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Abstract

In this contribution I describe briefly the application of the shell model con-

figuration interaction approach to intermediate-mass and heavy nuclei at KTH.

I focus in particular on the technical side of the development which enables us

not only to perform large-scale full-configuration interaction calculations but

also to solve efficiently the nuclear pairing Hamiltonian in a truncated space

defined by seniority.
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1 Introduction

In the talk I present systematic calculations of the spectroscopy and transition prop-
erties of intermediate-mass and heavy nuclei around doubly magic 100Sn as well as
around 208Pb by using the large-scale configuration interaction shell model approach
with realistic interactions. Those nuclei are of interest to us partially due to the fact
that they are the longest isotopic chains that can be studied by the nuclear shell
model. We hope they can provide excellent background to study the competition of
single-particle and two-body excitations. In particular, we studied the yrast spec-
tra of Te isotopes which show a vibrational-like equally-spaced pattern but a few
known E2 transitions show anomalous rotational-like behaviour, which cannot be
reproduced by collective models [1–6]. Moreover, the calculated B(E2) values for
neutron-deficient and heavier Te isotopes show contrasting different behaviours along
the yrast line. This may be related to the enhanced neutron-proton correlation when
approaching N = 50. In general, the deviations between theory and experiment con-
cerning the excitation energies and electromagnetic properties of low-lying 0+ and 2+

excited states and isomeric states may provide a constraint on our understanding of
nuclear interaction and a hint on possible quantum phase transition. We have mea-
sured the lifetimes of the first excited 2+ and 4+ states in the neutron-deficient nuclide
172Pt [7]. We have also done several large-scale shell model calculations with realistic
nucleon-nucleon interactions for Pt, Os and W isotopes between N = 82 and 94 by
considering either 132Sn or 146Gd as the inert cores. A striking feature we found is
that the ratio B(E2; 4+1 → 2+1 )/B(E2; 2+1 → g.s.) = 0.55(19) is unusually low. In
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addition, a few other neutron-deficient W, Os, and Pt nuclei in this region feature the
same effect [8].

In this talk I also illustrate the application of the importance-truncation approach,
which is based on the monopole Hamiltonian, to neutron deficient Pb isotopes [9].
For those nuclei, the full shell-model results also agree well with our generalized
seniority and nucleon-pair-approximation truncation calculations. We have developed
an angular momentum projection technique to derive the analytic wave functions and
energy expressions for those states in the simplified single-j case [10].

In this Proceeding, I would like to focus on some technical details of our efforts
at KTH, Stockholm in developing the shell model algorithm and its possible various
applications. In addition to large-scale full and truncated configuration interaction
calculations, one of our primary interests is to apply the model to solve the pairing
Hamiltonian in large model space efficiently.

2 Shell model approach

The shell model we refer to, deals with residual interaction between valence particles
around the Fermi surface, which is mostly supposed to be of a two-body nature.
The effective Hamiltonians in terms of single-particle energies and two-body matrix
elements can be written as follows,

Heff =
∑

α

εα N̂α +
1

4

∑

αβδγJT

〈αβ|V |γδ〉JT A
†
JT ;αβ AJT ;δγ , (1)

where we assume that the effective Hamiltonian conserves isospin symmetry, α={nljt}
denotes the single-particle orbitals and εα stands for the corresponding single-particle
energies. N̂α =

∑

jz,tz
a†α,jz ,tzaα,jz ,tz is the particle number operator. 〈αβ|V |γδ〉JT

are the two-body matrix elements coupled to spin J and isospin T . AJT (A†
JT ) is the

fermion pair annihilation (creation) operator.
The pairing matrix elements refer to those with J = 0 and α and β (as well as δ

and γ) corresponding to time reversal orbitals. One has

HP =
∑

α

εα N̂α +
1

4

∑

ααγγT

〈αα|V |γγ〉J=0T A
†
JT ;ααAJT ;γγ . (2)

In most mean field approaches, usually the proton-proton and neutron-neutron pairing
are considered only. The neutron and proton pair can couple to both T = 1 (isovector)
and T = 0 (isoscalar). The importance of neutron-proton correlation may also become
important in N ∼ Z nuclei. In relation to that, there is a long-standing quest for
a possible existence of the np pairing in N ∼ Z nuclei (see recent discussions in
Refs. [11–15]).

