The results are compared to previous studies within the shell
model. Their implication for the CVC hypothesis of the Standard Model is dis-
cussed.

Keywords: Nuclear shell model, isospin-symmetry breaking correction, super-
allowed beta decay, Standard Model

1 Introduction

The superallowed 0+ → 0+ nuclear β-decay has been attracting attention of physicists
already for a number of decades [1]. Since these transitions are governed uniquely
by the vector part of the weak current, the constancy of the so-called absolute Ft-
values for various emitters can serve to test the CVC hypothesis. These Ft values

Proceedings of the International Conference ‘Nuclear Theory in the Supercomput-
ing Era — 2018’ (NTSE-2018), Daejeon, South Korea, October 29 – November 2,
2018, eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2019, p. 263.
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263



264 N. A. Smirnova and L. Xayavong

are obtained from the experimentally deduced ft values, where t is the experimental
partial half-life of the transition and f is the statistical rate function, as given by the
following master formula [1, 2]:

Ft0
+→0+ ≡ ft0

+→0+(1 + δ′R)(1 + δNS − δC) =
K

|M0
F |2G2

V (1 + ∆R)
. (1)

Here K = 2π3~ ln 2(~c)6/(mec
2)5, GV is the vector coupling constant for a semi-

leptonic decay, |M0
F | =

√
T (T + 1) − TziTzf is the absolute value of the Fermi matrix

element in the isospin-symmetry limit, T and Tz are the isospin and its projection of
the initial i and final f states. Besides, Eq. (1) contains ∆R, δ′R, δNS , which are tran-
sition independent, transition-dependent and nuclear-structure dependent radiative
corrections, respectively, and δC is the isospin-symmetry breaking correction.

If the CVC hypothesis holds (Ft is obtained to be constant), from Eq. (1) one can
deduce GV and use it, combined with the fundamental Fermi coupling constant GF

extracted from a purely leptonic muon decay, to get the absolute value of the Vud
matrix element of the CKM matrix: |Vud| = GV /GF . This is important for the
unitarity tests of the CKM matrix, for example, one can check the normalization
condition of its first row:

|Vu|2 = |Vud|2 + |Vus|2 + |Vub|2 .
Other potential possibilities to extract Vud are provided by the neutron decay,

pion decay and transitions between mirror T = 1/2 partners [1, 3]. The neutron de-
cay is free from the nuclear structure correction, however, one needs to determine the
Gamow–Teller/Fermi branching ratio and thus one needs to measure an additional pa-
rameter, such as the β-asymmetry, ν-asymmetry or eν-correlation coefficient [1]. This
increases experimental uncertainty on the extracted Ft value. Similar uncertainties
arise for the mirror T = 1/2 decays, where, in addition to the correlation parameters,
one has to evaluate the isospin-symmetry breaking correction (see Ref. [3] for details).
The pion β-decay offers the possibility, but this branch is very weak and, thus, the
experimental uncertainty is large. It follows that the 0+ → 0+ β-decay is by far more
advantageous compared to other decays and this is why it is worth to put efforts
into it.

At present, the ft-values of 14 best-known T = 1 emitters are obtained with
a precision better than 0.4% [2]. They include 10C, 14O, 22Mg, 26mAl, 34Cl, 34Ar,
38mK, 38Ca, 42Sc, 46V, 50Mn, 54Co, 62Ga and 74Rb. The corresponding ft-values
are deduced from the measured decay Q-values and partial half-lifes. While nuclear
masses are measured nowadays with high precision, the experimental uncertainty on
the ft values is dominated by the error in the Fermi decay branching ratio [2]. In
particular, the ft values of light N = Z emitters are known with the best precision
due to the fact that they are dominated by the Fermi branch at more than 90%.

In this contribution, we focus on the isospin-symmetry breaking correction, δC ,
which appears due to the lack of the analogue symmetry between the parent and
daughter nuclear states. It is defined as a deviation of the realistic Fermi matrix
element squared from its isospin-symmetry value:

|MF |2 = |M0
F |2(1 − δC). (2)

This correction should be evaluated within a nuclear-structure model able to account
for the broken isospin symmetry in nuclear states. In spite of the recent progress
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in microscopic many-body theory and nuclear forces, the precise description of the
isospin-symmetry breaking is still a challenge. Existing predictions from various the-
oretical approaches are not in agreement (see Refs. [2, 4] and references therein). In
particular, based on the compatibility with the CVC hypothesis, in their latest sur-
vey [2] Hardy and Towner retained only their own results for the |Vud| evaluation
from Ref. [5] .

However, the fact that a calculation is consistent with the conservation of the
vector current, does not provide any constraint onto the magnitude of the Ft value.
Hence, alternative calculations would be of use. In addition, new experimental mea-
surements or theoretical developments may emerge. For example, adopting a recently
re-evaluated ∆R [6], with a reduced uncertainty and slightly modified central value,
and keeping all other values as in Ref. [2], the normalization condition for the CKM
upper row clearly shows some tensions.

In this work we present calculations of the isospin-symmetry breaking correction
to the 0+ → 0+ decay rates for a number of p-, sd- and pf -shell emitters, using
the nuclear shell-model with isospin-nonconserving (INC) Hamiltonians and realistic
WS radial wave functions. Performing large-scale computations beyond the closure
approximation, we address the question of convergence of matrix elements of operators
as a function of the number of intermediate states. In particular, we test the validity
of the separation of δC into two parts (the isospin-mixing and radial overlap parts) by
an exact calculation of the Fermi matrix element for lighter emitters. Investigation of
the role of core-excited configurations is in progress and will be published elsewhere.

2 Formalism

Within the shell model, the nuclear eigenstates are obtained from diagonalization of
an effective one- plus two-body Hamiltonian, in a many-body spherically-symmetric
basis (typically, in the harmonic-oscillator basis). The Fermi matrix element can
be expressed as a sum over valence space orbitals of one-body transition densities
(OBTDs) times single-particle matrix elements of the isospin operator [7–9]:

MF = 〈f |T̂+|i〉 =
∑

α

〈f |a†αn
aαp |i〉〈αn|t̂+|αp〉 . (3)

Here |i〉 and |f〉 are initial and final nuclear states obtained from the diagonalization
of a shell-model Hamiltonian in a valence space, T̂+ =

∑
k t̂+(k) is the isospin raising

operator for valence nucleons, a†α and aα are the creation and annihilation operators
for neutrons or protons, with α = (nα, lα, jα,mα) denoting a complete set of spherical
quantum numbers.

If the nuclear Hamiltonian is isospin-invariant, then the Fermi matrix element
given by Eq. (3) reduces to a model-independent isospin-symmetry value, M0

F . The
absolute value of the realistic Fermi matrix element is slightly smaller than |M0

F |
because of the violation of the isospin symmetry. Usually two sources of the isospin-
symmetry breaking are considered. First, the effective valence-space shell-model
Hamiltonian should contain INC terms, such as the Coulomb interaction between
protons and charge-dependent terms of nuclear origin. In this case, the initial and
final nuclear states, obtained from the shell-model diagonalization in a chosen model
space, will not be exactly analogue states. The resulting OBTDs, 〈f |a†αn

aαp |i〉, will

be different from their isospin-symmetry limit, denoted as 〈f |a†αn
aαp |i〉T .
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Another source of the isospin-symmetry breaking arises from the single-particle
matrix element, 〈αn|t̂+|αp〉, which is just an overlap between a proton and a neutron
radial wave functions,

〈αn|t̂+|αp〉 =

∫ ∞

0

Rkα,n(r)Rkα ,p(r) r2dr = Ωkα ≡ Ωα, (4)

with kα = (nα, lα, jα). If the harmonic-oscillator basis is used, those overlaps are all
equal to unity. However, they will differ from unity when the proton and neutron
single-particle wave functions are obtained from a realistic single-particle potential
with charge-dependent terms. We remark that as soon as we renounce the use of the
harmonic-oscillator basis, the most right-hand-side expression for the Fermi matrix el-
ement in Eq. (3) becomes approximate in the valence space. As was recalled by Miller
and Schwenk [10,11], acting on the single-particle bases, different for protons and neu-
trons, the exact isospin operator would connect single-particle states from the valence
space to those which are outside the valence space. However, an existing calculation
for 10C decay within the No-Core Shell Model [12], which exploits the exact Fermi
operator, does not report on essential differences with a phenomenological calculation
in the valence space with an approximate isospin operator. As far as no evidence
exists on the impact of the exact operator, we follow previous studies [1, 2, 13, 14]
and use the standard approximation for the isospin operator, truncating it to a given
valence space.

It can be shown [7–9] that within the shell model, the δC correction can be split into
two parts, according to the two sources of the isospin-symmetry breaking mentioned
above. Let us denote by ∆α a difference between OBTDs obtained from the INC and
the isospin-symmetric shell-model Hamiltonians:

∆α = 〈f |a†αn
aαp |i〉T − 〈f |a†αn

aαp |i〉. (5)

Then, in the closure approximation, one can express the matrix element MF in terms
of ∆α and Ωα as

MF =
∑

α

(
〈f |a†αn

aαp |i〉T − ∆α

)
Ωα

=
∑

α

(
〈f |a†αn

aαp |i〉T − ∆α

)
[1 − (1 − Ωα)]

= M0
F

[
1 − 1

M0
F

∑

α

∆α +
1

M0
F

∑

α

∆α(1 − Ωα)

− 1

M0
F

∑

α

〈f |a†αn
aαp |i〉T (1 − Ωα)

]
. (6)

Retaining only the leading-order (linear) terms in small terms, we can express M2
F as

|MF |2 = |M0
F |2
[

1 − 2

M0
F

∑

α

∆α − 2

M0
F

∑

α

〈f |a†αn
aαp |i〉T (1 − Ωα) + O(ζ2)

]
, (7)

where ζ denotes (1 − Ωα) or ∆α. Comparing Eq. (7) with Eq. (2), we observe that
the total correction δC to a good approximation is given by a sum of two parts,

δC = δIM + δRO, (8)
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which are the isospin-mixing part,

δIM =
2

M0
F

∑

α

∆α, (9)

and the radial-overlap part,

δRO =
2

M0
F

∑

α

〈f |a†αn
aαp |i〉T (1 − Ωα). (10)

Within the closure approximation this separation ansatz is thus almost exact, that
can be easily verified numerically. The neglected terms are of the order of the product
of two corrections and can be skipped with confidence. However, as we will explain
later, in practice, the δRO is evaluated beyond the closure approximation. We discuss
this issue in Section 5 and propose a numerical verification of the separation ansatz
in small model spaces.

In the present contribution, we summarize results obtained for a series of p-, sd-
and pf -shell nuclei, 10C, 14O, 22Mg, 26mAl, 26Si, 30S, 34Cl, 34Ar, 38mK, 38Ca, 46V,
46Cr, 50Mn, 50Fe, 54Co, 54Ni and 62Ga. The shell-model calculations have been per-
formed with NuShellX@MSU code [15], using the Cohen–Kurath effective Hamiltoni-
ans [16, 17] for A = 10, 14, the interactions of the ZBM-type [18–20] for A = 14, 22,
USD/USDA/USDB [21, 22] for nuclei with 26 ≤ A ≤ 38, KB3G [23], GXPF1A [24]
and FPD6 [25] for nuclei with A = 46, 50, 54, and JUN45 [26] and MRG [27] for 62Ga.
There are strong indications [5] that decays of A = 38, 42, 46 have to be considered
in the enlarged s1/2d3/2f7/2p3/2 model space. We work on this issue, however, in
the present study we present preliminary results for A = 38 from the sd-shell and
for A = 46 from the pf -shell.

The isospin-mixing part of the correction has been obtained from INC versions of
the cited above Hamiltonians, as will be described in the next Section. The radial-
overlap part has been estimated beyond the closure approximation using thoroughly
adjusted WS radial wave functions. Then, we present calculations of δC obtained
directly from the calculation of the Fermi matrix element beyond the closure approx-
imation and confirm the use of the separation ansatz, at least, in small model spaces.
In the last Section, we discuss the consistency of our preliminary results with the
CVC hypothesis.

3 Isospin-mixing correction

To get the isospin-mixing part of the correction, δIM , according to Eq. (9), we have
performed calculations with INC Hamiltonians designed for each model space. These
Hamiltonians have been constructed using the method worked out in Refs. [28, 29].
One starts from a well-established isospin-conserving Hamiltonian, whose eigenstates
form degenerate isobaric multiplets. Then, one introduces an INC term, VINC , con-
sisting of isovector single-particle energies, the two-body Coulomb interaction between
protons and effective two-body charge-symmetry breaking and charge-independence
breaking components of nuclear origin. Those two latter terms can be modeled by
the Yukawa pion or rho-meson exchange potential or simply by a T = 1 term of the
original isospin-conserving Hamiltonian. The resulting VINC is thus a superposition
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of an isoscalar, an isovector and an isotensor operators. Evaluating within perturba-
tion theory the splitting of the isobaric multiplets due to the expectation values of the
non-isoscalar terms, one gets for a mass excess an expression quadratic in Tz, known
as the Wigner’s isobaric-multiplet mass equation [30]:

M(η, T, Tz) = a(η, T ) + b(η, T )Tz + c(η, T )T 2
z . (11)

Here η = (A, Jπ, Nexc, ...) denotes all other quantum numbers (except for T ), which
are required to label a quantum state of an isobaric multiplet, whereas a, b and c
are coefficients. The unknown strengths of the isovector and isotensor terms are
found by a fit to experimental b and c coefficients for ground and excited states in
a given model space (experimental databases can be found in Refs. [31, 32]). Having
established the unknown strength parameters, we add VINC to the original isospin-
conserving effective Hamiltonian H : HINC = H + VINC . Obviously, HINC does not
commute with the many-body isospin operator anymore. We diagonalize it in the
proton-neutron formalism and get states of a slightly mixed isospin.

