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Abstract

Determination of the neutrino mass scale is a major subject of modern

physics. I calculate the nuclear matrix element of the neutrinoless double-β

decay of 48Ca and derive the reduced half-life, which makes a relation between

the half-life and the effective neutrino mass. The nuclear wave functions are ob-

tained by the quasiparticle random-phase approximation. The reduced half-life

of a few nuclear species are shown along with those of other groups. My value

of reduced half-life is much larger than the majority of values of other groups.

The charge-change transition density is examined by comparing the calculated

transition strength function with that extracted by the charge-change reactions.

The data are reproduced successfully using the appropriate transition operator

and my charge-change transition density.
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trix element; QRPA

1 Introduction

Nuclear theory plays two indispensable roles in neutrino physics. One is a calculation
of the cross section of the ν-nucleus scattering [1] in relation to the neutrino-oscillation
experiments, and another is a calculation of the nuclear matrix element (NME) and
phase-space factor of the neutrinoless double-β (0νββ) decay for determining the
effective neutrino mass. The half-life of this decay is a function of the NME, phase-
space factor, and the effective neutrino mass, thus, a reliable predictive calculation
of these theoretical quantities are necessary. 48Ca is the lightest candidate of the
mother nuclei for the experiments. The nuclear wave functions cannot be obtained
without an approximation. On the other hand, the values of the phase-space factor
are established for relatively light candidate nuclei because accurate wave functions
of the emitted particles can be used. It is a well-known problem that the calculated
NME of the 0νββ decay is distributed in a region of a factor of 2–3 systematically
depending on the theoretical methods [2]. The number of calculations increased in
the past decade, however this uncertainty factor does not change. The NME also
affects the future plans of the experimental facilities for observing the 0νββ decay
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because the NME affects an amount of the detector materials necessary for the aimed
effective neutrino masses [3].

The reason for the discrepancy of the calculated NMEs is not yet clarified. The
shell model includes high-order particle-hole correlations, but the single-particle space
is limited to one major shell in most of the calculations. The quasiparticle random-
phase approximation is not constrainted by this limit, but its applicability is limited
to nuclei in which the effects of high-order particle-hole correlations are small. Under
this circumstance, the appropriate effective gA, the axial-vector current coupling, is
not yet established. Thus, the key point of the NME study is how the reliability of
the calculation is shown.

Operators for calculating the 0νββ NME are the neutrino potential and the charge-
change operators of the Gamow–Teller (GT), Fermi, and the tensor types. The last
one has only a small contribution, and it is neglected in my calculations. The GT
transition density associated with Jπ = 1+ is an ingredient of the NME calculation.
This transition density is also included in the charge-change strength function, which
can be extracted from the experimental cross sections using the impulse approxima-
tion and an extrapolation to the limit of vanishing momentum transfer [4]. There
are experimental charge-change strength functions obtained in this manner from the
48Ca(p, n)48Sc and 48Ti(n, p)48Sc reactions [5]. In this paper, I show that these data
can be reproduced by my QRPA calculation. However, this reproduction is not triv-
ial because the experimental data do not satisfy the GT sum rule. This problem is
resolved by introducing an isovector spin-monopole operator in addition to the usual
GT operator. By this test, the validity of my charge-change transition density is
proven indirectly.

2 Nuclear matrix element

of neutrinoless double-β decay

The effective neutrino mass is defined by

〈mν〉 =
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where Uei is the matrix element of the Pontecorvo–Maki–Nakagawa–Sakata (PMNS)
matrix [6] with i denoting the eigenstate of mass mi. Suffix e stands for the electron

flavor. The half-life to the 0νββ decay T
(0ν)
1/2 and 〈mν〉 are related as [7]

T
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where G0ν is the phase-space factor, gA is the axial-vector current coupling, M (0ν) is

the NME, and me is the electron mass. I call R
(0ν)
1/2 a reduced half-life.