The monopole Hamiltonian determines average energy of eigenstates in a given
configuration. The monopole interaction itself does not induce any mixture between
different configurations, however it can change significantly the (effective) mean field
and drive the evolution of the shell structure. The monopole interaction Vm is the
angular momentum averaged effects of the two-body interaction,

Vm,αβ =

∑

J(2J + 1)V J
αβαβ

∑

J(2J + 1)[1− δαβ(−1)J ]
=

∑

J(2J + 1)V J
αβαβ

(2jα + 1)

1 + δαβ
2jβ + 1− δαβ

. (3)
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The strong mixture of the wave function is mainly induced by the residual J = 0 pair-
ing and the QQ neutron-proton interaction in the multipole Hamiltonian. However, a
tricky issue one often get confused is that the diagonal matrix elements of the pairing
Hamiltonian (with α = γ) also contribute significantly to the monopole interaction.

The number of orbitals one can include is strongly restricted due to the compu-
tational limitation. Extensive studies of the algorithm optimizations and possible
truncation or approximation methods have been carried out. State-of-the-art config-
uration interaction algorithms are able to diagonalize matrices with dimensions up
to 2× 1010 with the shell model codes like KSHELL and Redstick. Truncations often
have to be applied in order to reduce the sizes of the shell-model bases. The sim-
plest way of the truncation is to restrict the maximal/minimal numbers of particles
in different orbitals. This method is applied to both the no-core (often being referred
to as Nmax) and empirical shell model (np−nh) calculations. We studied in Ref. [1]
the structure and electromagnetic transition properties of light Sn isotopes within the
large gdsh11/2 model space by restricting to four the maximal number of neutrons
that can be excited out of the g9/2 orbital. However, the convergence can be very
slow if there is no clear shell or subshell closure or if the single-particle structure is
significantly modified by the monopole interaction, as it happens in neutron-rich light
nuclei (see, e. g., Ref. [16]).

One can evaluate the importance of a given basis vector ψi within a partition
through the perturbation measure Ri = |〈ψi|Heff |ψc〉|/(ǫi − ǫc) where ψc is the cho-
sen reference state with the unperturbed energy ǫc. It is expected that the basis
vectors with larger Ri should play larger role in the given state dominated by the
reference basis state ψc used to define the truncation scheme. The off-diagonal ma-
trix elements 〈ψi|Heff |ψc〉 are relatively weak in comparison to the diagonal ones.
The most important configurations may be selected by considering the unperturbed
energy difference ri = ǫi− ǫc. A truncated model space can thus be defined by taking
the vectors with smallest ri. The challenge here is that the truncated bases may not
conserve angular momentum. An angular momentum conserved correlated basis trun-
cation approach was introduced in Ref. [17]. We are implementing this method in the
widely distributed shell-model code NuShellX by replacing its projection subroutine
with our new correlated basis method.

An importance truncation can be introduced based on the total monopole energy
by considering the multipole Hamiltonian as a perturbation. The idea behind is
again that the Hamiltonian is dominated by the diagonal monopole channel. One can
evaluate the total monopole energy of a given partition P as

Em
P =

∑

α

εαNP;α +
∑

α≤β

Vm;αβ
NP;α(NP;β − δαβ)

1 + δαβ
, (4)

where NP;α denotes the particle distributions within a given partition P . One can
order all partitions according to the monopole energy Em

P and consider the lowest
ones for a given truncation calculation. Moreover, it is expected that the pairing
correlation should play a significant role governing the structure of the lowest-lying
states of the semi-magic Pb isotopes. This model was applied in our calculations of
Pb isotopes [9]. Convergence is mostly achieved at d/D ∼ 0.1, i. e., by considering
only 10% of the total M-scheme bases. This method is very easy to implement and it
preserves the simplicity of the M-scheme algorithm.
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We have also done pair-truncated shell-model calculations with collective pairs as
building blocks in Refs. [9, 14, 18] for both the standard shell model and continuum
shell model in the complex energy plane.

3 Exact diagonalization of pairing Hamiltonian

The pairing Hamiltonian is usually solved using the simple BCS or the HFB ap-
proach which both violate the conservation of the number of particles. Particle-
number-conserved pairing calculations can be done within the Richardson approach
(see, e. g., Ref. [19]) or utilizing the exact diagonalization in a way similar to the
shell model [16, 20]. The Richardson approach can be applied to very large (infi-
nite) systems but is limited to Hamiltonians of a certain form. On the other hand,
the exact diagonalization can be done for a general Hamiltonian but the number of
orbitals one can include is limited. This limitation makes is difficult to perform re-
alistic calculations and to compare the results with those from the BCS or similar
approaches. In addition, it limits the application of the model to the α decay or pair
transfer reaction calculations. This is one of the challenges we have been trying to
resolve in the past few years. We have developed a very efficient and robust solver for
the Richardson equation which will be publicly available soon. We have also devel-
oped two large-scale exact diagonalizers: one is based on our large-scale shell model
code and parallelized using MPI + OpenMP hybrid algorithm; the other one uses only
OpenMP parallelization which can be easily combined with existing mean field codes
to replace the problematic BCS solver.