Since the isospin is not conserved, calculations of β-decays between 0+ isobaric
analogue states show that a fraction of the Fermi strength is split among many
non-analogue states in the daughter nuclei, producing contributions to δC from the
model space (or δIM ). One can distinguish two main sources of isospin impurities
in the parent and daughter states [14]. The first is due to mixing with other non-
analogue 0+, T = 1 states. Besides, in N = Z nuclei, high-lying 0+, T = 0 states may
provide certain admixtures as well. In the first order perturbation theory, the isospin-
impurity amplitude is inversely proportional to the energy difference between the two
admixed 0+ states, ∆E. Therefore, the corresponding contribution to the isospin-
mixing correction behaves as ∼ 1/(∆E)2. We estimate the isospin-mixing correction
from the splitting of the Fermi states over about 100 excited 0+ states. To improve the
accuracy, we scale the theoretical values with experimental energy differences when
available (typically, for a few lowest 0+ states).

In the present work we used the charge-dependent versions of the above cited
effective Hamiltonians in the p, p1/2d5/2s1/2, sd, pf and f5/2pg9/2 shell-model spaces
from Refs. [14, 15, 28]. The resulting δIM corrections are summarized in Fig. 1 in
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Table 1: Preliminary values of δIM , δRO and δC with their uncertainties obtained
in this work, in comparison with the results of Towner and Hardy from [2, 33]. The
present results for A = 38 are obtained in the sd-shell, while the results for A = 46
are obtained in the pf -shell.

Parent This work Towner, Hardy (2015)
δIM (%) δRO (%) δC (%) δIM (%) δRO (%) δC (%)

10C 0.102 (45) 0.203 (24) 0.304 (51) 0.010 (10) 0.165 (15) 0.175 (18)
14O 0.039 (21) 0.271 (25) 0.309 (33) 0.055 (20) 0.275 (15) 0.330 (25)
22Mg 0.032 ( 1) 0.313 (30) 0.345 (30) 0.010 (10) 0.370 (20) 0.380 (22)
26Al 0.007 ( 1) 0.249 (16) 0.255 (16) 0.030 (10) 0.280 (15) 0.310 (18)
26Si 0.025 ( 4) 0.360 (28) 0.386 (28) 0.030 (10) 0.405 (25) 0.435 (27)
30S 0.059 ( 4) 0.656 (31) 0.715 (31) 0.155 (20) 0.700 (20) 0.855 (28)
34Cl 0.052 ( 4) 0.616 (30) 0.668 (30) 0.100 (10) 0.550 (45) 0.650 (46)
34Ar 0.010 ( 1) 0.662 (52) 0.672 (52) 0.030 (10) 0.665 (55) 0.695 (56)
38K 0.094 ( 3) 0.582 (99) 0.676 (99) 0.105 (20) 0.565 (50) 0.670 (54)
38Ca 0.012 ( 1) 0.773 (83) 0.785 (83) 0.020 (10) 0.745 (70) 0.765 (71)
46V 0.072 (24) 0.338 (46) 0.410 (52) 0.076 (30) 0.545 (55) 0.620 (63)
46Cr 0.025 ( 8) 0.450 (70) 0.475 (70) 0.045 (20) 0.715 (85) 0.760 (87)
50Mn 0.041 ( 2) 0.458 (16) 0.499 (16) 0.035 (20) 0.610 (50) 0.645 (54)
50Fe 0.032 ( 3) 0.428 (76) 0.460 (76) 0.025 (20) 0.635 (45) 0.660 (50)
54Co 0.021 ( 1) 0.632 (72) 0.652 (72) 0.050 (30) 0.720 (60) 0.770 (67)
54Ni 0.029 ( 4) 0.601 (71) 0.629 (72) 0.065 (30) 0.725 (60) 0.790 (67)
62Ga 0.050 (30) 0.961(181) 1.010 (184) 0.275 (55) 1.20 (20) 1.48 (21)

comparison with previous works [2, 14], while the numerical values can be found
in Table 1. The uncertainties of our results stem from the use of different INC
Hamiltonians for the same nucleus in the same model space. We observe that our
results are in agreement with the calculations of Towner and Hardy [2] for a number of
sd- and pf -shell emitters. The value of δIM for 10C is much larger in our calculation
than that of Towner and Hardy. This comes partly from a larger mixing matrix
element and partly from a higher position of the second 0+ state in 10B. At the same
time, our values for 22Mg, 26Al and 62Ga are much smaller than the results of Towner
and Hardy. For the latter one, we exceptionally use the pf shell for this calculation,
because the construction of an accurate INC Hamiltonian in the model space beyond
the 56Ni core is still in progress. We notice that there is an agreement of both results
for A = 46 and 50, although we have used the pf -shell model space, while Towner
and Hardy used the s1/2d3/2f7/2p3/2 one.

We conclude by saying that, as seen from Fig. 1, δIM is very sensitive to the
details of the shell-model interaction and, in particular, to the charge-dependent term.
However, the δIM contribution is no more than 10% to the total correction, and hence
it slightly affects final δC values.
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4 Radial-overlap correction

The radial overlap correction, δRO, is the major part of the isospin-symmetry breaking
correction. To go beyond the closure approximation of Eq. (10), one has to insert the
summation over intermediate states in the (A− 1) nucleus [7, 8],

δRO =
2

M0
F

∑

α,π

〈f |a†αn
|π〉T 〈i|a†αp

|π〉T (1 − Ωπ
α), (12)

where the matrix elements 〈f |a†αn
|π〉T and 〈i|a†αp

|π〉T are related to the spectroscopic
amplitudes for the neutron and proton pick-up, respectively. In the angular momen-
tum coupled formalism, we can rewrite this expression as

δRO =
2

M0
F

∑

k,π

STπ
kn
STπ
kp

(1 − Ωπ
k ), (13)

with k ≡ kα for simplicity and

STπ
kn

=
〈Ψ(A)Jf ||a†kn

||Ψ(A− 1)Jπ〉T√
2Jf + 1

, STπ
kp

=
〈Ψ(A)Ji||a†kp

||Ψ(A− 1)Jπ〉T√
2Jf + 1

.

Again, the label T means that the nuclear eigenstates Ψ(A) and Ψ(A−1) are obtained
in the isospin-symmetry limit. The radial integrals Ωπ

kα
≡ Ωπ

k depend on π via

Ωπ
k =

∫ ∞

0

Rπ
kn

(r)Rπ
kp

(r) r2dr. (14)

The notations Rπ
k (r) means that these radial wave functions are extracted from a

potential for which one nucleon separation energies correspond to Sp + Eπ . Thus,
for each excitation energy Eπ we fit the potential in order to reproduce experimental
proton and neutron separation energies separately. For every transition, we take up
to 200 excited states of each spin and parity of the intermediate nucleus and check
that the δRO is well converged. We also remark that the summation in Eq. (13)
is incoherent, thus the consistency of signs of the spectroscopic amplitudes is very
important.

In our study, we have explored two different parameterizations of the WS potential:
one being close to that of Ref. [34] (BMm), while the other, referred to as SWV, being
based on Ref. [35]. The details of these parameterizations and the role of each term
are discussed extensively in Refs. [4, 9]. Briefly speaking, we use the WS potential of
the standard form,

V (r) = V0f(r, R0, a0) + Vs

(rs
~

)2 1

r

d

dr
[f(r, Rs, as)](l · σ) + Vc(r), (15)

where

f(r, Ri, ai) =
1

1 + exp ( r−Ri

ai
)
, (16)

with i denoting either 0 for the central term or s for the spin-orbit term. The radius
is modeled in a standard way as Ri = ri(A− 1)1/3, while the diffuseness parameters,
ai, are kept fixed. In general, the spin-orbit length parameter, rs, is smaller than
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that of the volume term, r0, because of a very short range of the two-body spin-orbit
interaction [34]. The one-body Schrödinger equation is solved in relative coordinates
for a particle of mass µ = m (A − 1)/A, where m is the nucleon mass and A is the
mass number of the composite nucleus. The isovector terms of the WS potential,
which provide the difference between the proton and neutron wave functions, are
most crucial for the radial-overlap correction. Their global parameterization is not
accurate enough. This is why we consider only the Coulomb term, while all other
possible isovector contributions are taken into account by adjustment of a specific
potential parameter (a potential depth or a surface term) to match either the proton
or the neutron separation energy. The Coulomb radius parameter is related to the
root-mean-charge radius of the parent nucleus. The WS length parameter is varied
to insure that the charge density constructed from the proton radial wave functions
yields a root-mean-charge radius in agreement with the experimental value measured
by the electron scattering [36] or by the isotope-shift estimation [37].

Contrary to all previous works, we have calculated the nuclear radii beyond the
closure approximation [4, 9]. The square of the charge radius (relative to the inert
core) is given by the expectation value of the operator r2sm in the ground state of the
parent nucleus:

〈r2〉sm = 〈i|r2sm|i〉 =
1

Z

∑

α

〈αp|r2|αp〉〈i|a†αp
aαp |i〉. (17)

Inserting the complete sum over intermediate states
∑

π |π〉〈π| into this equation, we
convert the proton occupation numbers, 〈i|a†αp

aαp |i〉, into a sum of the spectroscopic
factors over intermediate states. Taking into account that the radial wave functions
depend on π, we get the following expression:

〈r2〉sm =
1

Z

∑

α,π

〈i|a†αp
|π〉2〈αp|r2|αp〉π, (18)

with the single-particle matrix element being

〈αp|r2|αp〉π =

∫ ∞

0

r4|Rπ
kp

(r)|2 dr. (19)

The convergence of the expression (18) is quite fast. We found out that it results in
slightly smaller values of the charge radii, requiring thus larger values of the length
parameter r0.

The adjustment procedure can be summarized as follows. For a given value of a,
we vary two parameters, the potential depth V0 and the length parameter, r0, in a way
to reproduce known experimental observables — the one-nucleon separation energies
and the radius of the parent nucleus. The fit is performed either by a modification of
the central part depth V0 or by an addition of a separate surface term,

Vg(r) =

(
~

mπc

)2
Vg
asr

exp

(
r −Rs

as

)
[f(r, Rs, as)]

2
, (20)

and by a modification of the Vg parameter. As we have found out for the sd shell [4],
the procedure involving the variation of V0 removes essentially the dependence on a
particular parameterization: the BMm and SWV results are very similar. The fit of
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Figure 2: Radial-overlap corrections obtained from the shell model with WS radial
wave functions (BMm parameterizations). The results of Towner and Hardy [37] are
shown for comparison.

the surface term results in larger differences between the results from two parameter-
izations and we keep this in our analysis. Figure 2 shows our results for δRO obtained
in the p, p1/2d5/2s1/2, sd, pf and f5/2pg9/2 shell-model spaces, being the average
from BMm and SWV parameterizations and two different methods of the fit (vol-
ume or surface term). For comparison we show the latest calculations of Towner and
Hardy [2,5]. Again, our sd-shell values for A = 26, 30 and 34 are in a good agreement
with the results of Ref. [2]. The values obtained for A = 38 look to be close to the
values of Towner and Hardy, however, we should remember that our calculation uses a
small sd-shell model space. We also remark that Towner and Hardy [5] used different
model spaces for A = 46 and 50, which causes major differences in these cases (our
pf -shell values are systematically smaller). We remark that three different pf -shell
interactions, KB3G, GX1A and FPD6, give almost identical values for A = 46 and 50.
Calculations for A = 38, 42 and 46 in the model space around 40Ca are in progress
and will be published elsewhere. The dominant part of the uncertainty is systematic
due to experimental uncertainties of nuclear radii (see Ref. [4] for details). The use
of different shell-model interactions for a given model space is considered as a source
of statistical uncertainty. Its contribution is minor. It is seen that, except for a few
cases, our uncertainties are similar to those deduced by Towner and Hardy.

