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Abstract

I discuss the foundations of Nuclear Lattice Effective Field Theory and dis-

cuss a number of applications to nuclear structure and reactions, including α-α

scattering, clustering in nuclei and the first steps towards calculations beyond

next-to-next-to-leading order.
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1 Introduction: The big picture

Nuclear physics is an important part of the Standard Model (SM) of the strong,
electromagnetic and weak interactions. While only about 5% of the energy-matter
content of the Universe is a visible matter, this mostly comes in the form of atomic
nuclei and is the stuff we are made off. In a way, the precise understanding of the
formation of strongly interacting composites in forms of hadrons and nuclei can be
seen as the last frontier of the SM. Furthermore, precision calculations in nuclear
physics may open the door to unravel physics beyond the SM, e. g., through the
electric dipole moments of light nuclei or neutrinoless ββ-decay. Last but not least,
as the generation of elements in the Big Bang and in stars exhibits some fine-tunings,
the variation of the fundamental constants of the SM gives access to the multiverse
and thus allows to investigate the anthropic view of the Universe.

Nuclear Lattice Effective Field Theory (NLEFT) combines the successful descrip-
tion of the forces between two, three and four nucleons in the continuum (see Evgeny
Epelbaum’s contribution to these Proceedings [1]), as initiated by Weinberg [2, 3],
with stochastic methods to numerically exactly solve the nuclear A-body problems.
NLEFT also allows to perform ab initio studies of nuclear reactions. This is an im-
portant feature as nuclear structure and reactions should be considered together. In
the following, I will briefly outline some basic ingredients and a number of results
obtained in this framework. More recent developments will be given in Dean Lee’s
contribution to these Proceedings [4].

Proceedings of the International Conference ‘Nuclear Theory in the Supercomput-
ing Era — 2018’ (NTSE-2018), Daejeon, South Korea, October 29 – November 2,
2018, eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2019, p. 28.

http://www.ntse.khb.ru/files/uploads/2018/proceedings/Meissner.pdf.
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2 Basics of nuclear lattice simulations

Nuclear lattice simulations or NLEFT is a new method to investigate the nuclear few-
and many-body problem. In this approach, the Euclidean space-time is represented
by a discrete hyper-cubic volume, V = L × L × L × Lt, with the spatial (temporal)
length L (Lt) and corresponding lattice spacings a and at, respectively. The nucleons
are considered as the basic constituents and are placed on the lattice sites, see a
schematic pictorial in the left panel of Fig. 1. The interactions between the nucleons
are given by the same chiral EFT potentials as in the continuum, for a review see, e. g.,
Ref. [5] simply adapted to the lattice formulation, see, e. g., Ref. [6]. The Coulomb
interaction between the protons can also straightforwardly be included [7]. The chiral
NN interactions obey a power counting, where the leading order (LO) consists of the
static one-pion exchange and two four-nucleon contact terms. At higher orders, two-
pion exchange, corrections to the one-pion exchange as well as contact interactions
with an even number of derivatives appear. The latter are accompanied by low-
energy constants (LECs) that must be fitted to the nucleon-nucleon scattering data.
At the next-to-next-to-leading order (N2LO), the three-nucleon forces appear that
contain two new LECs, that must be fitted to a three-nucleon system or three-nucleon
scattering data. On the lattice, the finite lattice spacing entails an UV cut-off, as the
maximal momentum is given by pmax = π/a. For the most commonly used value
of the lattice spacing, a ≃ 2 fm, one has pmax = 314MeV, which corresponds to a
very soft interaction. Monte Carlo (MC) methods can then be used to numerically
exactly solve the A-body problem for a given set of NN and NNN interactions.
A very important ingredient in these simulations is the approximate Wigner SU(4)
symmetry of the nuclear interactions, that is crucial in suppressing the malicious sign
oscillations that plague fermion MC studies at finite baryonic density [8, 9]. The
remaining sign oscillations are caused by SU(4) non-symmetric contact terms as well
as by the one-pion-exchange. For more details, see the review [10] and the upcoming
textbook [11].
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Figure 1: Left panel: Neutrons and protons on a space-time lattice with spatial
length L and lattice spacing a. Right panel: Evolution of a 4He nucleus in Euclidean
time.
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The central object of NLEFT is the A-nucleon correlation function,