The 0νββ-decay NME M (0ν) is obtained by calculating

M (0ν) = M
(0ν)
GT −

g2V
g2A

M
(0ν)
F . (4)
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M
(0ν)
GT is the GT NME, and M

(0ν)
F is the Fermi NME. The vector current coupling gV

is 1; this coupling is thought to be a physical constant. An effective value is used
for gA (see below). Those NMEs can be written as

M
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GT =

∑

K

∑

aK
I aK

F

∑

pnp′n′

V
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K
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The initial and final states of the 0νββ decay are denoted by |I〉 and |F 〉, respectively,
and the states of the intermediate nucleus are |aKF 〉 and |aKI 〉. The states {|aKF 〉} are

obtained by QRPA1 based on |F 〉, and {|aKI 〉} are obtained by QRPA based on |I〉.
K is a component of the nuclear angular momentum projected on the symmetry axis;
in my calculation, the axial symmetry of the nuclear density distribution is assumed.
The indexes p and p′ denote the proton states, and n and n′ denote the neutron
states. c†i and ci are respectively the creation and annihilation operators of a particle

in the state i. 〈F |c†pcn|a
K
F 〉 and 〈aKI |c†p′cn′ |I〉 are the transition-density matrices of

the charge change. V
GT (0ν)
pp′,nn′ (Ēa) and V

F (0ν)
pp′,nn′(Ēa) are the two-body transition matrix

elements:

V
GT (0ν)
pp′,nn′ (Ēa) = 〈pp′|h+(r12, Ēa)σ(1)·σ(2) τ

−(1) τ−(2)|nn′〉, (7)

V
F (0ν)
pp′,nn′(Ēa) = 〈pp′|h+(r12, Ēa) τ

−(1) τ−(2)|nn′〉. (8)

The operators of the spin and charge change from neutron to proton are denoted
by σ and τ−, respectively. Their argument distinguishes the two particles that the
operators act on. The neutrino potential is given by

h+(r12, Ēa) ≃
R
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2
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µ̄a =
1

mec2
(Ēa − M̄). (11)

This neutrino potential is derived by neglecting the effective neutrino mass compared
to the major momentum transfer by the propagating neutrino [7]. R is the root-
mean-square radius of nucleus, r12 is the distance variable between two particles, and
Ēa is the average energy of the intermediate states (the closure approximation). R =
1.1A1/3 fm with the mass number A and µ̄a = 18.51 [7] are used in our calculations.
In Eq. (10), the functions

si(x) = −

∫ ∞

x

sin(t)

t
dt, ci(x) = −

∫ ∞

x

cos(t)

t
dt (12)

are used.
The interaction used for obtaining the nuclear states is the Skyrme SkM∗ [9] and

volume contact pairing interactions. The QRPA equation was solved in the matrix

1The proton-neutron QRPA [8] is used. I call it the QRPA for simplicity in this paper.
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Table 1: NME of 0νββ decay of 48Ca, specific terms, effective gA used for the calcu-
lation, and reduced half-life.

M (0ν) M
(0ν)
GT M

(0ν)
F gA R

(0ν)
1/2

(1012 MeV2 yr)

3.054 1.723 −0.319 0.49 19.572

formulation. Table 1 shows the obtained NME, GT and Fermi terms, effective gA,
and the reduced half-life of the 0νββ decay of 48Ca. The effective gA = 0.49 was
determined so as to reproduce the measured half-life to the 2νββ decay [10]. This
value of gA is much smaller than the bare value of approximately 1.27. Figure 1

Figure 1: Reduced half-life of 48Ca, 136Xe, and 150Nd obtained by several groups. The
references are as follows. 48Ca: [11] (QRPA Tübingen), [12] (SM, Mount Pleasant),
[13] (SM, Tokyo), [14] (IBM-2), [15] (GCM, Madrid), [16] (GCM, Sendai), [17] (SM,
Madrid), [18] (GCM, Chapel Hill), [19] (QRPA, my calculation); 136Xe: [14] (IBM-2),
[11] (QRPA, Tübingen), [20] (QRPA, Chapel Hill), [16] (GCM, Sendai), [15] (GCM,
Madrid), [17] (SM, Madrid), [12] (SM, Mount Pleasant), [21] (QRPA, Jyväskylä), [22]
(QRPA, my calculation); 150Nd: [14] (IBM-1), [23] (QRPA, Tübingen), [20] (QRPA,
Chapel Hill), [16] (GCM, Sendai), [15] (GCM, Madrid), [24, 25] (QRPA, my calcula-
tion). SM, GCM, and IBM stand for the shell model, generator coordinate method,
and interacting boson model, respectively. The effective gA is not unified.
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illustrates the reduced half-life of three nuclear species obtained by several groups
including my values, which are much higher than the majority of the results of other
groups. This result implies that the half-life is predicted by my calculation to be
much longer than that of other groups. Test of reliability of my calculation is quite
important.