5 Beyond the separation ansatz

In this section we present calculations of the nuclear structure correction without
the separation ansatz. First, let us derive the expression for the δC beyond the
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closure approximation. In this case, the summation over intermediate states has to
be included in the expression of the Fermi matrix element,

MF =
∑

α

〈f |a†αn
aαp |i〉〈αn|t̂+|αp〉 =

∑

α

∑

π

〈f |a†αn
|π〉〈i|a†αp

|π〉Ωπ
kα
. (21)

In the J-coupled form, this expression becomes

MF =
∑

k,π

Sπ
kp
Sπ
kn

Ωπ
k . (22)

Denoting the deviations of the spectroscopic amplitudes from their isospin-symmetry
limits as

STπ
kp

− Sπ
kp

= Dπ
kp
, (23)

STπ
kn

− Sπ
kn

= Dπ
kn
, (24)

we can rewrite the Fermi matrix element as

MF =
∑

k,π

(
STπ
kp

−Dπ
kp

) (
STπ
kn

−Dπ
kn

)
[1 − (1 − Ωπ

k )] (25a)

=
∑

k,π


S

Tπ
kp
STπ
kn︸ ︷︷ ︸

M0
F

−STπ
kp
STπ
kn

(1 − Ωπ
k )

︸ ︷︷ ︸
O(ζ)

−
(
STπ
kp
STπ
kn

− Sπ
kp
Sπ
kn

)

︸ ︷︷ ︸
O(ζ)

(25b)

+
(
STπ
kp
Dπ

kn
+ STπ

kn
Dπ

kp

)
(1 − Ωπ

k )
︸ ︷︷ ︸

O(ζ2)

− Dπ
kp
Dπ

kn
(1 − Ωπ

k )
︸ ︷︷ ︸

O(ζ3)


. (25c)

Line (25b) contains the Fermi matrix element in the isospin-symmetry limit and
leading-order (linear) contributions to the correction δC expressed by δRO + δIM ,
while the terms shown on line (25c) represent the corrections of the second and third
orders. Again, we can wish to keep only linear terms in small quantities and therefore
to use an approximate expression:

MF = M0
F


1 − 1

M0
F

∑

k,π

(
STπ
kp
STπ
kn

− Sπ
kp
Sπ
kn

)

− 1

M0
F

∑

k,π

STπ
kp
STπ
kn

(1 − Ωπ
k ) +O(ζ2)


. (26)

Taking this expression squared, we get

|MF |2 = |M0
F |2

1 − 2

M0
F

∑

k,π

(
STπ
kp
STπ
kn

− Sπ
kp
Sπ
kn

)

− 2

M0
F

∑

k,π

STπ
kp
STπ
kn

(1 − Ωπ
k ) +O(ζ2)


. (27)
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Figure 3: The isospin-symmetry breaking correction obtained from the exact calcu-
lation, δC , and from the sum δIM + δRO as a function of the number of intermediate
states of each angular momentum and parity.

Again, we observe that the correction splits into two parts, δC ≈ δIM +δRO, with δRO

defined by Eq. (13) and the isospin-mixing part given by Eq. (9), which we can
rewrite as

δIM =
2

M0
F

∑

k,π

(
STπ
kp
STπ
kn

− Sπ
kp
Sπ
kn

)
. (28)

Although the approximation seems to be good, we have performed the exact cal-
culation of the Fermi matrix element using Eq. (21) and compared between the result
and the approximation given by the sum δIM + δRO. The expression in Eq. (21) con-
verges very slowly as a function of the number of intermediate states π: up to a few
thousand intermediate states are often required, which is not easily doable in large
model spaces. Thus, we have used for verification only the sd-shell emitters and 46V
in the pf -shell. Figure 3 shows the values of δC from the exact calculation of the Fermi
matrix element and from the separation ansatz according to Eq. (27) as a function of
the number of intermediate states of each angular momentum and parity. We remark
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that, while the δIM + δRO is converged when about 100 intermediate states are used,
to get the δC converged we need at least 2000 excited states for nuclei from the middle
of the sd shell. The results shown in Fig. 3 are obtained from the INC version of USD
(for the sd-shell emitters) and the INC version of GXPF1A for A = 46 [15], but we
checked that the results are similar for other interactions in the same model spaces.
Uncertainties correspond to the systematic errors due to experimental uncertainties
of the measured charge radii. For all cases considered, it is seen that the separation
ansatz represents a robust approximation to the exact value of δC .

At the same time, the intermediate state procedure has still to be checked on the
effect of orthogonality of the single-particle states, as well as possible center-of-mass
contributions. These are open problems to be addressed in future.

6 Consistency with the CVC hypothesis

Our preliminary δC values obtained by now are summarized in Table I and can be
also found in Fig. 4 in comparison with the latest results by Towner and Hardy [2].

To estimate the quality of our preliminary results, we perform the confidence-level
test proposed recently by Towner and Hardy [38]. Based on the assumption that the
CVC hypothesis is valid to at least ± 0.03% and adopting the values of ft, δ′R, δNS

from Ref. [2], we check whether our set of corrections produce a statistically consistent
set of Ft values.

If we assume that the CVC hypothesis is satisfied (Ft is constant), without regard-
ing the CKM unitarity, we can convert the experimental ft values into experimental
values for structure-dependent corrections and compare the results of the calculation.
Defining pseudo-experimental values of the isospin-symmetry breaking correction as

δexpC = 1 + δNS − Ft
ft(1 + δ′R)

, (29)

we can test a set of δC for N superallowed transitions, using the method of least
squares with Ft as the adjustable parameter. To characterize the quality of the fit,
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we use the optimized value for χ2/ν (ν = N − 1):

χ2/ν =
1

N − 1

N∑

i=1

[δC(i) − δexpC ]
2

σ2
i

. (30)

In the present test we consider 10 transitions: 10C, 14O, 22Mg, 26mAl, 26Si, 34Cl, 34Ar,
50Mn, 54Co and 62Ga. An improved measurement of the branching ratio of 26Si decay
has been reported recently [39], resulting in ft = 3051.5(57) s, so we have included
this transition in our analysis. However, we do not use our preliminary sd-shell results
for A = 38 and pf -shell results for A = 46, since those decays should be evaluated in a
more adequate sdpf shell-model space. The obtained optimized value of χ2/ν = 1.75
is encouraging and the corresponding Ft = 3074.0 sec is in fair agreement with the
latest evaluation by Towner and Hardy [2]. A more complete comparison will be done
when we get results for all of 14 best known emitters.

7 Conclusions

In this contribution we present new shell-model calculations of the isospin-symmetry
breaking correction to the superallowed 0+ → 0+ β-decay. The main goal of our study
is to reexamine the previous work within the nuclear shell model making advantage of
the remarkable progress in the state-of-the-art description of nuclear properties within
a large-scale diagonalization technique. We find that the isospin-mixing part of the
correction is very sensitive to a particular parameterization of the charge-dependent
term of the Hamiltonian. However, representing a small part of the correction, it
does not affect much the final values. The radial-overlap part of the correction is the
dominant part. We have performed calculations for 13 emitters from p, p1/2sd5/2,
sd, pf and f5/2pg9/2 model spaces without truncations and taking into account up
to 200 excited states of each relevant spin and parity of the intermediate nucleus.
Two different parameterizations of a spherical WS potential have been investigated.
Our adjustment procedure, relying on the experimental nuclear radii and nucleon
separation energies, largely removes the dependence of the results on the WS potential
parameters. The calculation of nuclear radii have been performed beyond the closure
approximation. In general, the results stay consistent with previous studies, although
the final Ft value may deviate from the presently accepted value. A further work on
nuclei of the masses A = 38, 42,46, 74 is needed to accomplish the study.

The preliminary implications of our new results for electroweak tests lead to a
slightly different average Ft value with an overall good agreement with CVC. Calcu-
lations for a larger set of emitters are in progress.
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Abstract

The use of symmetries to unmask simplicity within complexity in atomic
nuclei is examined within its historical context and the evolving ab initio no-core
shell model (NCSM) approaches that typically rely heavily on high-performance
computing and applied math methods. Some examples — old and new — that
demonstrate the important role symmetries plays in this evolution, are noted.
Further, an extension of the symmetry adapted no-core shell model (SA-NCSM),
one that incorporates deformation from the onset, is proffered as a potential
path forward for further reducing the combinatorial growth of model-space sizes
that are required to track collective phenomena in a non-deformed theory. This
feature suggests a means for extending ab initio methods to even heavier nuclei.

Keywords: Ab initio theory; no-core shell model (NCSM); symmetry-adapted
NCSM; symplectic model; deformed configurations; many-particle Nilsson model

1 Introduction

This contribution is organized into five sections: 1) A short ‘Introduction’ (i. e., this
paragraph) that lays out the structure of this report, 2) A brief ‘Historical overview’
of efforts — old and new — focused on expanding shell-model spaces to reproduce
collective and clustering features (principal co-author A. Dreyfuss), 3) Some recent
‘Exemplary results’ which show that special symmetries can be used to tame the
combinatorial growth of NCSM model spaces while extending their reach, and to re-
produce observed enhanced B(E2) transition strengths without the use of effective
charges (principle co-authors R. Baker and G. Sargsyan), 4) How ‘Canonical transfor-
mations’ from non-deformed to deformed many-particle configurations that preserve
these special symmetries can be used to gain further reductions in model space sizes —
essentially an interacting many-particle Nilsson model (principal co-author D. Keke-
jian), and 5) A ‘Conclusion’ that looks beyond the current landscape to more novel

Proceedings of the International Conference ‘Nuclear Theory in the Supercomput-
ing Era — 2018’ (NTSE-2018), Daejeon, South Korea, October 29 – November 2,
2018, eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2019, p. 279.

http://www.ntse.khb.ru/files/uploads/2018/proceedings/Draayer.pdf.
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notions that just as special symmetries carry one from the NCSM to its symmetry-
adapted extension, SA-NCSM, should enable use of ab initio methods in studies of
heavier nuclei.

2 Historical overview

The independent-particle model of Mayer and Jensen [1, 2], with its reproduction of
the ‘magic’ numbers of nuclei, can arguably be called the first microscopic theory of
nuclear structure. Its success inspired the development of various follow-on models of
increasing levels of sophistication across the second half of the last century. However,
testing these theories against experimental data was limited by meager computational
resources, up until about the last decade or so of that period. The advent of truly
high-performance computational resources in the 90s enabled the development and
testing of so-called no-core shell model (NCSM) concepts [3,4] (see, e. g., Refs. [5–7]),
which to date have been used to describe the structure of low-lying states of s- and
p-shell nuclei, starting from ab initio principles.

The NCSM preserves exact symmetries like time reversal invariance, parity conser-
vation, and translational invariance within an overarching many-particle framework
that respects particle number conservation and statistics; that is, the NCSM is a fully
microscopic many-fermion theory of nuclear structure that uses realistic interactions
between and among nucleons that reside in properly anti-symmetrized bases states
built from single-particle states of the three-dimensional harmonic oscillator (3D-HO),
where the energy scale of the latter is set by the ~Ω parameter of the oscillator.

Within the NCSM framework, the complete model space is organized into the
horizontal slices of the HO, each separated in energy from its neighbors by ~Ω, with
interactions among particles within a slice as well as between particles in neighboring
slices accounted for, up to some Nmax cutoff which is the maximum total number
of oscillator quanta above the lowest HO configuration for a given nucleus, thereby
reducing the infinite model space to a truncated subspace of the full space, one capped
by the Nmax~Ω cutoff limit imposed on the theory. In the Nmax~Ω → infinity limit,
the theory encompasses the entire shell-model space.

While the independent-particle model approach was being developed, there was
a complementary push towards models that describes the observed strongly collec-
tive features found in nuclei. Some notable early models that reproduce collective
features are the Bohr–Mottelson Model (BMM) for collective nuclear motion [8], the
Geometrical Collective Model (GCM) of the Greiner school [9, 10], and of particular
relevance to this report, the Elliott SU(3) Model [11, 12]. Specifically, the Elliott
model captures the importance of the SU(3) symmetry in describing — from a mi-
croscopic perspective – the deformed structures in light to intermediate-mass nuclei.
A similar approach using pseudo-spin symmetry and its pseudo-SU(3) complement
has been used to describe deformation in the upper pf and lower sdg shells, and in
particular, in strongly deformed nuclei of the rare-earth and actinide regions [13], as
well as in many other studies (e. g., see Ref. [14]). The collective symplectic model
developed by Rowe and Rosensteel [15,16], with the Sp(3,R) underpinning symmetry,
intersects with these collective approaches. In one limit, the symplectic model can
be shown to be a microscopic realization of the Bohr–Mottelson theory, and, in an-
other, a multi-shell generalization of the Elliott model, with SU(3) being a subgroup
of Sp(3,R).
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First-principles SA-NCSM — Building on the foundations of particle-driven
models, such as the NCSM, and the use of symmetries to reproduce collectivity,
as in the collective symplectic model, the ab initio symmetry-adapted no-core shell
model (SA-NCSM) is a no-core shell model with a symmetry-adapted basis that
is either SU(3)-coupled or Sp(3,R)-coupled. In the SU(3)-coupled realization, ba-
sis states are organized with respect to the physically relevant, deformation-related

SU(3)(λµ)

κ⊃ SO(3)L subgroup chains. In a given complete Nmax model space, results

for the SA-NCSM and NCSM coincide exactly, for the same interaction. The use
of symmetries to guide SA-NCSM model space selection allows for the consideration
of only the most physically-relevant subspace of a complete Nmax model space. The
SA-NCSM uses a very general intrinsic non-relativistic Hamiltonian

H = Trel + VNN + V3N + ...+ VCoul, (1)

where Trel is the relative kinetic energy, and the nucleon-nucleon, VNN, and possibly
3-nucleon, V3N, interactions are included along with the Coulomb interaction, VCoul,
between the protons.