ZA(t) = 〈ΨA| exp(−tH)|ΨA〉, (1)

with t being the Euclidean time and ΨA being a Slater determinant of A free nucleons
or a more sophisticated correlated initial/final state. From the transient energy

EA(t) = −
d

dt
lnZA(t) (2)

one can infer the ground state energy of the A-nucleon system via

E0
A = lim

t→∞
EA(t). (3)

Similarly, the expectation value of any normal-ordered operator follows from

ZO
A = 〈ΨA| exp(−tH/2)O exp(−tH/2) |ΨA〉 (4)

in the limit of infinite Euclidean time,

lim
t→∞

(ZO
A (t)/ZA(t)) = 〈ΨA|O |ΨA〉. (5)

Excited state properties can also be extracted. In order to compute the low-lying
excited states of a given nucleus, the Euclidean time projection method is generalized
to a multi-channel calculation [12]. The Euclidean time evolution of a 4He nucleus is
depicted in the right panel of Fig. 1. Initial states are either properly antisymmetrized
free standing waves of four particles or more complex correlated configurations. With
the help of auxiliary fields, the multi-nucleon interactions and the pion exchanges can
be mapped onto insertions on a single nucleon world-line, which makes such a compu-
tation most accessible for parallel computing. One major advantage of this approach
is that all possible configurations are sampled, in particular also four nucleons, on one
lattice site. This already lets one suspect that clustering will emerge naturally in this
approach.

3 Results from nuclear lattice simulations

3.1 General remarks

Before discussing results obtained using NLEFT, a few general remarks are in order.
As already stressed, nuclear structure and reactions dynamics should be treated on the
same footing. This has important implications for the simulations. While originally
all LECs have been determined in few-nucleon systems, which has led to a number of
intriguing results, it was realized later that nucleus-nucleus collisions should also be
used for determining some LECs as this appears to be advantageous in pinning down
more precisely the three- and higher-body forces. Furthermore, the framework of
nuclear lattice simulations could only be established as a novel quantum many-body
method since one was able to solve problems that before could not be mastered in
the well established schemes based on the same chiral forces.

Most results in NLEFT have been obtained with an NNLO action that involves a
Gaussian smearing of the two LO contact interactions, with the smearing parameter
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fixed from the average S-wave np effective range. The canonical lattice had a coarse
lattice spacing of a = 1.97 fm and L ≃ 10 ... 16 fm depending on the nucleus or system
under investigation. For such a coarse lattice, the NLO and NNLO corrections can be
treated as perturbations, in particular, the contribution from the two-pion exchange
can be absorbed in the LECs of the 4N operators. At this order, one has 11 LECs
related to np, nn and pp scattering as well as two 3N LECs. The 2N LECs were
determined from fits to the np phase shifts using the spherical wall method [13] and
its refinement [14] as well as to the nn and pp scattering lengths. The 3N LECs were
determined from a fit to the triton binding energy and the spin-doublet neutron-
deuteron scattering phase shift. The first non-trivial prediction is then the 3He–3H
binding energy difference [7,15] which comes out as 0.78(5) MeV close to the empirical
value of 0.76 MeV. Ground state energies up to 28Si can now be calculated with a few
percent accuracy and an error of about 1%, see Refs. [16, 17]. Note, however, that
at this order there is still some residual lattice spacing dependence when a is varied
between 1 and 2 fm, see Refs. [18, 19]. An effective four-nucleon operator has been
utilized to overcome this effect. This residual lattice spacing dependence, however,
disappears at NNNLO as than the np phase shifts are independent on a for a varying
between 1 and 2 fm within uncertainties as recently shown in Ref. [20].

Excited states can be computed with a comparable accuracy. In Fig. 2, the LO
calculation of the first two 0+ states in 12C is shown, starting from various initial
states (plane waves and alpha cluster states) [21]. One set of these initial states
directly gives the ground state (left panel), whereas the other set first traces out
the first excitation with the same quantum numbers as shown by the intermediate
plateau (right panel). This is the famous Hoyle state [22]. The thermalization of
various initial states with growing Euclidean time to almost the same energy gives a
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Figure 2: Results for the lowest 0+ states in 12C at LO. The left panel shows the
results using various initial states, each of which approaches the ground state energy
with increasing Euclidean time t. The right panel shows the results using other initial
states. These trace out an intermediate plateau at an energy ∼7 MeV above the
ground state.
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handle on the systematic uncertainties inherent to the simulations. For more details,
see, e. g., Ref. [17].