We have developed a seniority truncation approach for the M-scheme shell model
algorithms. For systems comprising the particles of the same kind, the low-lying states
can be well described within the seniority scheme. This is related to the fact that
the T = 1 two-body matrix elements are dominated by the J = 0 pairing interactions.
The seniority is related to the number of particles that are not paired to J = 0. The
seniority coupling has shown a remarkable success in describing the spectroscopy and
electromagnetic transition properties of semi-magic nuclei with spherical symmetry.
Our recent studies on the seniority coupling scheme may be found in Refs. [21–26].
The standard seniority coupling cannot be utilized within the M-scheme shell model
code where the angular momentum conservation is not considered at the basis vector
level. On the other hand, we can define a seniority-like M-scheme pair. We set this
‘seniority’ to zero if all particle pairs can be coupled to M = 0 that is all orbitals
have their time reversal partners. The seniority in our M-scheme refers then to the
number of particles that have no time reversal partners.

One can derive the exact solution of the pairing Hamiltonian by diagonalizing the
matrix spanned by the seniority v = 0, spin I = 0 states which represent only a tiny
part of the total wave function. Our second code is designed in such a way that it
works only in the v = 0 or low seniority cases but in a very simple and efficient way.
If only the seniority v = 0 states are considered, there is ONLY one basis vector
for each shell model partition. This allows us to generate the v = 0 basis in a way
similar to the M-scheme shell model. We take one time reversal orbital pair as one
binary bit which is represented as ‘1’ if the orbital is occupied. So, the combination
problem of generating all possible M-scheme vectors with a fixed number of identical
pairs N in M time reversal states is equal to generating binary integers consisting
of the same N number of digit ‘1’ and M − N number of digit ‘0’. As an example,
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for three pairs in six doubly degenerate orbitals, an obvious basis would be ‘000111’
which is easy to generate and which has the minimum value. The basis with maximum
value can also be generated simply. Then we have a two-step mechanism to generate
the rest basis vectors: For an input binary integer, first, find the first two adjacent
bits with the binary pattern ‘01’ and turn them to ‘10’; second, move all digit ‘1’ on
the lower side of the turned ‘10’ to the lowermost. The next larger integer is then
generated. The iteration should start from the minimum as input and be stopped
when the output is equal to the maximum.

We take again the above system as an example: the two-step mechanism starts
from the vector 000111 with the minimum value; the first ‘01’ appears at the third
bit, we turn ‘01’ to ‘10’ and ‘000111’ is turned to ‘001011’; since all digit ‘1’ is on
the lowermost, the output is ‘001011’. From this basis, we can generate ‘001101’
and ‘001110’. For the basis ‘001110’, we flip the first ‘01’ which changes the basis to
‘010110’. However, on the lower side of the fourth bit, there are two digits ‘1’ at the
second and the third bit which should be moved to the lowermost, so the final output
is ‘010011’. This simple mechanism allows us to generate a large-scale basis in a very
efficient manner which was actually a bottleneck for us before.

A remarkable feature is that the algorithm works also in the case of degenerate
systems which allow more than one pair in a single orbital. In such situations, we
at first represent an orbital with degeneracy D as D/2 continuous bits. One can, of
course, generate the basis in the same way as above. We have a complete M-scheme
basis for which the solution will be eigenstates of the spherical pairing Hamiltonian.
However, one should bear in mind that the dimension of such a M-scheme-like basis
set can be orders of magnitude larger than the J-scheme-like seniority-zero basis which
makes the calculations much less efficient.

To overcome this problem, we label the bits from the same degenerate orbital as a
subgroup. Inside each subgroup, since all particles are indistinguishable, we just need
one vector to represent different combination of bits, and the easiest choice is to put
all digit ‘1’ on the lowermost side. For example, ‘000111’ can represent uniquely the
vector for a system with three pairs in a 12-fold orbital. All the rest will be neglected.
In other words, we will do not flip the ‘01’ within a given subgroup.

The basis vectors generated with the above algorithm are ordered accordingly to
their values. This also allows us to identify the non-zero Hamiltonian matrix elements
in an efficient way. For a given vector |φi〉 we first generate a subbasis set from the
operation φj = H |φi〉. The indices of the subbasis φj can be determined then by
matching their values with those from the original basis set using standard searching
algorithms. It can be quite efficient since the basis vectors are ordered.

With the code described above, one can readily solve a half-filled system with up to
36–38 doubly-degenerate orbitals and 18–19 pairs (with dimensions 9×109−3.5×1010).
The corresponding shell-model space dimensions are around 4×1020−7×1021) which
is a problem formidable to solve.