First-principles studies of p-shell nuclei computed in the ab initio SA-NCSM show
the emergence of a simple pattern that favors large deformation and low spin (Fig. 1).
For example, the SA-NCSM wave function for the 1+ ground state of 6Li computed in
an Nmax = 10 model space with the bare JISP16 nucleon-nucleon (NN) interaction
is dominated by the deformed 0~Ω (2 0) irreducible representation (irrep) and its
symplectic excitations (e. g., 2~Ω (4 0), 4~Ω (6 0), etc.). This pattern is seen in
studies of other p-shell nuclei, including 6He, 8Be, and 12C, using various realistic
NN interactions, including chiral interactions. This universality of this emergent
feature underlines the importance of the SU(3) and Sp(3,R) symmetries in describing
nuclear structure.

No-core Symplectic Shell Model (NCSpM) — The symplectic Sp(3,R) symme-
try applied in a microscopic framework is directly related to the particle position and
momentum coordinates, and naturally describes rotations and vibrations of an equi-
librium deformation [17, 18]. By exploiting this emergent symmetry, the microscopic
no-core symplectic shell model (NCSpM) [19] makes use of a schematic interaction to
approach model spaces beyond what is currently within reach of ab initio theories.
The NCSpM is a fully microscopic no-core shell model based on the physically rele-
vant symplectic Sp(3,R) group [15,16] and its SU(3) subgroup [11,12,20]. In the same
complete Nmax model space and using the same interaction, the NCSM and NCSpM
results are identical. In analogy to the NCSM horizontal slices of the complete model
space, the NCSpM organizes the complete space into a series of vertical ‘cones’ within
the HO well, which are irreps of Sp(3,R), included up to some Nmax. Each of these
irreps described a single equilibrium deformation and its rotations and vibrations. By
including only a few of these cones, the model space is greatly reduced, which allows
extension to higher Nmax model spaces beyond the current NCSM limits, giving access
to the spaces needed to probe clustering in nuclei.

The microscopic NCSpM uses a many-body Hamiltonian that includes a collec-
tive piece that enters through the quadrupole-quadrupole interaction, as described in
Ref. [19, 21]:

H = Trel + VNN + V eff
mN + ...+ VCoul. (2)

The VNN is taken to be the bare JISP16 nucleon-nucleon interaction, which is turned
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Figure 1: Probability distributions for proton, neutron, and total intrinsic spin com-
ponents (SpSnS) across the Pauli-allowed deformation-related (λµ) values for the 1+

ground state of 6Li, calculated in 12 HO shells with the JISP16 bare interaction
(~Ω = 20 MeV). The most deformed configurations (λµ) are at the right of each HO
shell subspace, where the strengths are concentrated indicating the dominance of col-
lectivity. A symmetry-guided model-space selection takes advantage of this emergent
property by including the full space up through N⊥

max, but then selecting a subset of
configurations with high deformation and low spin up through N⊤

max. A model space
constructed in this way is labeled 〈N⊥

max〉N⊤
max. The projection onto symplectic ver-

tical slices (with probability ≥ 1%) is schematically illustrated by arrows and clearly
reveals the preponderance of a single symplectic irrep. Adapted from Ref. [17].
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on only among bandheads of symplectic irreps, introducing horizontal mixing of all
the states (up through the Nmax cutoff) within the symplectic vertical slices. The

effective many-nucleon interaction is taken to be V eff
mN =

∑A
i=1

mΩ2
r
2
i

2 + χ
2

(e−γ(Q.Q)−1)
γ .

The symplectic Sp(3,R) symmetry is preserved by the HO potential and Trel, and

the important quadrupole-quadrupole interaction 1
2Q · Q = 1

2

∑
i qi · (

∑
j qj), which

introduces the interaction of each particle with the total quadrupole moment of the
system.1 The value of χ is fixed using self-consistent arguments [22] by the estimate
used in an Sp(3,R)-based study of cluster-like states of 16O [23], and the strength
of the HO potential is fixed using the empirical estimate ~Ω ≈ 41/A1/3. The only
adjustable parameter in the model is γ. The Hγ potential term introduces many-
body interactions hierarchically, controlled by γ < 1, such that higher-order terms in
the exponential of Q · Q become negligible. For example, we find that for the 12C
ground state, all terms in the expansion beyond (Q ·Q)2 contribute negligibly to the
wave function. However, the 12C Hoyle state band, requires the inclusion of terms up
through (Q ·Q)4 (or the third order in γ) [19].

The energy spectrum for 12C, computed in the NCSpM with Nmax = 20 and
~Ω = 18 MeV down-selected to only 5 symplectic irreps, agrees remarkably well with
experiment (Fig. 2). We find that the lowest 0+, 2+, and 4+ states of the two 0p-0h
irreps [0p-0h (4 0) and 0p-0h (1 2)] reproduce the ground state rotational band. The
lowest 0+ state of the 4p-4h (12 0) irrep coincides with the experimental Hoyle state,
and the lowest 0+ state of the 2p-2h (6 2) irrep coincides with the third 0+ in 12C.
The low-lying 3− state is reproduced using the 1p-1h (3 3) irrep. The one-body
(matter) densities shown in Fig. 2 (right) indicate a donut-like shape for the 12C
ground state, while the 0+2 state shows peaks in the probability density aligned along
the z-axis, indicating overlapping clusters spatially extended along this axis. While a
smaller Nmax model space is sufficient for convergence of the ground state rotational
band, the wave function for the 0+2 state of 12C has significant contributions from
highly deformed configurations [e. g., (12 0), (14 0), (16 0), etc.] and requires a much
larger Nmax model space in order for the collectivity of the state to fully develop and
for the energy to reach convergence.

In addition to the energy spectrum, the NCSpM reproduces observables such
as B(E2) transition strengths (Fig. 2), matter rms radii, and electric quadrupole
moments, and has been used to investigate the nature of the giant monopole and
quadrupole resonances in selected light- and intermediate-mass nuclei [25]. This model
has also been applied to studies of other nuclei, including 8Be, as well as various sd-
shell nuclei without the need to adjust the γ strength parameter [26, 27]. Its ability
to reproduce energy spectra as well as collective features in various nuclei indicates
that the NCSpM captures important components of the underlying nuclear physics.

3 Exemplary results

Ab initio SA-NCSM calculations have now been extended into and beyond the inter-
mediate mass region as shown in Fig. 3, including odd-A nuclei and their negative
parity states (e. g., 19Ne in 12 HO major shells [28]) and nuclei near the dripline (e. g.,

1Note, the average value ofQ·Qwithin an oscillator shell introduces a major renormalization of the
HO shell structure, so, as is normally done, this average is removed; that is, Q ·Q →

(

Q ·Q−〈Q ·Q〉
)

,
where the average 〈Q ·Q〉 has a simple universal operator form that applies to a HO shell.
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Figure 2: Left: Energy spectrum for 12C calculated using the NCSpM with the schematic interaction (2) and the JISP16 NN
interaction as the V SB

NN symmetry-breaking term, and using 5 Sp(3,R) irreps (the average deformation of each is depicted at bottom)
extended to Nmax = 20 (~Ω = 18 MeV), and compared to experiment. B(E2) transition strengths are in W.u. Right: Densities,
shown along the x-axis (dashed) and z-axis (solid) of the intrinsic frame for the ground state and the 0+2 state. Components of the
wave function with probability > 3% are included, comprising 95% of the ground state wave function, and 91% of the wave function
for the 0+2 state. The figures are adapted from Refs. [21, 24].
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(a) (b)

Figure 3: Ab initio SA-NCSM calculations using the chiral NNLOopt NN interac-
tion [31] for excitation spectra in (a) 19Ne with 12 HO major shells and (b) 32Ne
with 7 HO major shells. Simulations are performed on the Blue Waters system.

32Ne in 7 HO major shells [29]). Further, medium mass nuclei (e. g., 48Ti in 8 HO
major shells [29]) are now within the reach of the SA-NCSM. All of these results uti-
lize realistic chiral interactions and were able to incorporate contributions from higher
HO major shells than previously achievable in order to allow the development of the
most important configurations in each nucleus. The results show good agreement with
experiment, especially as related to collectivity, a traditionally challenging feature for
ab initio models to reproduce. For example, the quadrupole moment for the first 2+

state in 48Ti from experiment is known to be −17.7 e · fm2 [30] and SA-NCSM calcu-
lations show a value of −19.3 e·fm2 based on the chiral NNLOopt NN interaction [31]
in 8 HO major shells with no effective charges. This indicates that the symmetry-
adapted basis is capable of allowing the necessary collectivity to develop while also
controlling the combinatorial growth associated with standard NCSM model spaces.

To further study the collectivity, especially with respect to the isospin symmetry
breaking effects in mirror nuclei, we carry forward a systematic study of B(E2) val-
ues in mirror nuclei. Traditionally the isospin symmetry breaking has been studied
by comparing the level energies in mirror nuclei or their masses. To advance the
understanding of isospin symmetry breaking effects, a range of spectroscopic data is
required, including the B(E2) values, in addition to the energies of excited states. For
example, Fig. 4 shows ab initio SA-NCSM calculation results for 21Mg and 21F mir-
ror nuclei. Calculations of B(E2) strengths were performed using various symmetry-
based selections of the SA-NCSM model space and ~Ω values, and only the results with
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Figure 4: Ab initio SA-NCSM calculations using the chiral NNLOopt NN interaction [31] in ultra-large model spaces (~Ω = 15 MeV).

(a) Energy spectrum of 21Mg and 21F in 11 HO major shells, and (b) convergence of the B
(
E2 : 1

2

+ → 5
2

+)
(top) andB

(
E2 : 5

2

+ → 9
2

+)

(bottom) strengths with increasing model space, and the extrapolated values with uncertainties from model space and ~Ω variance.
Simulations are performed on the Blue Waters system. Experimental values for the B(E2) are available in Ref. [32].
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the most optimal parameters that show the fastest convergence trend are depicted
in Fig. 4. The variance of the model spaces and HO parameter ~Ω is accounted for
the extrapolated values and their uncertainties. These results compare to the recent
experimental values [32] reasonably well, demonstrating the SA-NCSM capability to
describe collectivity in these challenging mirror nuclei.

4 Canonical transformations

The symplectic Sp(3,R) group is the group of linear canonical transformations in
phase space [33]. We use this fact to define a linear unitary canonical transformation
that maps the generators of the sp(3,R) algebra into a deformed equivalent set while
preserving the symplectic symmetry. We expect that the associated deformed basis
states can capture the dominant physics of deformed systems in smaller model spaces,
which, in turn, reduces the computational resource requirements.

In classical mechanics, canonical transformations are a set of transformations that
preserve the Poisson brackets between generalized coordinates and momenta,

{qi, pj} = {q̃i, p̃j} = δij . (3)

The generalization of this definition to the quantum mechanical case is achieved if
one replaces the Poisson brackets with commutation relations between the coordinate
and momentum operators.

[qi, pj ] = [q̃i, p̃j ] = iδij . (4)

Furthermore, the canonical transformations in classical mechanics are always uni-
tary transformations. However, this is not necessarily the case in quantum mechan-
ics [34]. In quantum mechanics, a canonical transformation can be unitary or non-
unitary [35, 36]. For the purpose of constructing a deformed basis, we will limit
ourselves to unitary transformations. Now we define the following unitary canonical
transformations:

q̃i =
1√
ǫi
qi,

p̃i =
√
ǫi pi,

(5)

where ‘∼’ denotes the quantities in the canonically deformed space, and the ǫi’s are
the deformation parameters (real positive quantities) that define the specifics of the
transformation. The physical implication of ǫi depends on the system being studied.
If we choose ǫi = ω/ωi where ωi is the HO frequency in the i-th direction, then ǫi
could be interpreted as a deformation parameter that transforms the non-deformed
canonical set (qi, pi) into the deformed canonical set (q̃i, p̃i). It is important to note
that these canonical transformations not only preserve the Heisenberg algebra, but
also preserve the symplectic algebra such that it closes under commutation just as
the non-deformed algebra does [37].

Using the canonical transformations defined above, we construct the deformed
harmonic oscillator creation and annihilation operators in terms of non-deformed
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ones,

b̃+in =
1

2

(
1√
ǫi

(
b+in + bin

)
+
√
ǫi
(
b+in − bin

))
,

b̃in =
1

2

(
1√
ǫi

(
b+in + bin

)
−√

ǫi
(
b+in − bin

))
.