Using this framework, a number of interesting results has been obtained, such as
the first ab initio calculation of the Hoyle state in 12C [12,21], the study of the triple-
alpha process under variations of some fundamental constants [23,24], the calculation
of the ground state energies of the alpha-cluster nuclei up to 28Si with an accuracy
of about 1% [16], an ab initio calculation of the spectrum and structure of 16O [25],
and the first ever microscopic calculation of alpha-alpha scattering [26]. However,
the employed NNLO action works well for alpha-type nuclei, but is less precise for
other systems. Therefore, new forms of smearing including also the pion-exchange
as well as a non-local distribution of lattice creation and annihilation operators have
been employed to gain further insight. Based on these improved LO actions, it was
found that nuclear physics is near a quantum phase transition from a Bose gas to the
nuclear liquid, where the first alpha-cluster nuclei are formed [27]. Another important
observation in that paper is related to the degree of locality of the contact interactions,
that appears to play a major role when going to larger nuclei and nuclear or neutron
matter, as recently emphasized in Ref. [28]. Furthermore, isotopic chains from H to
O could be calculated and new insights into nuclear clustering was obtained recently,
including also a new algorithm that for the first time allows to calculate density
distributions in nuclei and the corresponding form factors [29]. Some selected topics
from this rich spectrum of results will be discussed in what follows. Most of these
results have been obtained on supercomputers like JUGENE and JUQUEEN at the
Forschungszentrum Jülich. The CPU scaling is approximately quadratic in atomic
number, so nuclei up to A ≃ 40 have been investigated. Going to larger nuclei
requires more fine-tuned actions to suppress the remaining sign oscillations.

3.2 Ab initio calculation of alpha-alpha scattering

Let us now consider the α-α scattering as a prototypical nuclear reaction. This is
related to the facts that processes involving α-type nuclei comprise a major part of
stellar nucleosynthesis, and control the production of certain elements in stars. Also,
ab initio calculations of scattering and reactions suffer from exponential or factorial
scaling with the number of nucleons in the clusters, so therefore it was not possible so
far to perform an ab initio calculation of α-α scattering. It is thus a challenging task
to use the lattice to tackle such type of processes. We note that on the lattice one only
has discrete energy levels, and therefore a direct calculation of scattering processes
appears impossible. This hurdle can be overcome by the so-called adiabatic projection
method, that splits the problem of the calculation of scattering and inelastic reactions
into two parts. First, using the Euclidean time projection method, one constructs a
low-energy cluster Hamiltonian, called the adiabatic Hamiltonian. In the second step,
one then computes scattering phase shifts or reaction amplitudes using this adiabatic
Hamiltonian. The method was developed and refined in Refs. [30–34] and resembles
in the methodology the Hamiltonian matrix approach combining the no-core shell
model with the resonating group method, see, e. g., Refs. [35–37]. In more detail, the
construction of a low-energy effective theory for clusters proceeds as follows: One uses
initial states as a direct product of two clusters located on the lattice, parameterized
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Figure 3: Left panel: A two-dimensional picture of the two-cluster initial state |~R〉

separated by the displacement vector ~R. Right panel: A sketch of the lattices for
the cluster-cluster calculations in the overlapping and in the noninteracting regions.
Rin is the largest radial distance where the full adiabatic Hamiltonian is matched to
the effective free cluster Hamiltonian without introducing any systematic errors. RW

indicates the radius of the spherical wall as discussed in the text.

by the relative separation between the clusters, as shown in the left panel of Fig. 3,

|~R〉 =
∑

~r

|~r + ~R〉 ⊗ ~r. (6)