The code works efficiently on PC, and now we are combing the code with publicly
available Hartree–Fock (HF) mean field codes for realistic calculations. One of our
concerns is the contribution of the pairing matrix elements to the monopole energy.

Let us consider a simple system with N pairs of identical particles in a single-j
shell. The total energy can be obtained as

E = N(N − 1)G−NΩG, (5)
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where G is the pair coupling constant and Ω = j + 1/2. The first linear term on
the right hand side corresponds to the contribution of the pairing to the monopole
channel or the mean field, and the second term defines the pairing correlation energy

Ecorr = N(N − Ω)G. (6)

This aspect looks simple but should be properly taken into account when the pairing
Hamiltonian is solved exactly to evaluate the pairing correlation or to be compared
with the BCS approach. For a system involving equally-spaced doubly-degenerate
orbitals, we showed that the total energy can be also rather well approximated as [20]

E(N) ≃ N (N − 1)G +NE2, (7)

where G is a coefficient related to the pairing strength and level density. One has

Ecorr(N) ≃ N (N − 1)G +NE2 −N(N + 1) +NG

= N (N − 1) (G − 1) +N(E2 − 2 +G), (8)

where the first and the second terms define the Pauli blocking effect and the correlation
energy of a single pair, respectively.

As discussed above, the diagonal channel of the full pairing Hamiltonian con-
tributes significantly to the total binding energy, which may result in an over-counting
problem and has to be removed from the exact solution of the pairing Hamiltonian in
the mean field applications. In some cases, the diagonal matrix elements are removed
in analogy to the BCS approach, and the following Hamiltonian is diagonalized,

H ′ =
∑

α

εn̂α −
∑

α6=β

Gαβ a
†
αa

†
ᾱaβaβ̄ , (9)

where α runs again over the time-reversal orbits with quantum numbers jα and |mα|
within the HF configuration. In this way one excludes the renormalization effect of the
single-particle energy from the diagonal pairing matrix elements. The disadvantage
is that the rotational symmetry is not conserved at the two-body level.

The de facto standard approach to extract the correlation energy is to take the
difference between the total energy E and the energy of the lowest, unperturbed HF
configuration as

Ecorr = E − EHF , (10)

where Ecorr is the (negative) correlation energy and EHF is the HF energy which
provides the upper bound for the total energy and is the starting point for various
post-HF calculations of the correlation. One can define in a straightforward way the
correlation energy as

E(1)
corr = Egs −

∑

α

[2εα −Gαα], (11)

where Egs is the lowest energy. Gαα are the corresponding diagonal matrix elements.
Now we introduce a different definition for the correlation energy based properly on

the definition of the monopole interaction. If only the pairing interaction is considered
for the particle-particle channel, we have V J=0

jjjj = −ΩjGjj and Vjj = −Gjj/2j. Thus
one can define an alternate way to calculate the correlation energy as

E(2)
corr = E −

∑

j∈HF

[

njεj −
Gjj

2j

nj(nj − 1)

2

]

, (12)
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where j runs over all single-j levels within the HF configuration.

E
(1)
corr and E

(2)
corr would be identical if all single-particle levels within the HF con-

figuration are fully occupied. However, it should be emphasized that E
(2)
corr gives a

stronger (negative) correlation energy than E
(1)
corr if the last orbital is only partially

occupied (with N = 1 to Ω− 1 pairs). The deviation is

E(2)
corr − E(1)

corr = −Nk(Ωk −Nk)
Gkk

Ωk − 1/2
, (13)

where k corresponds to the last occupied orbital and Nk(Ωk−Nk) = (Ωkukvk)
2. This

deviation is related to the fundamental difference between the coupling of particles
in the two schemes: The particles are constrained to pair to zero angular momentum
with its time reversed partner in the former case but there is no such constraint in

the second case. This is the reason why E
(2)
corr predicts more correlation energy than

the first case. With the pairing correlation energy thus defined, we can perform now
a systematic study of nuclear masses.

4 Summary

In this talk, I presented our recent works on the configuration-interaction shell-model
calculations of the spectroscopy and transition properties of intermediate-mass and
heavy nuclei. In this contribution to the Proceedings, I started by introducing the
basic framework of the nuclear shell model and of the monopole channel of the ef-
fective Hamiltonian. A simple truncation scheme can be established by considering
configurations with the lowest monopole energies, which I refer to as the importance-
truncation approach. A seniority-like truncation has also been introduced, which
allows to apply the large-scale shell model algorithm to the problem of solving the
standard pairing Hamiltonians. We introduced a simple but efficient way to generate
the basis for the paired states and for calculating the non-zero Hamiltonian matrix
elements. We also discussed different ways to exclude the pairing contribution to the
monopole interaction in order to utilize our thus developed exact pairing solver in
realistic mean field calculations.
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