(6)

It is easy to see that the canonical transformations in Eqs. (6) are equivalent to
Eqs. (5), and therefore

[bin, b
+
jn] = [̃bin, b̃

+
jn] = δij , (7)

which are equivalent to Eq. (4).
The canonical transformations defined in Eqs. (5) are symmetric with respect to

inverse transformations. The inverse transformations are achieved if one removes ‘∼’
from the deformed quantities and adds it to the non-deformed quantities and then
flips the deformation coefficients. To demonstrate this, we apply this procedure of
inverse transformation to Eq. (5) by making the substitution (q̃i → qi, p̃i → pi), then

flipping the coefficients 1√
ǫi

→ √
ǫi ,

√
ǫi → 1√

ǫi
, and we get

qi =
√
ǫi q̃i,

pi =
1√
ǫi
p̃i,

(8)

which are the inverse transformations.
Using the canonical transformations, we express the many-body HO Hamiltonian

in terms of the deformed symplectic operators in ~ω units,

H =
∑

i

Cii =
1

4

(
ǫi
(
Ãii + B̃ii + 2C̃ii

)
+

1

ǫi

(
− Ãii − B̃ii + 2C̃ii

))
, (9)

where, for simplicity, ǫx=ǫy has been chosen with the constraint ǫxǫyǫz = 1 which
implies volume conservation of the system. Then Eq. (9) reduces to

H =
1

4

((
ǫz−

1

ǫz

)(
Ãzz + B̃zz

)
++2

(√
ǫz +

1√
ǫz

)(
C̃xx + C̃yy

)
+2
(
ǫz +

1

ǫz

)
C̃zz

)
. (10)

Diagonalizing the Hamiltonian in Eq. (10) for a single particle within a model
space of Nmax = 2 and Nmax = 4 we get results shown in Fig. 5. We expected to see
all the eigenvalues independent of ǫz, however Fig. 5 shows a slight dependence of the
eigenvalues on ǫz. This is because we are attempting to map from an infinite Hilbert
space onto a finite Hilbert space, which one can only do approximately by going to
higher and higher Nmax values; that is, the transformation from the non-deformed to
deformed set of operators is not truly a unitary one. To get a unitary transformation,
that will be independent of ǫz, one has to map it onto infinite deformed basis states
which is not possible, but as the figures show, with increasing Nmax the results seem
to converge very nicely to the low-lying eigenvalues by the time Nmax = 4.

Note that when we applied the canonical transformations to the harmonic oscil-
lator Hamiltonian in Eq. (9), the operator Cii includes the zero point energy or the
so-called vacuum energy in its definition. It is usually common practice in quantum
mechanics and quantum field theories to renormalize the energy by discarding the
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(a)

(b)

Figure 5: The eigenval-
ues (in ~ω units) of a
3D spherical HO as a
function of ǫz in the de-
formed model spaces of
Nmax=2 (a) and Nmax=4
(b) where ǫx=ǫy and the
ǫxǫyǫz = 1 constraint ap-
plies.

vacuum contribution to the energy since it has no physical meaning. However, the
vacuum term should be included when applying canonical transformations because it
is part of the symplectic algebra sp(3,R). In order to unitarily map the symplectic
operators to their deformed counterparts, one also needs to map the vacuum to its
deformed counterpart. After the mapping one could renormalize the energy by throw-
ing away the deformed vacuum. The vacuum term in Cii for a single particle is 3

2

which, after applying the canonical transformation becomes 6
(√
ǫz + 1√

ǫz

)
+3
(
ǫz + 1

ǫz

)

for ǫx = ǫy and ǫxǫyǫz = 1.

5 Conclusions

A short ‘Historical overview’ of multi-shell-model efforts to understand observed fea-
tures of light nuclei is given in Section 2. The focus is on ‘open-shell’ methods —



290 J. Draayer, K. Launey, T. Dytrych et al.

commonly called the NCSM, where nucleons are allowed to occupy any and all valance
shells of a 3D HO that include excited configurations up to an aggregated Nmax value
coupled with the use of ab initio rather than schematic interactions within that space.
These concepts, introduced around the turn of the last century, serves as a demarka-
tion between ‘old’ and ‘new’ in the evolution of the shell-model for reproducing and
predicting nuclear phenomena. Our focus within this framework is on the use of
symmetries to tame the exponential grow of model spaces, which otherwise await the
availability of ever larger and faster high-performance computing resources and/or
various extrapolation procedures for further advances within this NCSM framework.

Section 3 gives some examples of how one can beat back the exponential growth
of NSCM spaces through the recognition and use of special symmetries that track
with dominant modes in nuclei. A dominant feature that stands above all others is
strongB(E2) transition strengths between members of rotational bands. This feature,
which is correlated with the emergence of coherent states that organizes the NSCM
landscape into various shapes, which was foreshadowed by early successes of collective
models like that of Bohr and Mottelson [8] as well as that of Nilsson [38] and the so-
called Geometrical Collective Model of Greiner and associates [9, 10], which extend
to odd-A nuclei with an uncoupled nucleon residing within the collective geometrical
shape defined by that of the others. This collusion among nucleons that leads to
collective configurations, which can be characterized as a co-existence of geometrical
shapes, tracks with Elliott’s SU(3) Model [11, 12] within a single shell and its multi-
shell extension, the symplectic shell model, Sp(3,R) [19] that in its most rudimentary
form can be envisioned as the addition HO quanta (via particle excitations) of the
monopole and quadrupole type to the simplest of Nmax = 0 configurations.

What this picture suggests, as it did in the earliest days via the Nilsson Model [38],
is moving to a deformed geometry from the onset might define a smarter path for-
ward. In Section 4 we show results which suggest that this can be achieved while
simultaneously maintaining all the advantages of the symplectic shell-model picture
through exploitation of a canonical transformation away from spherical symmetry to
a deformed geometry that preserves commutation relations of the symplectic algebra
while maintaining the unitarity of the transformation. From a practical perspective
this means that everything learned and developed for a spherical symplectic picture
can be brought forward into a deformed symplectic picture. As suggested above,
this can be seen as an interacting many-particle generalization of the Nilsson Model.
While additional work remains to be done, the underlying feature of this evolving
picture look promising for its overarching simplicity; namely, the accommodation of
what requires high Nmax values within a spherical geometry within lower Ñmax model
spaces of a deformed geometry. It also suggests that the development and application
of a deformed symmetry-adapted NCSM for nuclei may soon be within reach.
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Abstract

The symplectic no-core configuration interaction (SpNCCI) framework for
ab initio nuclear structure predictions carries out calculations in a correlated
many-body basis which encodes an approximate Sp(3,R) symplectic symmetry
of the nucleus. This framework opens up the possibility of identifying and re-
stricting the many-body space to include only the basis states which dominantly
contribute to the nuclear wavefunctions of interest. We examine the convergence
of 3He binding energy and matter radius in a basis truncated according to a sim-
ple scheme based on the symplectic symmetry.

Keywords: Symplectic no-core configuration interaction (SpNCCI); symmetry
adapted basis; ab initio nuclear physics

1 Introduction

In no-core configuration interaction (NCCI) approaches to solving the nuclear many-
body problem, one of the biggest challenges is tied to the necessity of describing both
short and long range correlations within the chosen basis. In the harmonic oscillator
basis, this translates to the need to include oscillator configurations (distributions of
particles over harmonic oscillator shells) with many oscillator quanta. However, the
basis grows rapidly as the number of oscillator quanta increases, and the size of the
resulting basis quickly exceeds current computational limits. So, we must look to
methods which allow us to reduce the necessary size of the basis while still capturing
the relevant physics. In the symplectic no-core configuration interaction (SpNCCI)
framework, the many-body problem is solved in a basis consisting of highly correlated
states which have definite Sp(3,R) symmetry. The goal is then to use the approximate
symplectic symmetry of the nucleus [1–6] to significantly reduce the basis size.

Truncation of the many-body basis by symplectic symmetry is well-suited for long
range observables that are sensitive to the tail of the wavefunction, e. g., nuclear radii
and E2 transition strengths. The need to include highly excited configurations in the
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nuclear wavefunction is largely due to the kinetic energy term of nuclear Hamiltonian.
The nuclear interaction dominates the Hamiltonian at for low number of oscillator
quanta, whereas the kinetic energy dominates for highly excited states. Since the sym-
plectic symmetry is conserved by the kinetic energy [7,8], the SpNCCI basis is broken
into subspaces, or irreducible representations (irreps), which are not connected by the
kinetic energy. Moreover, while the nuclear interaction does mix states within dif-
ferent symplectic irreps, it has been observed [1–6] that the interaction only strongly
mixes states belonging to a relatively small number of symplectic irreps. Thus, iden-
tifying the relatively small number of symplectic irreps containing the dominantly
contributing low-lying states also provides a selection criteria for the “important”
high-lying states. The overall effect is that more of the the highly excited basis states
necessary for describing the tail of the wavefunction are included in the basis than
would have been possible with the traditional Nmax truncated many-body basis [9].

In this paper, we briefly present the SpNCCI basis (Section 2) and computational
framework (Section 3). In Section 4, we then discuss convergence behaviour in a sym-
plectic truncated basis using the 3He binding energy and matter radius to illustrate.

2 The symplectic basis

The SpNCCI many-body basis is composed of states with definite Sp(3,R) symmetry.
These states can be thought of as linear combinations of the harmonic oscillator
configurations (or Slater determinants) that form the traditional NCCI [or no-core
shell model (NCSM)] basis [9]. In this sense, the SpNCCI basis states build in single-
particle correlations. However, in actual calculations, the SpNCCI basis states are
never explicitly expressed in terms of Slater determinants, as discussed in Section 3.

In the symplectic basis, the states are first organized into irreducible represen-
tations (irreps) of Sp(3,R) [7, 8]. Within each symplectic irrep, the basis states are
then organized into irreps of U(3). That is, the basis reduces the subgroup chain
Sp(3,R) ⊃ U(3). The U(3) group factorizes into U(3) ∼ U(1) × SU(3), where U(1) is
the group of the harmonic oscillator Hamiltonian, for which the quantum number is
the total number N of oscillator quanta, and SU(3) is Elliott’s SU(3) group, generated
by orbital angular momentum and quadrupole operators [10, 11]. Thus, basis states
within the U(3) irrep are characterized by definite U(3) symmetry ω = Nω(λω , µω).
In other words, the basis states have definite total number of oscillator quanta Nω, as
in traditional NCCI calculations, as well as definite Elliott SU(3) symmetry (λω , µω).

Each symplectic irrep is then labeled according to the single U(3) irrep with the
fewest number of oscillator quanta in the symplectic irrep. This irrep is referred to
as the lowest grade irrep (LGI). An LGI can be identified as the states which are
annihilated by the symplectic lowering operator B(0,2). The remaining states in the
symplectic irrep are obtained by repeatedly acting on the LGI with the symplectic
raising operator A(2,0). Each raising operation adds two oscillator quanta. Thus, a
single symplectic irrep contains states with oscillator quanta Nω = Nσ, Nσ + 2, ...
The laddering operator can be applied infinitely many times, so the symplectic irrep
is, in principle, unbound. However, the SpNCCI framework requires a finite basis, so
each irrep must be truncated, e. g., to some finite number of oscillator quanta.



Convergence in SpNCCI 295

3 Calculations in symplectic basis

In the SpNCCI framework, the matrix elements of the nuclear Hamiltonian (and
other observables) are obtained directly in the symplectic basis via recurrence. Such
an approach was first proposed for a symplectic shell model by Reske, Suzuki and
Hecht [12–14]. These methods are extended in the SpNCCI framework to accommo-
date general spin and isospin-dependent nonlocal nuclear interactions for ab initio
calculations [5].

In this recurrence, the matrix elements between high-lying SpNCCI basis states
(with many oscillator quanta) are expressed in terms of states with fewer number of
oscillator quanta. This expression is obtained by making use of commutation relation
of the Hamiltonian operator with the symplectic ladder operator, which relate states
with different number of oscillator quanta [5]. The recurrence starts with the matrix
elements between the lowest lying states in each symplectic irrep (between LGIs).
The matrix elements between LGIs are obtained by expanding the LGIs in terms of
SU(3) coupled configurations and then using the existing symmetry adapted no-core
shell model (SA-NCSM) code LSU3Shell [15] to compute the matrix elements.

The expansion of the LGIs in terms of SU(3) coupled configurations is obtained
by solving for the simultaneous null space of the Sp(3,R) lowering operator B(0,2)

and the center-of-mass oscillator number operator N
(0,0)
cm , in the SA-NCSM basis.

The resulting states are fully antisymmetric by construction with zero center-of-mass
excitations [center-of-mass free (CMF)]. The intrinsic symplectic raising operator pre-
serves both the antisymmeterization and CMF nature of the states. Consequently,
the basis state obtained by acting on the LGI with the raising operator are likewise
both antisymmeterized and CMF.

4 Convergence

The efficacy of the SpNCCI framework depends on how well we can obtain converged
values for nuclear observables in a symplectic truncated basis. Before we can develop
effective truncation schemes, we need first to understand the convergence behaviour
of these observables. As a simple example, we consider the convergence behaviour of
the 3He binding energy (Fig. 1) and matter radius (Fig. 2) obtained using the code
spncci [17].