These are projected in Euclidean time with the chiral EFT Hamiltonian H ,
|~R〉τ = exp(−Hτ)|~R〉. These so-called dressed cluster states include all possible in-
teraction effects such as polarizations as well as deformations and, of course, the
Pauli principle. The adiabatic Hamiltonian is then given by [Hτ ]~R~R′

= τ 〈~R|H |~R′〉τ .
In general, this Hamiltonian needs to be normalized, which requires left and right
multiplication with the corresponding norm matrices. What concerns the strong in-
teractions, it can be shown that asymptotically, the adiabatic Hamiltonian is nothing
but the free Hamiltonian for two clusters, eventually supplemented by infinite-range
interactions as the Coulomb one. The underlying simulations can be simplified con-
siderably by employing the so-called radial Hamiltonian based on the lattice version of
angular momentum projection and binning the lattice points in rings of a given width.
Further, the long-range Coulomb interaction can also be included exactly. For that,
one performs first simulations in small box with a volume L′3 ∼ (16 fm)3, with all
interactions switched on. This is the supplemented by a second set of simulations in
a large box with a volume of about L3 ∼ (120 fm)3, where the strong interactions are
turned off and the long-range Coulomb interaction is included by imposing Coulomb
boundary conditions on a spherical wall with radius RW ≃ 40 fm, see the right panel
of Fig. 3. In that way, all effects of the strong and the electromagnetic interactions
are included.

Using the same NNLO Hamiltonian as for the studies of the spectrum and struc-
ture of 12C and 16O, the S- and D-wave phase shifts have been computed in Ref. [26],
as shown in Fig. 4. At LO in the employed counting, the Coulomb interaction is not
included, so both the S- and D-wave phase shifts are off the data. This is visibly
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Figure 4: Upper panel: S-
wave α-α phase shifts δ0.
Bottom panel: D-wave α-α
phase shifts δ2. Shown are
the NLEFT LO (green tri-
angles), NLO (blue circles)
and NNLO (red squares) re-
sults. The data (black tri-
angles with error bars) are
from Ref. [38].

improved at NLO and further at NNLO for the D-wave. The small NNLO correc-
tions in the S-wave are due to the coarse lattice spacing. Overall, one finds a good
description of the scattering data. In the S-wave, we find a bound state corresponding
to 8Be that is bound by −0.11(1) MeV, whereas in nature this nucleus is unbound
by +0.09MeV. This deviation of about 200 keV reflects the precision of the calcula-
tion. In the D-wave at NNLO, the resonance parameters are ENNLO

R = 3.27(12) MeV

and ΓNNLO
R = 2.09(16) MeV, not far off the empirical data of 2.92(18) MeV

and 1.35(50) MeV, respectively. Maybe the most significant result of this study is the
fact that the computational time scales quadratically with the number of nucleons in
the two clusters, tCPU ∼ (A1 + A2)

2, with Ai being the number of nucleons in the
cluster i (i = 1, 2). This means that the computational time for the so-called holy
grail of nuclear astrophysics, the radiative alpha capture on 12C at stellar energies
(given by the Gamow peak), α + 12C → 16O + γ, is in reach, requiring only 8 times
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as much CPU time as the computation of elastic α-α scattering (twice the number of
nucleons and two channels). Before doing that, however, the chiral forces should be
worked out to N3LO so as to reach the required accuracy.

3.3 New insights into nuclear clustering

Clustering in nuclei is an old but ever fascinating topic, introduced by Wheeler in 1937
in this seminal paper on “Molecular Viewpoints in Nuclear Structure” [39]. The most
prominent type of clustering is the observation of α-particle substructures in light and
medium-mass nuclei, and its eventual disappearance as the atomic number increases.
There have been many works on alpha clustering, here I just mention recent work on
alpha clustering employing density functional methods by the Peking group [40] as
well as work by the Paris–Zagreb group [41]. For a recent review, see, e. g., Ref. [42].