3 Charge-change strength function

The experimental GT strength function of 48Ca(p, n)48Sc and GT+ [τ+ = (τ−)†

is used] strength function of 48Ti(n, p)48Sc are drawn in Fig. 2 together with my
theoretical strength functions obtained by calculating

SGT−(E) =
1

π

∑

aK
I

δ|〈aKI |στ−|I〉|2

[E − E(aKI )]2 + δ2
. (13)

E(aKI ) is the energy of the state |aKI 〉, and δ is a small constant for smoothing. The
transition operator στ− is the one-body operator. The summation includes all states
of 48Sc for which the transition matrix element does not vanish. The GT+ strength
function can be calculated analogously using |F 〉 and |aKF 〉. The calculated strength
functions apparently overestimate the data, however these results satisfy the GT sum
rule,

∫ ∞

0

dE SGT−(E)|(Z,N)→(Z+1,N−1) −

∫ ∞

0

dE SGT+(E)|(Z,N)→(Z−1,N+1) = 3(N − Z).

(14)

For the initial nucleus 48Ca, the first term provides the value of 24.638 while the
second term is equal to −0.633 resulting in the sum-rule value of 24.005. For the initial
nucleus 48Ti, I obtain respectively 15.257 and −3.268 and thus the value of 11.989
for the sum rule. The exact values are respectively 24 and 12 for these two nuclei.
The sum of the experimental charge-change transition strengths of 48Ca(p, n)48Sc
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Figure 2: Charge-change strength functions of 48Ca(p, n)48Sc (left) and 48Ti(n, p)48Sc
(right). Symbols are the experimental data of Ref. [5], solid lines are the results of my
calculations. The inset in the left panel is a magnification of the high-energy region.
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Figure 3: The same as Fig. 2 but for the transition operator O±.

is 64± 9 % of the sum-rule [5]. The tail of the experimental strength function (left
panel of Fig. 2) converges to zero, indicating that there is no strength in the higher-
energy region. Thus, it is implied by the data, that this transition involves not only
the GT operator στ− but also other ones. A possible candidate is the isovector
spin-monopole operator r2στ− [26,27]. This operator causes a two-~ω jump and can
explain the strength distribution in the higher-energy region where στ− cannot create
the strength, see the right panel in Fig. 2. The possible contribution of the isovector
spin-monopole operator has been already mentioned in Ref. [5].

I introduce the transition operator [19]

O± = στ± + α±r
2στ±, (15)

and determine α± so as to reproduce the experimental strength functions in
the two-~ω-jump region; those values are α− = −0.03 fm−2 for 48Ca → 48Sc and
α+ = −0.0253 fm−2 for 48Ti → 48Sc. The strength functions of O± are drawn in
Fig. 3 together with the experimental data. The description of the data is improved
significantly. Therefore, the contribution of the isovector spin-monopole operator is a
reasonable explanation to the observed charge-change transitions. It is stressed that
my transition density is confirmed indirectly through this reproduction of the data.

The calculated strength function of O± up to 12 MeV (48Ca) or 10 MeV (48Ti)
is lowered compared to that of the GT operator. This change can be understood by
rewriting O± as

O± =
{

1 + α±〈r
2〉nf7/2 + α±(r

2 − 〈r2〉nf7/2)
}

στ±, (16)

where 〈r2〉nf7/2 is the expectation value of r2 with respect to the specified neutron

state. The operator α±(r
2−〈r2〉nf7/2) is the two-~ω component in a good approxima-

tion [27]. Since α± are negative, the zero-~ω component 1 + α±〈r
2〉nf7/2 is hindered.

4 Summary

I have calculated the NME of the 0νββ decay of 48Ca → 48Ti using the QRPA, and
the reduced half-life was obtained. My result predicts much longer half-life of 48Ca
to that decay compared to those predicted by other groups. Check of the transition
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density has been made indirectly by reproducing the charge-change strength functions
obtained by the (n, p) and (p, n) reactions. As a by-product, it has been shown that
the transition operator of that charge-change reaction includes the isovector spin-
monopole operator.

In this paper, I omitted the discussions on the two-neutrino double-β (2νββ)
decay and the detail of the method to determine the strength of the proton-neutron
(pn) pairing interaction [19]. The strength of the isoscalar pn pairing interaction is
determined by an identity derived under the closure approximation, and the effective
gA is determined so as to reproduce the measured half-life to the 2νββ decay. The
convergence of the 0νββ NME was also checked with respect to the single-particle
space. Thus, my calculation does not have a free parameter.
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