For this illustration, we simply restrict the basis to symplectic irreps generated
from LGIs with oscillator quanta less than or equal to some fixed number. We quote
this number in terms of excitation quanta Nex, i. e., number of oscillator quanta
above the lowest Pauli allowed number of quanta N0 for the given nucleus. Thus the
restriction on the LGI is given by Nσ,ex ≤ Nσ,max where Nσ,ex = Nσ − N0. Each of
the panels in Fig. 1 and Fig. 2 correspond to a different value of Nσ,max. For example,
the calculations in Fig. 1(a) are carried out in a symplectic basis which includes only
the symplectic irreps with Nσ,ex ≤ 2, i. e., in an Nσ,max = 2 truncated basis.

Within eachNσ,max truncated space, each of the symplectic irreps in the basis must
be truncated to some finite number of states. Here we include only the states in each
irrep with number of excitation quanta (Nex = Nω − N0) less than some maximum
value Nmax, i. e., Nex ≤ Nmax. Each of the curves shown in the panel corresponds
to successively higher maximum allowed excitation quanta (Nmax = 2, 4, ... , 16). A
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Figure 1: Convergence of the binding energy of 3He in the SpNCCI framework. The set of symplectic irreps included in the calculation
is given by (a) Nσ,max = 2, (b) Nσ,max = 6, or (c) Nσ,max = 10. Each curve is labeled by the Nmax = Nσ,max, Nσ,max + 2, . . . , 16
truncation used within these irreps. The gray band indicates the approximate full-space value. These calculations are based on the
JISP16 internucleon interaction [16].



C
o
n
v
erg

en
ce

in
S
p
N
C
C
I

2
9
7

������=�

�

��

(�)

���

���

���

���

���

���

��	


��

�
(�
�
)

�� �� 
� 
� ��

�� (���)

�
�� �(�/��

+)

������=�

�

��

(	)

�� �� 
� 
� ��

�� (���)

������=�


�


��

������

(�)

�� �� 
� 
� ��

�� (���)
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truncated basis in which Nσ,max = Nmax (blue curve) will yield identical results to
those obtained in the traditional NCCI framework in an Nmax truncated basis.

Let us first consider the binding energy of 3He shown in Fig. 1. When convergence
is achieved, the results obtained no longer depend on the choice of many-body ba-
sis. In the SpNCCI framework, this means that convergence is signalled when results
no longer depend on the length scale of the oscillator basis (results are independent
of ~ω) and when they no longer change as additional basis states are included in the
basis (as Nmax and Nσ,max increase). In Fig. 1(a), the results for Nmax = Nσ,max = 2
(blue curve) vary significantly for different values of ~ω. However, with each suc-
cessive Nmax, the curves begin to flatten, signalling the results are approaching con-
vergence with respect to ~ω. Similarly, with increasing Nmax, the curves fall closer
together, indicating that the values are approaching convergence with respect to Nmax.
By Nmax = 16 (red curve) the results are comparatively independent of ~ω and Nmax.

However, the convergence within an Nσ,max space is not the same as convergence
within the full space (all symplectic irreps included). Note that the converged value
obtained in the Nσ,max = 2 space [Fig. 1(a)] is not the same as value obtained in
the full many-body basis1 (gray line). Thus, the results are not yet converged with
respect to the number of symplectic irreps included, i. e., with respect to Nσ,max. In
Fig. 1(b), the energies obtained in the space including the Nσ,max = 6 irreps are,
again, converging with respect to ~ω and Nmax. However, now they are converging to
a different value. Similarly, in Fig. 1(c), the energies converge within the Nσ,max = 10
space with increasing Nmax, but, again, to a different value. However, the difference
between the Nmax = 16 curve for Nσ,max = 6 and Nmax = 10 is significantly smaller
than the difference between the Nσ,max = 2 and Nσ,max = 6 curves. This relatively
small shift of the energy curves at fixed Nmax between Nσ,max = 6 and Nσ,max = 10
indicates that the results are nearing convergence with respect to Nσ,max.

Let us now take a look at the r.m.s radius of 3He. In traditional NCCI calculations,
which corresponds here to the Nσ,max = Nmax calculations, we see a strong depen-
dence on the length scale ~ω [20, 21]. However, within an Nσ,max truncated space,
as more and more excited configurations are included in the basis (increasing Nmax),
the values for the radius converge with respect to both Nmax and ~ω, just as they did
for the energy. The effect of including additional Sp(3,R) irreps (increasing Nσ,max)
is then to simply shift the value of the radius obtained at large Nmax.

This behaviour suggests that a reasonable approximate value may be obtained
within a comparatively small subspace composed of a relatively small number of sym-
plectic irreps. In this example, the inclusion of just the higher Nex states belonging
to the Nσ,max = 2 irreps is sufficient to obtain a value for the radius which is con-
verged with respect to ~ω and Nmax and which is within 0.1 fm of the full space
value. For Nmax = 16, the largest calculation shown for Nσ,max = 2 in Fig. 2(a), the
dimension of the space for J = 1/2 is 217 where as the full M -scheme space (basis
for traditional NCCI calculations) at Nmax = 16 with angular momentum projection
M = 1/2 has dimension 392 039, which is more than three orders of magnitude larger
than that of the corresponding symplectic basis.

1 The approximate full space values are obtained using the NCCI code MFDn [18, 19].
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5 Conclusion

Carrying out calculations in a symplectic basis opens up the possibility obtaining
accurate predictions in a much smaller basis than possible in the traditional NCCI
framework, particularly for long range observables. The simple Nσ,max truncation
scheme used in the results shown in Fig. 1 and Fig. 2 barely begins to touch on the
potential uses of the symplectic symmetry as a means of defining efficient trunca-
tion schemes. The challenge is to identify the relevant symplectic irreps by, e. g., a
perturbative approach similar to the method employed in the importance truncated
no-core-shell model (IT-NCSM) [22].
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Abstract

Owing to recent computational and methodological advancements, ab initio
approaches in nuclear structure physics have been largely developed. The no-
core Monte Carlo shell model (MCSM) is one of these methods to investigate
nuclear structure in light nuclei. With this method, it is currently capable to
calculate physical observables up to around lower sd-shell region. As one of
physics investigations with the no-core MCSM, the α-cluster structure of Be
isotopes and 12C nucleus is focused on and qualitatively discussed from an ab
initio point of view.

Keywords: Alpha-cluster structure; Monte Carlo shell model; no-core shell
model

1 Introduction

Nowadays, there are many approaches to solve nuclear many-body problems. One of
successful methods is the shell-model approach [1–3]. The shell-model calculations
have provided much of theoretical understanding of nuclear structure based on the
single-particle picture. In these calculations, the energy eigenvalues and eigenfunc-
tions are obtained by the diagonalization of sparse real symmetric matrices using the
Lanczos method to describe several low-lying states. The limitation of this approach
is directly related to the size of Hamiltonian matrices to be diagonalized. In the case
of no-core shell model, the current limit is around 1010 M -scheme dimensions [4]. The
dimension of Hamiltonian matrices in the single-particle truncation is illustrated in
Fig. 1. Now the mass region of interest has been extended to heavier and/or neutron-
rich nuclei to investigate various exotic phenomena, and is located at the area beyond
the scope of this standard approach with the Lanczos method.

Under these circumstances, there are some variants of shell-model approaches
aiming to go beyond the standard approach. One of them is the Monte Carlo shell
model (MCSM) [5–7]. Here, we provide a brief overview of the MCSM, especially for
the no-core calculations, and the study on the α-cluster structure using this method.
The outline of this contribution is as follows. In Section 2, the formulation of the
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Figure 1: The M -scheme dimensions as a function of the size of basis space for several
light nuclei.

MCSM is briefly introduced. In Section 3, the current status of the MCSM for no-
core calculations is shown. As one of physics investigations by the no-core MCSM,
we discuss α-clustering phenomena in Be isotopes and 12C nucleus in Section 4. The
summary is given in Section 5.

2 Monte Carlo Shell Model

In the Monte Carlo shell model (MCSM), the Hamiltonian comprises one- and two-
body terms, and is written in the second quantized form as

Ĥ =
∑

ij

tij ĉ
†
i ĉj +

1

4

∑

ijkl

v̄ijkl ĉ
†
i ĉ

†
j ĉlĉk, (1)

with the creation and annihilation operators, ĉ† and ĉ, respectively. The indices,
i, j, k, and l, stand for the single-particle states. The one- and two-body matrix
elements are described as tij and v̄ijkl . Here, the two-body matrix elements are
antisymmetrized as v̄ijkl = −v̄jikl = −v̄ijlk = v̄jilk .

With this Hamiltonian, the MCSM wave function is expressed as a linear combina-
tion of total-angular-momentum- and parity-projected deformed Slater determinants,

|Ψ(Nb)
IMπ〉 =

Nb∑

n=1

I∑

K=−I

f
(Nb)
nK P̂ Iπ

MK |φn〉, (2)

with the total-angular-momentum- and parity-projection operator, P̂ Iπ
MK = P̂ I

MK P̂
π.

The number of deformed Slater determinants is Nb. The amplitude f
(Nb)
nK is the

coefficient of each basis function. The deformed Slater determinant reads

|φ〉 =

Nf∏

α=1

Nsp∑

i=1

Diαĉ
†
i |−〉, (3)



α-cluster structure from no-core MCSM 303

with the numbers of nucleons Nf and single-particle states Nsp. Note that the particle
vacuum is described as |−〉. The complex matrixD characterizes the deformation from
the spherical harmonic-oscillator Slater determinants.

In Eq. (3), the matrix elements of D are determined by minimizing the energy
eigenvalues in stochastic and deterministic ways following the variational principle.
The stochastic sampling of bases is done in a way similar to the auxiliary-field Monte
Carlo technique, introducing auxiliary fields by the Hubbard–Stratonovich transfor-
mation. Candidates of basis function are generated by the imaginary-time evolution.
Among these generated candidates, we take the one which gives the lowest energy
eigenvalue. Then, we further minimize the energy eigenvalue by optimizing the ma-
trix D in a deterministic way with the conjugate gradient method.

Concerning the actual computational procedure, we start with one basis, usually
the Hartree–Fock basis. We increase the number of bases by repeating the basis search
in stochastic and deterministic ways as described above until the energy eigenvalues
sufficiently converge. The typical number of bases becomes finally around 100, so that
we reduce the diagonalization problem of a large and sparse Hamiltonian matrix into
a dense Hamiltonian matrix with about 100 linear dimension. At each step of the
basis search, the energy eigenvalues E and coefficients of eigenvector fnK are obtained
by solving the following generalized eigenvalue problem,

∑

nK

〈φm|ĤP̂ Iπ
MK |φn〉fnK = E

∑

nK

〈φm|P̂ Iπ
MK |φn〉. (4)

In order to evaluate the energy eigenvalues more precisely, we also compute the energy
variance and extrapolate our MCSM results towards vanishing energy variances where
the exact eigenvalue of original Hamiltonian matrix exists. For more details, see the
reviews of MCSM in Refs. [5–7].

3 Ab initio no-core MCSM

One of the major challenges in nuclear physics is to understand nuclear structure
and reactions from the first principles. For this purpose, a number of ab initio studies
have become actively done these days, mainly due to a rapidly growing computational
power and refinement of ab initio techniques for quantum many-body calculations (see
review articles, for example, Ref. [8] and references therein).

In the ab initio approaches, all nucleon degrees of freedom are activated and nu-
clear forces from two- and three-nucleon interactions fitted to NN -scattering data
and deuteron properties (applying some soften procedures of original interactions)
are used as an input of many-body calculations. Typically, the cost for these cal-
culations tends to be computationally expensive. Therefore, an alternate way to
reduce the computational cost is awaited. For instance, in the case of no-core shell
model, a couple of methods have been proposed and are providing new insights into ab
initio nuclear structure calculations, such as the importance-truncated no-core shell
model [9, 10] and symmetry-adapted no-core shell model [11]. The no-core MCSM is
one of the variants pursuing this direction [12, 13].

For the application of the no-core MCSM, we have employed the JISP16 NN in-
teraction due to the limitation of handling explicit 3N interactions at present. This
is the J-matrix inverse scattering potential (JISP), one of the realistic nonlocal NN
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interactions constructed through phase-equivalent transformations [14]. This inter-
action is fitted not only to the two-nucleon scattering data and deuteron properties
but also to the properties of light nuclei up to 16O. Although we treat only NN
interactions in the calculations, it is sufficient to prove the capability of the MCSM
technique for no-core shell-model calculations.