As already mentioned above, alpha clustering emerges naturally in NLEFT and
a number of intriguing results on alpha-type nuclei and clustering have already been
obtained, such as the first ab initio calculation of the Hoyle state or the observation
that nuclear physics is close to a quantum phase transition from a Bose gas of α’s
to a nuclear liquid for α-type nuclei. However, when adding extra neutrons and/or
protons, the precision of the calculations quickly deteriorates due to the remaining
sign oscillations. To overcome this, a new LO action with smeared SU(4) local and
non-local symmetric contact interactions as well as smeared one-pion exchange was
constructed in Ref. [29]. The non-local smearing distributes any nucleon creation
and/or annihilation operator over the six neighboring lattice sites as depicted in the
left panel of Fig. 5,

a
(†)
NL(n) = a(†)(n) + sNL

∑

〈n′
n〉

a(†)(n′), (7)

where sNL is a real parameter, and the notation
∑

〈n′
n〉 represents the summation

over nearest-neighbor lattice sites of the site n. While this smearing was originally
designed to just suppress the remaining sign oscillations when extra neutrons and/or
protons are added to alpha-type nuclei, it turned out to work much better. For that,
consider a LO action that is SU(4) symmetric with local and non-local smearing as
well as smeared one-pion exchange. This action has three LECs, the strength of the
SU(4)-symmetric contact term, the parameter related to the degree of locality of the
interaction and the above-mentioned sNL. Fitting these to the average np S-wave
scattering lengths and effective ranges and also to the α-α S-wave scattering length,
one can predict the isotope chains from hydrogen to oxygen as shown in the right
panel of Fig. 5. These have an accuracy of 0.7 MeV per nucleon or better. This is
quite amazing given this highly simplified LO action. Clearly, NLO effects (and higher
orders) need to be accounted for to achieve, e. g., a better description of the 1S0 np
phase.

Using this action, one can also obtain deeper insight into nuclear clustering. For
that, define as probes of alpha clusters the quantities

ρ4 =
∑

n

: ρ4(n)/4! : and ρ3 =
∑

n

: ρ3(n)/3! : . (8)

Here, ρ4 couples to the center of the α-cluster while ρ3 gets contributions from a
wider portion of the alpha-particle wave function and thus these can be used for
“measuring” cluster properties. Note that ρ3 and ρ4 depend on the regulator, the
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Figure 5: Left panel: Two-dimensional illustration of the non-local smearing of
a nucleon creation/annihilation operator over the neighboring lattice sites. Right
panel: The ground state energies versus the number of nucleons A for the hydrogen,
helium, beryllium, carbon, and oxygen isotopes (NLEFT: squares with error bars,
experiment: circles). The errors are one-standard deviation error bars associated
with the stochastic errors and the extrapolation to an infinite number of time steps.

lattice spacing a, but not on the nucleus. However, the ratios ρ3/ρ3,α and ρ4/ρ4,α
are free from short-distance ambiguities. If properly defined, the effective number of
alpha clusters should be greater than or equal to Nα. A value equal to Nα indicates
that the alpha clusters are behaving as indivisible objects, and the nucleus can be
regarded as a compound fluid of alpha particles and neutrons. If the effective number
is significantly greater than Nα, then the description in terms of individual alpha
clusters breaks down and the system behaves more as a nuclear liquid of protons
and neutrons. The behavior is shown in the left panel of Fig. 6, where it is seen
that, for the oxygen isotope chain, the entanglement between the clusters leads to
the expectation values of ρ3/ρ3,α and ρ4/ρ4,α much larger than 4. This shows that
the transition from cluster-like states in light systems to nuclear liquid-like states
in heavier systems should not be viewed as a simple suppression of multi-nucleon
short-distance correlations, but rather as an increasing entanglement of the nucleons
involved in the multi-nucleon correlations.

Another important development of Ref. [29] was the formulation of the so-called
pinhole algorithm, see the right panel of Fig. 6. In general, auxiliary field quantum
MC calculations involve states that are superpositions of many different center-of-
mass (cm) positions, so a direct calculation of density distributions of nucleons in a
nucleus is not possible. This can be overcome by inserting a screen with pinholes with
spin and isospin labels that allows nucleons with corresponding spin and isospin to
pass. In that way, one measures the A-body density operator

ρi1,j1, ... ,iA,jA(n1, ... ,nA) = : ρi1,j1(n1) ...ρiA ,jA(nA) : . (9)