With the JISP16 NN interaction, we have calculated the ground-state energies
and root-mean-square point-nucleon radii of 4He, 8Be, 12C, 16O and 20Ne nuclei as
shown in Figs. 2 and 3, respectively, including the nuclei in which the standard no-
core shell-model calculations are hardly performed to obtain converged results due
to huge dimensionality of Hamiltonian matrices. From our recent no-core MCSM
computation on the K computer, the JISP16 NN interaction provides the binding
energies consistent with experimental data up to around 12C, but overbinds nuclei
as A increases. In a similar way, the radii are consistent with experiment up to
around A ∼ 8, but are clearly underestimated for A larger than 12. Our results infer
the necessity of explicit inclusion of 3N potentials for heavier nuclei above the upper
p-shell region even with a non-local potential such as the JISP16 NN interaction.
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However, a new non-local NN interaction, the Daejeon16 NN , is expected to give
better results than those with the JISP16 NN interaction [15, 16]. It is interesting
to see how well the results of no-core MCSM calculations can be improved with
this interaction and to what extent the off-shell properties of such kind of nonlocal
NN interactions can absorb the effects of explicit 3N interactions beyond the p-shell
region.

4 Alpha-cluster structure from the no-core MCSM

For physics applications of the no-core MCSM, the α-cluster structure has been re-
cently investigated focusing on two- (three-) α-cluster structure of Be (C) isotopes.
The α-cluster structure in light nuclei is one of the fundamental aspects in nuclear
many-body system, and has been studied intensively for a long time. Up to present,
there are a number of studies on α-cluster physics from the first principles as well
as those based on cluster models. The purpose for the investigation by the no-core
MCSM is to understand the mechanism of appearance and disappearance of α-cluster
structures in the intrinsic density of nuclei utilizing the nature of deformed Slater
determinants in the MCSM wave functions.

As an exploratory study, a proof-of-principle calculation by the no-core MCSM has
been done for the low-lying states of 10,12Be nuclei with the AV18 and N3LO χEFT
NN potentials transformed by the unitary correlation operator method [17]. Physical
observables of low-lying states of 10Be are reasonably well reproduced. Following this
exploratory study of Be isotopes, the no-core MCSM has been further applied to the
study of intrinsic shape of these exotic nuclei [18–21]. The no-core MCSM calculations
with JISP16 NN interaction have been performed to construct intrinsic densities of
ground and some excited states in Be isotopes in order to better understand the α-
cluster and molecular-orbital structure of Be isotopes. For a visualization of intrinsic
structure of nuclei, we superpose the deformed Slater determinants in the MCSM
wave function before the angular-momentum and parity projections so as to obtain
the density distribution in the body-fixed frame by aligning the orientation of each
deformed Slater determinant in terms of quadrupole deformation.

From our investigation, we have obtained some promising results as shown in
Fig. 4. First, we have observed the emergence of two-α-cluster structure in the 8Be
ground state without any assumption of the α-cluster structure. This fact indicates
that the α clusters can be described efficiently with deformed Slater determinants.
Second, we can identify in the ground and first excited 0+ states of 10Be nuclei
the molecular-orbital structures formed by two valence neutrons (equal to the total
number of neutrons minus the number of protons) on top of two α clusters. For the
ground state (the first excited 0+ state), two valence neutrons give π- (σ-) orbit of
molecular orbital states. In addition, we can observe four valence neutrons forming
some mixture of the π- and σ-orbital structures in the 12Be ground state. Third,
we can see the fading of intrinsic shape of the α clusters as the number of neutrons
increases. This structure change cannot be obtained by cluster models, which assume
the α cluster as a fundamental degree of freedom. This finding implies a way to
investigate the deformation of α clusters.

In addition to the investigation of intrinsic structure of Be isotopes, we also extend
our analysis to three α clusters in the 12C nucleus. In the analysis of the intrinsic
shape of 12C, we introduce the cluster analysis in the statistics. We define the distance
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Figure 4: Schematic intrinsic density illustrating the α-cluster and molecular-orbital
structure of Be isotopes obtained by the no-core MCSM.

measured in the Euclidean space which gauges the similarity of densities and cate-
gorize the groups of similar shape. For the first application, we divide our deformed
Slater determinants, which amount around 100 basis states, into 15 groups. By sepa-
rating the deformed Slater determinants into these groups, we have calculated overlap
probability of deformed Slater determinants in each group with the total MCSM wave
function. The results are shown in Fig. 5. From this analysis, we have obtained the 0+

ground state of 12C mainly composed by the group of the compact (shell-model-like)
shape and that of three α clusters. For the second 0+ state, the overlap probability
is distributed among all 15 groups on an equal footing. It indicates that this state is
a gas-like state, which is proposed by the study with the THSR wave functions [22]
as the Bose–Einstein condensation of the α gas.

5 Summary

We shortly outlined the Monte Carlo shell model (MCSM) from its formalism to some
numerical results, focusing on recent application of this method to ab initio no-core
calculations. The essence of the MCSM is the importance truncation. The size of
the original large sparse Hamiltonian matrix spanned by harmonic-oscillator Slater
determinants is reduced to a smaller dense one spanned by stochastically selected
bases. With this method, one can perform large-scale shell-model calculations even
in the case that the standard shell-model approaches with the Lanczos method cannot
handle. Most of the physics of interest usually lies on the forefront of and even beyond
the current computational limit.
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Figure 5: Cluster analysis of the 12C nucleus in the no-core MCSM.

In this contribution, the MCSM has been presented focusing on the no-core shell-
model calculations. It is found that the no-core MCSM results for light nuclei up
to A ≤ 20 with a NN potential can be extrapolated to the limit of infinite basis space
and provide ab initio solutions with evaluated theory uncertainties. The JISP16 NN
interaction gives good agreement with experimental data up to around 12-nucleon
system even without handling explicit three-nucleon interactions. As one of physics
applications, an exploratory study of the α cluster phenomena has been provided with
the visualization of intrinsic density obtained from the MCSM wave functions before
spin- and parity-projections. We found the emergence of two-α-cluster structure
in the 8Be ground state without any assumption of α clusters. We also identified
the molecular orbital states of valence neutrons in neutron-rich Be isotopes. The
deformation of α clusters was seen in the ground states of Be isotopes with increasing
the number of neutrons. Following the study of the Be isotopes, the analysis of the
intrinsic shape of 12C was briefly discussed. The intrinsic density of the ground state
of 12C is mainly composed of compact shell-model-like and three-α-cluster shapes,
while the overlap probability for the second 0+ state is distributed among various
configurations which indicates a gas-like state.

For future perspectives, the no-core MCSM calculations with the Daejeon16 NN
interaction are necessary for providing some insights on how far such kind of nonlocal
NN interactions can be applied to a heavier mass region. Also, a quantitative analysis
of the α-cluster structures based on intrinsic densities is expected to be done in the
near future.
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Abstract

We present results of calculations of n−6He elastic scattering phase shifts and
resonances in 7He. The calculations utilize the SS-HORSE method combined
with ab initio no-core shell model calculations of the 7He and 6He nuclei with
Daejeon16 and the JISP16 NN interactions.

Keywords: Nucleon-nucleus scattering; resonances; SS-HORSE method; no-
core shell model

1 Introduction

A modern trend of nuclear theory is a development of methods for describing nuclear
states in the continuum, resonances in particular, as well as the boundaries of nuclear
stability and nuclei beyond the drip lines. Obviously, ab initio (“first-principles”)
approaches in this field are of primary importance. The only input for ab initio
theoretical studies is the nucleon-nucleon (NN) and, if needed, three-nucleon (3N)
interactions.

Currently there are a number of reliable methods for ab initio description of nu-
clear bound states (see, e. g., the review [1]). Prominent methods include the Green
function’s Monte Carlo [2], the no-core shell model (NCSM) [3], the coupled cluster
method [4], etc. The NCSM calculations are utilized in this paper. The NCSM is
a modern version of the nuclear shell model which does not introduce an inert core
and includes the degrees of freedom of all nucleons of a given nucleus. The multi-
particle wave function is expanded in a series of basis many-body oscillator functions
(Slater determinants) which include all many-body oscillator states with total excita-
tion quanta less or equal to some given value defined in terms of Nmax. This makes it

Proceedings of the International Conference ‘Nuclear Theory in the Supercomput-
ing Era — 2018’ (NTSE-2018), Daejeon, South Korea, October 29 – November 2,
2018, eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2019, p. 310.

http://www.ntse.khb.ru/files/uploads/2018/proceedings/MazurI.pdf.
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possible to separate completely the center-of-mass motion. The number of basis states
increases very rapidly with number of nucleons A and with Nmax. The achievement of
a reasonable accuracy of the NCSM calculations is primarily limited by the memory
of available modern leadership-class supercomputers. Currently, NCSM applications
are obtained for nuclei with the number of nucleons of about 20. As A increases,
due to computational limits restricting basis space sizes, there is a greater need for
extrapolations to estimate converged results.

However, the NCSM cannot be directly applied to the description of resonant
states. Energies of resonant states are positive with respect to some threshold so
that one needs to consider decay modes. Special methods taking into account the
continuum are therefore needed for the description of resonances.

There are well-developed methods for ab initio description of continuum spectrum
states based on Faddeev and Faddeev–Yakubovsky equations that are successfully
applied in nuclear physics for systems with A ≤ 5 nucleons (see, e. g., the review [1]
and Ref. [5]). A very important breakthrough in developing ab initio theory of nuclear
reactions in systems with total number of nucleons A > 4 was achieved by combin-
ing the NCSM and the resonating group method to built the so-called NCSM with
continuum (NCSMC) approach [6] which has been applied to description of several
nuclear systems with up to 11 [7] and very recently up to 12 nucleons [8]. Nuclear
resonances can be considered also in the no-core Gamow shell model (GSM) [9]. How-
ever, these methods bring forth additional challenges for a numerical realization and
the respective calculations become very demanding.

Recently we proposed the SS-HORSE method [10–14], which generalizes the NCSM
to the continuum spectrum states. The SS-HORSE allows one to calculate the single-
channel S-matrix and resonances by a simple analysis of NCSM eigenenergy behavior
as a function of parameters of the many-body oscillator basis. The SS-HORSE exten-
sion of the NCSM was successfully applied to the calculation of the neutron–α and
proton–α scattering and resonant states in the 5He and 5Li nuclei in Refs. [10, 14];
a generalization of this approach to the case of the democratic decay provided a
description of a resonance in the system of four neutrons (tetraneutron) [15].

A brief review of the SS-HORSE method is presented in Section 2. Results for
a single-channel neutron scattering by the 6He nucleus and resonances in the 7He
nucleus are presented in Section 3.

2 SS-HORSE method

Consider a channel of neutron scattering by a nucleus with A nucleons. The phase shift
calculations within the SS-HORSE approach start from the calculation of the set of the
NCSM eigenenergiesEA+1

i with some set of the NCSM basis parametersN i
max and ~Ωi

for the whole (A+ 1)-particle system, as well as of the ground state energies EA
i of

the target nucleus with the same ~Ωi and the excitation quanta N i
max or N i

max − 1
depending of the parity of the states of interest of the (A+ 1)-particle system. The
respective relative motion energy is the difference

Ei = EA+1
i − EA

i . (1)

The phase shifts δℓ(Ei) at the eigenenergies Ei in the partial wave with the orbital
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momentum ℓ in the case of neutral particle scattering are calculated as [10–12]

tan δℓ(Ei) = −SNi+2,ℓ(Ei)

CNi+2,ℓ(Ei)
. (2)

Here Sn,ℓ(E) and Cn,ℓ(E) are the regular and irregular oscillator solutions for the
free motion, their analytical expressions can be found in Refs. [16–18]; the oscillator
quanta of the relative motion

N
i = N i

max +NA+1
min −NA

min, (3)

where N i
max is the excitation quanta in the (A + 1)-particle system in the current

calculation, NA+1
min and NA

min are the minimal total oscillator quanta consistent with
the Pauli principle in the (A+1)- andA-particle systems, respectively. The energiesEi

depend, of course, on the NCSM basis parameters, N i
max and ~Ωi. Therefore by

varying these parameters (note, ~Ω appears in the definition of the functions Sn,ℓ

and Cn,ℓ) we can calculate the phase shifts in some energy interval. Next we perform
the phase shift parameterization which makes it possible to calculate the S-matrix
and its poles including those associated with the resonant states in the (A+ 1)-body
system.

The phase shifts can be parameterized using the effective range function,

K(E) =
(√

2µE/~
)2ℓ+1

cot δℓ(E), (4)

where µ is the reduced mass of scattered particles. The function (4) has good an-
alytical properties and may be expanded in Taylor series of energy E (the so-called
effective range expansion),

K(E) = − 1

aℓ
+
µrℓ
~2

E + cE2 + ... , (5)

where aℓ is the scattering length and rℓ is the effective range. The expansion (5) works
well at low energies, however in a larger energy interval, in particular, in the region
of a resonance, it may be inadequate since the phase shift may may take the values of
0, ±π, ±2π, ..., when the effective range function K(E), according to Eq. (4), tends
to infinity. Therefore we express the effective range function as a Padé approximant,

K(E) =
−1 + w

(n)
1 E + w

(n)
2 E2 + ...

aℓ + w
(d)
1 E + w

(d)
2 E2 + ...

. (6)

Clearly, at low energies the Padé approximant (6) unambiguously transforms into the
effective range expansion (5).

With any set of parameters w
(n)
1 , w

(n)
2 , ... , aℓ, w

(d)
1 , w

(d)
2 , ... parametrizing the

effective range function K(E) we can easily calculate the phase shifts δℓ(E) in the
energy interval of interest and calculate the energies Eth

i using Eq. (2) for any com-
bination of the NCSM parameters N i

max and ~Ωi. These energies Eth
i are compared

with the set of energies Ei obtained in the NCSM calculations; the optimal values of

w
(n)
1 , w

(n)
2 , ... , aℓ, w

(d)
1 , w

(d)
2 , ..., parametrizing the effective range function, are found
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by minimizing the sum of squares of deviation of the sets of Eth
i and Ei with weights

enhancing the contribution of energies obtained with larger Nmax values,

Ξw =

√√√√1

p

p∑

i=1

(
(
Eth

i − Ei

)2
(
N i

max

NM

)2
)
. (7)

Here p is the number of energy values and NM is the largest value of N i
max used in

the fit. With the optimal set of the fit parameters w
(n)
1 , w

(n)
2 , ... , aℓ, w

(d)
1 , w

(d)
2 , ...

we can use Eq. (4) and (2) to obtain a parametrization of the ~Ω dependencies of the
eigenenergies Ei in any basis space Ni.

The S-matrix and the effective range function K(E) are related by a simple an-
alytic formula. Therefore, after obtaining an accurate parametrization of K(E), one
can search numerically for the S-matrix poles in the complex energy plain. Some
tricks useful to design a stable and fast numerical algorithm for the pole searches
at complex energies, are described in Ref. [14]. By locating the S-matrix poles, we
obtain energies Er and widths Γ of resonances in the many-body nuclear system.

3 n−6He scattering

We start from the NCSM calculations of the 6He ground state energies E6
i with the

Daejeon16 [19] and JISP16 [20] NN interactions with Nmax up to 16 and ~Ω ranging
from 8 to 50 MeV. Next we calculate the lowest eigenenergies E7

i of the 3/2−, 1/2−,
5/2− and 1/2+ states in the 7He nucleus withNmax up to 17 with the same interactions
and the same ~Ω values.

We first consider calculations performed with the Daejeon16 NN interaction. The
set of the relative motion energies Ei is calculated using Eq. (1). As an example, we
present in the left panel of Fig. 1 the set of relative motion energies Ei in the 3/2−
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Figure 1: Left panel: Symbols are the energies of the relative motion Ei in the
3/2− scattering state obtained in the NCSM with the Daejeon16 NN interaction; the
energies used for the SS-HORSE parametrization are taken from the shaded area and
the results of the SS-HORSE parametrization of energies for each Nmax are shown
by solid curves of respective colors. Right panel: The phase shifts calculated using
Eq. (2) at the energies from the left panel.



314 I. A. Mazur, A. M. Shirokov, I. J. Shin, A. I. Mazur, Y. Kim, P. Maris, J. P. Vary

0 5 10 15-120
-90
-60
-30

0
30
60

90
120
150

N
max

= 12
           13
           14
           15
           16
           17
SS-HORSE

n-
6
He, Daejeon16

3/2
-

5/2
-

1/2
-

1/2
+

E [MeV]

δ ℓ
(E

)
[d

eg
re

es
] Figure 2: The phase shifts

in the 3/2−, 1/2−, 5/2−

and 1/2+ scattering states ob-
tained with the Daejeon16NN
interaction. Symbols are the
selected phase shifts δℓ(Ei);
the SS-HORSE fit of the phase
shifts is presented by black
curves.

state. The right panel of the same figure presents the set of the phase shifts δℓ(Ei) at
these energies calculated using Eq. (2).

As stated in Refs. [10–15], we cannot use all energies Ei obtained by the NCSM for
the further SS-HORSE analysis. The set of acceptable energies Ei should be selected
for the SS-HORSE. In particular, the SS-HORSE equations are consistent only with
those energies obtained at any given Nmax which increase with ~Ω, i. e., for any
given Nmax we should have dE

d~Ω > 0. In other words, from the set of energies ENmax

i

obtained by NCSM with any Nmax we should select only those which are obtained
with ~Ω > ~ΩNmax

min , where ~ΩNmax

min corresponds to the minimum of the ~Ω dependence

of the relative motion energies ENmax

i .

Next, for the effective range function parametrization, we should select only the
results obtained with large enough Nmax and in the ranges of ~Ω values for each Nmax

where the phase shifts converge, at least, approximately. The phase shift convergence
means that the phase shifts δℓ(Ei) obtained with different Nmax and ~Ω values form
a single smooth curve as a function of energy. In the right panel of Fig. 1, we see that
the phase shifts δℓ(Ei) tend to form a smooth curve as Nmax increases in a range of
moderate energies which correspond to moderate ~Ω values. The phase shifts δℓ(Ei)
obtained with small enough Nmax deviate significantly from this single curve in large
energy intervals. Correspondingly, the phase shifts obtained even with large Nmax

at small energies corresponding to small ~Ω values before the minima of the ~Ω
dependences of ENmax

i also deviate from the phase shift curve formed by the NCSM
results from other Nmax values.

The energies selected for the SS-HORSE fit are shown by the shaded area in the
left panel of Fig. 1. The solid curves in this panel show the parametrization of the
NCSM energies through the function (6) with a set of fitted parameters. The selected
energies produce a set of the phase shifts δ1(Ei) forming a smooth single curve, as
is seen in Fig. 2, where we also present the SS-HORSE 3/2− phase shifts accurately
describing the set of the selected phase shifts δ1(Ei).

We note that we perform a few alternative selections of energies Ei, e. g., we
exclude from the selection some large energies Ei which lie far from the resonance.
These alternative energy selections are used for estimating uncertainties of our predic-
tions for the parameters of the resonance and low-energy scattering. The resonance
energies Er (relative to the n + 6He threshold) and widths Γ of resonances in the
7He nucleus obtained by a numerical location of the S-matrix poles are presented in
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Table 1: Energies Er (relative to the n+ 6He threshold) and widths of negative par-
ity resonant states in 7He nucleus and parameters of low-energy scattering n−6He
in positive and negative parity states, scattering lengths aℓ and effective ranges rℓ,
obtained with Daejeon16 and JISP16 NN interactions. Our estimate of the uncer-
tainties of the quoted results are in presented parentheses. The available results of
the GSM calculations [21] and of the NCSMC calculations [22,23] with SRG-evolved
N3LO chiral NN force together with experimental data are presented for comparison.

Daejeon16 JISP16 GSM NCSMC Experiment
3/2− [24]

Er, MeV 0.27(1) 0.70(2) 0.39 0.71 0.430(3)
Γ, MeV 0.12(1) 0.60(2) 0.178 0.30 0.182(5)
a1, fm3 −170(10) −66(2)
r1, fm−1 −1.10(3) −0.88(1)

1/2− [25] [26] [27]
Er, MeV 2.7(1) 2.8(1) 2.39 3.03(10) 3.53 1.0(1)
Γ, MeV 4.2(1) 5.02(2) 2.89 2 10 0.75(8)
a1, fm3 −4.0(1) −4.5(2)
r1, fm−1 −4.4(2) −3.1(1)

5/2− [28]
Er, MeV 3.65(2) 4.37(4) 3.47(2) 3.13 3.35(10)
Γ, MeV 1.37(1) 1.55(2) 2.25(28) 1.07 1.99(17)
a3, fm7 −274(4) −119(4)
r3, fm−5 −0.0122(4) −0.040(1)

1/2+

a0, fm 2.1(2) 3.2(5)
r0, fm 2.1(2) 1.1(6)

Table 1 as well as the low-energy scattering parameters, the scattering length aℓ and
the effective range rℓ, together with their estimated uncertainties. For comparison,
we present in Table 1 also the resonance parameters from the GSM studies of Ref. [21]
and the NCSMC studies of Refs. [22, 23] with SRG-evolved N3LO chiral NN forces
together with available experimental data. Our results for the 3/2− resonance are
seen to be consistent with the GSM results and experiment.

The same approach is used to examine the 1/2− and 5/2− resonances in the 7He
nucleus. The results for the phase shifts together with selected phase shifts δ1(Ei)
are also shown in Fig. 2 while the resonance and low-energy scattering parameters
are presented in Table 1.

We note that the convergence of the 1/2− phase shits, where we obtain a wide
resonance, is slower than in the case of the 3/2− state. As a result, our predictions
for the 1/2− resonance energy and width tend to have larger uncertainties. The
predictions for the low-energy scattering parameters for the 1/2− case appear to have
uncertainties comparable to the resonance parameter uncertainties.

The experimental situation for the 1/2− resonance is not clear. While the resonant
energies of Refs. [25, 26] are comparable, the widths are very different. Our results
are in fair agreement with the NCSMC results and the neutron pickup and proton-
removal reaction experiments [25] and definitely do not support the interpretation
of experimental data on one-neutron knockout from 8He of Ref. [27] advocating a
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Figure 3: The phase shifts
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and 1/2+ scattering states ob-
tained with the JISP16NN in-
teraction in comparison with
those obtained with the Dae-
jeon16 (red dashed curves).
See Fig. 2 for other details.

low-lying (Er ∼ 1 MeV) narrow (Γ ≤ 1 MeV) 1/2− resonance in 7He.

In the case of the 5/2− scattering, the phase shifts convergence is similar to that
of the 3/2− state. The resonance energy and width presented in Table 1 are seen to
be reasonably close to the experimental data, GSM and NCSMC results.

We analyze also the scattering in the 1/2+ state in our NCSM-SS-HORSE ap-
proach. The 1/2+ scattering phase shifts shown in Fig. 2 monotonically decrease
without any signal of a resonant state. This result is in an agreement with the exper-
imental data and the GSM predictions of Ref. [21] and NCSMC predictions [22, 23].

The phase shifts obtained with the JISP16 NN interaction are compared with
those from Daejeon16 in Fig. 3. The only difference in getting these JISP16 results is
that we avoided the expensive Nmax = 17 calculations for the positive-parity states
since there is no experimental evidence for the positive-parity resonances in 7He and
we do not see any indication of such resonances in our phase shift calculations. The
JISP16 and Daejeon16 1/2+ scattering phase shifts are seen to be very close as are the
respective low-energy scattering parameters listed in Table 1. The 3/2− and 5/2−
7He resonances are generated by the JISP16 at slightly higher energies; the 1/2−

resonance appears approximately at the same energy, however its width is somewhat
larger in the JISP16 results compared with the Daejeon16 results.

4 Summary and conclusions

We performed a study of the n + 6He continuum states within the single-channel
SS-HORSE extension of the ab initio NCSM with JISP16 and Daejeon16 NN inter-
actions. No resonance was found in the 1/2+ state consistent with the GSM [21],
NCSMC [22,23] studies and experimental situation. The 1/2− resonance is predicted
by both interactions to be wide enough and at the energy in a reasonable agreement
with the NCSMC [22,23] calculations and results of experiments of Refs. [25,26] and
clearly contradicts with the hypothesis of a low-lying narrow resonant state suggested
in Ref. [27]. We note however that this as well as other 7He resonances are known
from the experiment with weak spin-parity assignment arguments. Our results for the
narrow 3/2− and wide 5/2− resonances are in a reasonable agreement with experi-
ment and with results quoted in the GSM [21] and NCSMC [22,23] studies. However,
JISP16 overestimates the width of the 3/2− and the energy of the 5/2− resonances.
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• Roman Skibiński, Jagiellonian University, Poland . . . . . . . . . . . . . . . . . . 115, 122

• Nadezda Smirnova, University of Bordeaux/CENBG, France. . . . . . . . . . .263

• Ionel Stetcu, Los Alamos National Laboratory, USA . . . . . . . . . . . . . . . . . . . . . 91

• Yurii Tchuvil’sky, Moscow State University, Russia . . . . . . . . . . . . . . . . . . . . . —

• Jun Terasaki, Institute of Experimental and Applied Physics,
Czech Republic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

• Kacper W. Topolnicki, Marian Smoluchowski Institute of Physics,
Jagiellonian University, Poland . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115, 122

• James Vary, Iowa State University, USA. . . . . . . . . . .15, 168, 224, 239, 250, 310

• Alexander Volya, Florida State University, USA. . . . . . . . . . . . . . . . . . . . . . . . .—

• Stefan Wild, Argonne National Laboratory, USA . . . . . . . . . . . . . . . . . . . . . . . . —

• Furong Xu, Peking University, China . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

• Sergey Yakovlev, Saint Petersburg State University, Russia . . . . . . . . . . . . 137

• Xingbo Zhao, Institute of Modern Physics, China . . . . . . . . . . . . . . . . . . 224, 239

• Wei Zuo, Institute of Modern Physics, China . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



NUCLEAR THEORY
IN THE SUPERCOMPUTING ERA – 2018

(NTSE-2018)

International Conference Proceedings

Daejeon, Republic of Korea,
October 29 – November 2, 2018

Printing date: 30.12.19. Format 70x108 1/16.
Writing paper. “Computer modern” font. Digital printing.
Quire 28,1. Number of copies 60. Order number 398.

Publisher: Pacific National University,
136 Tikhookeanskaya street, Khabarovsk 680035, Russia.