MC sampling of the amplitude

Ai1,j1, ... ,iA,jA(n1, ... ,nA, Lt) = 〈ψ(τ/2)|ρi1,j1, ... ,iA,jA(n1, ... ,nA)|ψ(τ/2)〉 (10)

then allows to measure the proton and neutron densities as well as more complicated
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Figure 6: Left panel: The ratios ρ3/ρ3,α and ρ4/ρ4,α for the helium, beryllium,
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spin-isospin indices at time t = Ltat/2.

two-, three- or higher-body correlations of nucleons within a given nucleus. This is
because the pinhole sheet allows one to determine the cm of a given nucleus given
simply by the minimal distance to all nucleons. Further, the resolution of this method
is a/A because the cm position rcm is an integer ncm times a/A. Results for the proton
and neutron distributions in the isotopes 12,14,16C are shown in the upper panel of
Fig. 7. The proton size of rpE = 0.84 fm [43, 44] is accounted for and asymptotic
properties for the volume dependence of N -body bound states [45] have been used.
Upon the Fourier-transformation of these densities, one can obtain the corresponding
elastic form factor. This is shown in the bottom panel of Fig. 7 for 12C. Given the
simplicity of the underlying Hamiltonian, the agreement is quite satisfactory. This
paves the way for detailed nuclear structure studies.

3.4 Fine-tunings and the multiverse

In nuclear physics, we observe a number of so-called fine-tunings, for some reviews and
recent works, see, e. g., Refs. [47–51]. A prominent example is the lightest nucleus,
the deuteron. It is bound by a mere 2 MeV, just one tenth of percent of its total mass.
Also, the aforementioned Hoyle state must be very closely placed to the triple-alpha
threshold, in nature the energy difference is just 380 keV, much less than typical
nuclear excitation energies of a few MeV. This close proximity is required so that
in hot, old stars a sufficient amount of carbon and also oxygen is generated [22].
It is therefore natural to ask how much the SM fundamental parameters can be
detuned so that this resonance condition is no longer viable? First, however, we must
find out what the relevant parameters are. Nuclear binding is a delicate balance
between the attractive strong and the repulsive electromagnetic interactions. The
latter are given in terms of Sommerfeld’s fine-structure constant, αEM ≃ 1/137. As
concerns the strong interaction, the strong coupling constant αS is intimately tied to
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the nucleon mass because of dimensional transmutation, and therefore the small light
quark masses mu, md are the relevant parameters that control nuclear binding. This
appears at first counter-intuitive, as the major part of the nucleon mass is given by
gluon field energy by means of the trace anomaly, while the light quark contribution to
the nucleon mass is given by the so-called pion-nucleon σ-term, σπN = 59(3)MeV [52].
However, the quark mass values of a few MeV (which are, of course, scale- and scheme-
dependent) are of the same size as the nuclear binding energy per nucleon, E/A, so
that these are the pertinent strong interaction parameters. To be more precise, the
rate of the triple-alpha process is given by r3α ∼ Γγ exp (−∆E/kT ), with k being
the Boltzmann constant, T is the temperature, Γγ is the width of the Hoyle state
and ∆E = E⋆

12 − 3Eα = 379.47(18) keV, where E⋆ is the energy of the Hoyle state.
The question now is how much can the ∆E be changed so that there is still enough
12C and 16O produced in the stars? This was answered in a calculation of the element
generation in stars by varying ∆E but no other parameter. It turned out that the
allowed variation is δ|∆E| . 100 keV [53, 54], which does not appear to be any
form of fine-tuning. Note that very recent stellar simulations appear to soften this
envelope [55]. However, one still has to make the connection to the fundamental
parameters of the SM. While this can be done for the electromagnetic interactions
in cluster-type models as used, e. g., in Ref. [53], the variation of the quark masses
requires a more microscopic framework as provided by chiral EFT. This is depicted
for the quark mass dependence of the LO NN force in the upper panel of Fig. 8.
Here, the quark mass and pion mass dependences can be used synonymously, as
the Gell-Mann–Oakes–Renner relation, M2

π ∼ mu + md, is fulfilled to better than
94% in QCD [56]. As can be seen from this figure, there are explicit (through the
pion propagator) and implicit (through the pion-nucleon coupling, the nucleon mass
and the four-nucleon couplings) pion mass dependences. All this can be accounted
for systematically and precisely using chiral EFT. Coming back to the triple alpha-
process, nuclear lattice simulations are the appropriate tool to study its dependence
on the fundamental parameters, for details see Refs. [23, 24]. For that, one has to
translate the condition δ|∆E| . 100 keV into a constraint for the quark masses
(and similarly for the fine-structure constant). For the quark masses, it reads (for
fixed αEM)

∣

∣

∣

∣

(

0.571(14)Ās + 0.934(11)Āt − 0.069(6)
)δmq

mq

∣

∣

∣

∣

< 0.0015, (11)

with the average light quark mass (as the strong isospin breaking plays no role here)
mq = (mu +md)/2, Ās,t ≡ ∂a−1

s,t /∂Mπ

∣

∣

M
phys
π

, where as and at denote the singlet and

the triplet NN scattering length, respectively. Independently of the precise values
of these two quantities, it can be shown that the various fine-tunings in the triple-
alpha process (the closeness of the 8Be binding energy to the 2α threshold and the
closeness of the Hoyle state to the 3α threshold) are indeed correlated. This had been
speculated before [58] but could only be worked out precisely using NLEFT. Bounds
on Ās,t had been obtained earlier based on resonance saturation of 4N operators [59]
in Ref. [57] (see also Ref. [60]) as shown by the black cross in the bottom panel of
Fig. 8. The fairly large uncertainty can eventually be overcome using lattice QCD
to calculate these quantities. In the plane of Ās-Āt, varying the quark mass leads to
diagonal bands whose widths depends on the assumed variations. This is shown for
variations of δmq/mq of 0.5, 1 and 5% by the three different bands. Clearly, a smaller
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Figure 8: Upper panel:
Schematic drawing
of the quark mass
dependence in the two-
nucleon force. Bottom
panel: “Survivability
bands” for carbon-
oxygen based life due
to 0.5% (broad outer
band), 1% (medium
band) and 5% (narrow
inner band) changes
in mq in terms of the
input parameters Ās

and Āt. The black
cross denotes the
results of the N2LO
analysis from [57].

variation leads to a broader band. If one focuses on the central value of Ās,t, one finds
that the mq variations of 2−3% are allowed so that the abovementioned condition is
fulfilled. The large uncertainties in Ās,t do not allow for a more precise statement.
For αEM, no such uncertainties are present and it can be stated with certainty that
it can be varied by at most 2.5%. Also, no other bounds are found if one varies both
the quark masses and the fine-structure constant at the same time. This is clearly a
stronger fine-tuning as for |∆E| and its consequences for our anthropic view of the
Universe are discussed in Ref. [61]. Lattice QCD can be used to tighten the bounds
on Ās,t, for the state-of-the-art see Ref. [62].

4 Summary and outlook

Let me briefly summarize the main messages of this talk:

• Chiral EFT for nuclear forces provides a precise framework for 2N and 3N
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forces with small uncertainties, as discussed by Evgeny Epelbaum [1] in these
Proceedings. The nuclear forces from chiral EFT can also be formulated for
varying strong and electromagnetic forces, which is a necessary requirement to
study various fine-tunings in nuclear physics.

• Nuclear lattice simulations are a new quantum many-body approach that is
based on the successful continuum nuclear chiral EFT. Already a number of
intriguing results have been obtained based on NLEFT. In particular, the clus-
tering emerges naturally and α-cluster nuclei are well described. Further, with
an improved chiral action based on non-local smearing, neutron- and proton-rich
nuclei can also be studied. With the invention of the pinhole algorithm, the cal-
culation of charge densities and form factors has become possible. Furthermore,
a fine-tuning in nuclear reactions can be studied.

• Various bridges to the lattice QCD studies need to be explored, in particular,
in pinning down some of the LECs related to multi-nucleon forces or the quark
mass dependence of multi-nucleon operators.

• Finally, it must be said that many open issues in nuclear structure and reaction
physics can now be addressed in a truly quantitative manner. For example, the
“holy grail” of nuclear astrophysics [63], the ab initio calculation of the reaction
4He + 12C → 16O+ γ, is in reach.

More recent developments in NLEFT will be covered in Dean Lee’s contribu-
tion [4].
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